
Universal deepfake detection across various image

generators based on data from di�usion models

Karolina ��ecka1 and Andrzej Rusiecki2[0000−0003−2239−1076]

1 Nokia, Wroclaw, Poland, karolina.lecka@nokia.com
2 Faculty of Information and Communication Technology,

Wroclaw University of Science and Technology, Wroclaw, Poland,
andrzej.rusiecki@pwr.edu.pl

Abstract. Deepfake images, with arti�cially generated or partially al-
tered fake content, appear more and more frequently in everyday life.
In order to avoid misleading or misinforming potential recipients of such
data, deepfake detection techniques are continuously developed and im-
proved. Such approaches need to reliably detect images from various
generation methods based on modern deep neural network architectures,
such as generative adversarial networks (GAN) or di�usion models (DM).
In this paper, we present an experimental analysis of the challenges asso-
ciated with the detection of fake images generated from di�erent sources.
Inspired by previous research in this area, our experiments demonstrate
the results of training classi�ers using only the images generated by cho-
sen di�usion models, as opposed to training detection models exclusively
on images produced by GANs. We conducted the experiments on Gen-
Image dataset using the state-of-the-art CLIP+ViT-L/14 backbone as
feature extractor, combined with the recently proposed frequency mask-
ing approach. A comparative analysis revealed that a training set made
up of di�usion model images can increase the average precision across
a wide range of generators, resulting in a higher degree of model gen-
eralization. Moreover, training the detectors on DM data can result in
relatively high accuracy in detecting also GAN-based deepfake images.

Keywords: Deepfake detection · Di�usion models · GANs · GenImage

1 Introduction

Arti�cially generating or altering existing images has become a popular and
generally available process. Several easily accessible applications have emerged
that leverage the available technology and generate any image based on a verbal
description or a previously provided sketch, allowing many to create content of
an entertaining or educational nature.

Unfortunately, it is often the case that the material generated is intended
to manipulate, denigrate, ridicule, or misinform. Such use of technology is ex-
tremely problematic, as it involves showing people in untrue, often compromising
situations or attributing to them words they never said. When using images of
public �gures, a carefully crafted deepfake can mislead and cause confusion and
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misunderstanding. Such posts can spread on social media on a huge scale and
unsuspecting users will then become part of the information war. In order to
protect against manipulation and other harmful e�ects of the spread of arti�cial
images, it is extremely important to develop methods to detect such fakes.

1.1 Deepfake generation

With the advancement of AI technology and the increase in computing power of
available hardware, deepfake image generation is becoming more and more ac-
cessible and accurate in convincingly reproducing reality. Deep learning methods
employed to deepfake generation are in general based on three types of network
architectures: variational autoencoders (VAE), generative adversarial networks
(GAN) and di�usion models (DM).

Autoencoders are amongst the �rst algorithms used to create deepfake images
[10]. In such architectures the task of the encoders is to create a latent space
of hidden variables, which contains detailed information about the elements of
the image, such as the color and texture of the skin of the person depicted, the
position of the head or the color of the hair. In VAEs, Gaussian distribution is
used as the distribution of latent features in the generated space [21].

GANs are based on architectures consisting of a generator and a discrimina-
tor. These two modules compete with each other, resulting in an improvement
in the quality of the generated images, as well as the ability to assign the correct
class to the �nal image [16].

Probabilistic di�usion models have recently shown great results in the �eld
of image generation. The process of image generation by DMs models is shown
in Fig. 1. The �rst, forward stage (Fig. 1a) perturbs the input data by gradually
adding noise, the second, backward stage (Fig. 1b) performs denoising in an
iterative manner so as to optimize the parameters of the neural network. The
last stage (Fig.1c), sampling, is responsible for using the optimized network to
generate new data [3].

Fig. 1. Illustration of probabilistic DM image generation: a) forward processing -
adding noise, b) backward processing - denoising, c) sampling and data generation.
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1.2 Deepfake detection

The most common approach to deepfake detection is the use of neural networks
applied as feature extractors [13], or �nal neural classi�ers [20, 19, 2, 11, 9, 22,
6]. A relatively new idea is to explore the frequency domain where signi�cant
artifacts have been observed - remnants of the use of generative models of vari-
ous types. Exploration of second-order statistics has shown that these residuals
are re�ected in the spectral analysis of the images. This means that generative
models are unable to fully reproduce the ratio of frequencies comprising a given
image, which is an important clue for detection models [4].

In order to detect image manipulation, the authors of [20] propose convolu-
tional neural networks, where in the signal ampli�cation layer, a Laplace �lter
is used to amplify the di�erences between the images. The approach presented
in [19] is based on Gaussian blur used for preprocessing to improve the statis-
tical similarity at the pixel level between true and false images. The paper [2]
describes the use of a convolutional layer tailored speci�cally for the task of
deepfake image detection. It is supposed to autonomously learn what features
indicate tampering with the image content, which would increase the generaliza-
tion of the algorithm. In [11], the presented approach is based on the analysis of
image depth maps and their anomalies, which may indicate the arti�cial origin
of the data, while in [9] the main ideas is to use Siamese networks and training
based on di�erences and similarities in the input images. The paper [22] describes
an approach that is based on extracting features that indicate di�erent origins
of di�erent parts of an image. By measuring the constancy of these features, it
is possible to determine whether the image was modi�ed.

One of the the latest approaches to deepfake detection [6] is based on the
masked signal modeling method. It involves blocking part of input signals and
trying to predict the content that should be in the masked areas. Di�erent vari-
ants can be considered: masking individual pixels in the spatial domain, masking
part of the image in the spatial domain, and masking in the frequency domain.
The best results were obtained for masking in the frequency domain. The suc-
cess of this method is related to the artifacts lef by generative models in the
frequency domain [4]. In [13] it is noted that neural classi�ers trained to dis-
criminate between images can focus on some features only and omit others. It
depends on the backbone network architecture and the dataset used for training:
its size and diversity can signi�cantly a�ect feature preference. It was also shown
that partitioning the feature space obtained with pretrained encoders from the
CLIP and ViT-L/14 architectures allows better separation between sets of real
and arti�cial images than the use of the models pre-trained on ImageNet.

Most of the currently presented solutions assume training the network only
on images generated by GAN models (including [19], [6], [2], [21]). Moreover,
the datasets containing large quantities of images from DMs are relatively new,
so the artifacts of GAN-generated images have already been well studied and
described, while the current state of knowledge regarding the artifacts left by
di�usion models is not particualry deep [18, 15].
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2 Tested approach

Current research in the �eld of arti�cial image detection allows us to conclude
that generative models, including di�usion models, leave artifacts or traces that
can often be observed in the frequency domain [4]. Focusing more attention on
features other than image content can have a positive impact on the general-
ization capabilities of the algorithm. The network architecture presented in [6]
used frequency domain signal masking to enhance the generalization and train-
ing capabilities, hence a similar network model, adapted to use images derived
from di�usion models, was used for this study.

2.1 Backbone network

The feature space of the tested model is formed by the CLIP (Contrastive
Language-Image Pre-training) vision encoder. It was originally created to com-
bine text with their visual counterparts to enable classi�cation of objects into
previously unknown classes (zero-shot learning). It is also distinguished from
other models by the inclusion of publicly available internet data in its training
set. Such a dataset contains far more categories than the popular ImageNet [14].
As previous studies have shown, combining the CLIP encoder with the ViT-L/14
vision transformer [7] provides a good separation of the features of the arti�cial
and real images. Compared to other backbone networks used for image feature
extraction, CLIP+ViT-L/14 also achieved the highest average precision for the
various test sets [13].

2.2 Frequency Masking

In accordance with the conclusions described in [6], the experiment used masks
to hide the 15% frequency components of the image. Masking was not limited
to a speci�c frequency range, as hiding individual ranges yielded worse results
than allowing the entire spectrum. Frequency masks were implemented to cover
a given percentage of the selected frequency band in the frequency domain,
after applying the Fourier transform to the input image. The speci�c frequencies
that were being masked were chosen randomly. Finally, the input image was
multiplied by the mask and the inverse Fourier transform was performed.

2.3 Testing environment

The research described in this paper was performed on the Bem 2 cluster, com-
puting resources provided by the Wroclaw Networking and Supercomputing Cen-
ter. Nodes o�ering Nvidia Tesla P100 GPU resources, CUDA cores and Intel
Xeon Gold 6126 CPUs running on AlmaLinux 8.6 operating system were used.

The entire data preparation and handling process, model building, training,
and testing were implemented in Python 3.8.16. The environment was created
according to the recommendations presented in [6]. The most important libraries
included PyTorch 1.13.1 [1], Pillow 9.4, torchvision 0.14.1, and scikit-learn 1.2.2.
We used CUDA Toolkit version 11.7 with the torch.cuda pack.
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3 Data sets

A su�ciently large dataset was needed to train and validate the neural net-
work classi�ers. According to the assumptions, it had to consist only of images
from di�usion models. Both of these conditions were met by the GenImage [23]
collection [Fig. 2].

Fig. 2. Exemplary training images form the GenImage [23] dataset: arti�cial images
(left), real images (right).

GenImage in its original form contains more than one million pairs of arti�cial
and real images, a total of about 550 GB of data. It provides coverage of the
1,000 classes o�ered by ImageNet [5]. The images that are part of the collection
come from 8 well-known and e�ective generators, namely: Midjourney, Stable
Di�usion version 1.4 and 1.5, ADM, GLIDE, Wukong, VQDM, BigGAN. The
latter is a GAN-type generator, so for the purposes of this study it was excluded
from the training set. After removing images from the GAN model and corrupted
�les, the �nal training base had a total of 2 256 168 images, including 1 137 994
fake images and 1 119 174 real images. The validation base had a total of 88 014
images, including 44 007 arti�cial and real images each. The exact distribution of
the number of images for each generator is presented in the Table 1. Files from
the ImageNet collection are marked as "real". They are not shared between
generators, which guarantees a higher degree of diversity in the database. Based
on the class label of each real image, �les described as "fake" were generated.

GenImage contains real images in JPEG format and arti�cial images in PNG
format. This could potentially create conditions for the neural network to learn
to classify samples based on artifacts resulting from compression. As the [8]
shows, GenImage does indeed exhibit several predispositions for the results ob-
tained using this collection to be biased. These are related, for example, to the
previously mentioned compression or to the size of real and arti�cial images.
This study, however, focuses on training the network on a set from a speci�c
generator. In the case of JPEG compression, the application shows that trying
to minimize this bias has little e�ect on the generalization capabilities of the
detector. This may be related to the �nding described in [4], which states that
the bias is often already present in the generators themselves. Depending on
the training set they use, they may attempt to reproduce JPEG compression
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Table 1. Number of real and arti�cial images in the training and validation sets,
divided into image generators.

Training set

Midjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM

real 161702 162001 153275 157454 162001 160740 162001

fake 161998 161998 166001 161995 162000 162001 162001

total 323700 323999 319276 319449 324001 322741 324002

Validation set

Midjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM

real 6001 6001 8001 6001 6001 6001 6001

fake 6001 6001 8001 6001 6001 6001 6001

total 12002 12002 16002 12002 12002 12002 12002

artifacts in their arti�cial images. This could be an important clue for image
classi�cation networks, as they can learn to distinguish between traces of true
compression and attempts to reproduce them. In addition, it was shown that
JPEG compression can almost completely obscure artifacts directly related to
the arti�cial origin of the image, which would be observable in the autocorrela-
tion function. Consistent with these �ndings, the entire training and validation
set was not subjected to additional compression or selection.

The bias of the GenImage set related to the size of real and arti�cial data
was also examined. The size of the real images in this set varies between 100 px
and 1 550 px for both dimensions, with most having heights and widths falling
within 300-400 px and 500-550 px, respectively. In [8] it was shown that an
attempt to compensate for this bias can negatively a�ect the generalization of
the �nal classi�er. Hence, in our experiments, no additional selection of images
based on their size was performed, and all images were cropped to a size of
224× 224 px.

3.1 Test set

To test the quality of our approach, we decided to use the data sets that have
already been used in testing deepfake detection methods.

Test set A. The �rst test set, hereinafter referred to as set A, is the image
database proposed in [17] [Fig. 3]. It contained samples generated by the follow-
ing models: ProGAN, BigGAN, StyleGAN, CycleGAN, GauGAN, StarGAN,
DeepFake, SITD, SAN, CRN, IMLE.

The �rst three models represent unconditional GANs (the output images
are created based on random noise). The next three instances are conditional
GANs. They use an additional condition to generate images, which a�ects the
content of the image. This can be, for example, text, another image, or the type
of class to which the contents of the resulting �le should belong. DeepFake con-
tains arti�cial images derived from a model using an autoencoder, which have
also undergone a number of additional transformations after generation. Seeing
In The Dark (SITD) is a model created to improve the contrast and visibility
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Fig. 3. Exemplary images from the �rst dataset used in [17]: arti�cial images (left),
real images (right).

of elements in images that are too dark. It uses pairwise learning to extract
features of correct exposure and apply them to a darkened image. Second Order
Attention Network (SAN) is a network that allows to increase the resolution
of images by using second-order statistics. It allows more accurate capture of
the relationships of image structures. The last two generators, Cascaded Re�ne-
ment Networks (CRN) and Implicit Maximum Likelihood Estimation (IMLE)
are based on complex loss functions designed to map the way humans perceive
images.

The test set A contained a total of 72 353 images, including 36181 real and
36 172 fake images - a total of about 19 GB of �les. The exact distribution of
the number of images for each generator is presented in the table below [Tab. 2]:

Table 2. Number of real and arti�cial images in the test set A, divided into image
generators.

ProGAN CycleGAN BigGAN StyleGAN GauGAN StarGAN DeepFake SITD SAN CRN IMLE

real 4000 1321 2000 5991 5000 1999 2707 180 219 6382 6382

fake 4000 1321 2000 5991 5000 1999 2698 180 219 6382 6382

total 8000 2642 4000 11982 10000 3998 5405 360 438 12764 12764

Fig. 4. Exemplary images from the test set B [13]: fake images (left), real images
(right).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_8

https://dx.doi.org/10.1007/978-3-031-97564-6_8
https://dx.doi.org/10.1007/978-3-031-97564-6_8


8 K. ��ecka and A. Rusiecki

Test Set B. The second collection, re�erd to as set B, was previously used in
[6] and is an excerpt from the image database derived from the [13] [Fig. 4].
It focused on di�usion models (LDM, Glide, Guided Di�usion) and an autore-
gressive model (DALL-E-mini). Each category contained 1 000 arti�cial image
�les. The Guided Di�usion model was trained using ImageNet, so the real im-
ages were selected from that repository. The other models used real images from
the LAION collection, which corresponded to the generated �les. In total, the
collection took up about 1 GB.

4 Experimental settings

Our experiments were performed on the datasets described in previous sections,
with some additional preprocessing steps and hyperparameter tuning.

4.1 Data preprocessing

All the images were converted to the RGB color space, and then selected trans-
formations were performed. These included applying frequency masks, and data
augmentation techniques, such as resizing the image using bilinear interpolation,
blurring using Gaussian noise, JPEG compression to a speci�ed compression ra-
tio, cropping to the selected size, �ipping the image horizontally, and normaliza-
tion. . The augmentation operations were independent of each other and applied
to images with probability 0.1 for most of them and 0.5 for the horizontal �ip.
Finally, each image was cropped to 224× 224 px, as described in the 3 section.
The images of the training set were cropped at a random location, and those of
the validation set were cropped, preserving the center part.

4.2 Model validation and testing

The �rst step before training the network was feature extraction from previ-
ously preprocessed images. It was performed using the CLIP+ViT-L/14 model,
as described in section 2.1. Such feature extraction was the most time-consuming
process: it took about 18.5 hours to extract features into 17 635 batches, con-
taining features from 128 images each. The processing time was directly scaled
with the amount of training data (more than 2.2 million images) and the batch
size. Such feature spaces were created for the training and validation sets o�ine
and then stored in appropriate �les. After feature extraction, individual training
and validation batches were transferred to the model.

In order to avoid over�tting, an early stopping approach was applied. We used
a scheme where if the validation accuracy within a given number of epochs did
not improve by at least 0.001 percentage points, the learning rate was reduced
10 times until a minimum value of 1e−6 was reached. We used the AdamW op-
timizer, which implements the independence of the regularization of the weights
from the initial learning rate and has been shown to have a positive e�ect on the
generalization of classi�ers [12]. The BCEWithLogitsLoss (Binary Cross Entropy
With Logits Loss) was chosen as the loss function.
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Model parameters Based on our preliminary tests and hyperparameter search,
the following model con�guration was chosen: frequency masking with the mask
size 15 and masking all frequencies, batchsize 128, 500 epochs training with early
stopping (no improvement in validation within 15 epochs), and initial learning
rate: 0.0002. Exemplary training results were presented in Figure 5.

Fig. 5. Final model training progress (batchsize = 128, early stopping patience = 15).

4.3 Model testing

In the �nal model test, the data preprocessing was much simpler than for the
model training and the choice of its con�guration. It consisted only of cropping
the center of the images to dimensions of 224×224 px and normalizing the tensors
with values selected for the CLIP+ViT-L/14 network. The data prepared in this
way was passed to the network model. This process, as in the case of training
and validation, took into account the size of the minibatches - for the test set the
batch size was chosen as 64. The e�ectivness of tested approaches was evaluated
with basic metrics: accuracy (ACC), average precision (AP), and the area under
the ROC curve (ROC AUC).
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Table 3. Results of deepfake detectors tested on the test set A.

model ProGAN StyleGAN BigGAN CycleGAN GauGAN StarGAN DeepFake SITD SAN CRN IMLE
average for

all generators

batch_size = 128, patience = 15

AP 0.987 0.908 0.966 0.945 0.954 0.976 0.731 0.809 0.908 0.810 0.957 0.905

ACC 0.878 0.690 0.895 0.843 0.752 0.920 0.667 0.636 0.801 0.632 0.851 0.779

ROC AUC 0.986 0.906 0.967 0.952 0.962 0.976 0.726 0.820 0.923 0.824 0.958 0.909

5 Experimental results

Tables 3 and 4 summarize the results of testing the deepfake detector on test
sets A (generators unknown to the classi�er) and B (data from these generators
were included in the training set).

5.1 Detection on data generated by models unfamiliar to the

classi�er

The �rst of the test sets, set A, contained data from models completely unknown
to the trained classi�er, so it can be used to assess how well the deepfake detector
can generalize over new data.

Analyzing the results in Table 3, it can be concluded that the model has
achieved very good results for images derived from unconditional GANs. For the
three models in this category - ProGAN, BigGAN and StyleGAN, the averaged
precision and average ROC AUC does not fall below 95% in any case. An average
accuracy of 82% was also achieved. Images generated by conditional GANs are
also recognized very well. The averaged precision for CycleGAN, GauGAN and
StarGAN does not fall below 94% in any case. An average precision of 81-82%
and an average ROC AUC of 95% were also obtained.

A subset of images generated by the Deepfake model obtained the lowest AP
and ROC AUC results. This part of the test set contained images of modi�ed
faces, while the training set did not focus on speci�c content. However, the
abilities of the presented approach to recognize arti�cial patterns from this set
exceed the random chance by 23 percentage points.

The results obtained for image enhancement models (SITD and SAN) are
also very good. However, a di�erence between the accuracy of SITD and SAN
can be noticed. The average precision and the area under the ROC curve are
also quite di�erent, again indicating a better match for the SAN generator. This
result may be related to the speci�cs of SITD, where the model is concerned
with improving the exposure of a photo. Correcting the brightness and contrast
of an image most often does not involve modifying its content, which can result
in completely di�erent artifacts.

For images from generators intended to reproduce human perception, i.e.
CRN and IMLE, the results obtained also con�rm the good performance of the
presented classi�er. Here, too, signi�cant di�erences can be observed between
the metrics of the two generative models, which are also evident in the results
presented in [6].
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Table 4. Results of deepfake detectors tested on the test set B.

model Guided LDM_200 LDM_200_cfg LDM_100 Glide_100_27 Glide_50_27 Glide_100_10 DALL-E
average for

all generators

batch_size = 128, patience = 15

AP 0.958 0.898 0.811 0.903 0.934 0.937 0.946 0.912 0.912

ACC 0.793 0.785 0.669 0.796 0.850 0.854 0.879 0.799 0.803

ROC AUC 0.963 0.908 0.818 0.910 0.945 0.947 0.954 0.922 0.921

5.2 Detection on data generated by models known to the classi�er

During training, the network had access to images generated by various di�usion
models, however, the images in the test set A were di�erent from those in the
training set. The data can therefore be considered as those to which the network
had at least partial access previously, by training on data generated by similar
models.

As can be seen in Table 4, very high AP, ACC and ROC AUC scores were
obtained for the images created by the Guided Di�usion model. An interesting
observation arises from the analysis of the classi�er results for the LDM. Remov-
ing the restriction to generate images only from the previously described classes
that were used in the process of training the generator, made correct classi�ca-
tion much more di�cult. This is most likely related to going beyond the classes
de�ned by the ImageNet. No signi�cant e�ect of the number of steps used to
generate images on the classi�cation results was observed.

Similar conclusions can be drawn when analyzing the Glide model. Changing
the number of steps performed in the �rst stage does not signi�cantly a�ect
the results obtained. The number of iterations of the second stage of the Glide
generator shows some correlation with the quality of detection: the accuracy of
the tested solution increases as the number of steps in the second stage decreases.
This leads to the conclusion that an improvement in the quality of the arti�cial
image can make it more challenging to recognize.

For the DALL-E data, the results achieved show that the model's ability to
detect deepfakes is very good. All three of the metrics tested are at a high level
for each variant of the experiment.

5.3 Comparison with previous research

To compare our results with the state-of-the-art approaches, following metrics
were used: average classi�cation accuracy - Avg. acc (averaged over all test sets),
and average precision - mAP (also averaged over all test sets). For the best
hyperparamters (batch size = 128 and patience equal to 15) we obtained AP =
0.908 and Acc = 0.789.

The results were compared with the results described in [6] and [13], on
which the concept of the present study was based (Tab. 5). The average precision
for all image generators from the test sets improved after applying training on
images from di�usion models by nearly 1.7%pt. As expected, an increase in
classi�cation precision was observed for almost all di�usion models. For Guided
Di�usion it was as much as 8.57%pt improvement. The exception is the results
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Table 5. Comparison of the detection results (mAP) with SOTA classi�ers from [6]
and [13].

Tes set A

Generator ProGAN StyleGAN BigGAN CycleGAN GauGAN StarGAN DeepFake SITD SAN CRN IMLE

Ojha 2023 [13] 1.000 0.907 0.961 0.992 0.998 0.987 0.773 0.672 0.748 0.730 0.940

Doloriel + Ojha 2024 [6] 1.000 0.927 0.969 0.990 0.998 0.989 0.772 0.674 0.758 0.788 0.959

Our approach 0.987 0.908 0.966 0.945 0.954 0.976 0.731 0.801 0.908 0.810 0.957

Test set B

Generator: Guided
LDM
200

LDM
200 CFG

LDM
100

Glide
100 27

Glide
50 27

Glide
100 10

DALL-E
Average over

all image generators

Ojha 2023 [13] 0.883 0.955 0.807 0.964 0.905 0.915 0.901 0.866 0.890

Doloriel + Ojha 2024 [6] 0.818 0.955 0.809 0.965 0.907 0.917 0.902 0.867 0.893

our approach 0.958 0.898 0.811 0.903 0.934 0.937 0.946 0.912 0.908

for LDM without CFG - a decrease of about 6 percentage points was noted.
Images generated by the autoregressive DALL-E model posed less of a challenge
to the presented classi�er - the average precision increased by more than 5%pt.

An obvious decrease in precision was observed for all GAN-type generators.
Nevertheless, the average precision for the analyzed model did not fall below 90%,
and the di�erence between the best result for a given GAN did not exceed 4.7%pt.
The use of training images only from DMs negatively a�ected the classi�cation
precision for the DeepFake set. The biggest change was observed for the image
enhancement models, SITD and SAN. The presented neural network achieved
an average precision of almost 20%pt higher than the other solutions. These
values suggest a link between the artifacts left by SITD and SAN and those of
the di�usion models.

Statistical test. Performing statistical tests to compare the examined ap-
proaches, including results for all generators, seems to be useless, because in-
creased performance for non-GAN images is associated with lower accuracy for
GAN-based deepfakes. This is why we decided to compare the performance only
for the non-GAN part of the whole test set. Assuming signi�cance level α = 0.05,
we performed a non-parametric Friedman test obtaining statistic = 7.412, and
pvalue = 0.0246, so we could reject the null hypothesis and state that the ranks
measuring the performance of analyzed approaches di�er. Hence, we could pro-
ceed with a post hoc Nemenyi test that revealed only a signi�cant di�erence be-
tween our approach and [13] (pvalue = 0.022) while no di�erence was detected
between [13] and [6] (pvalue = 0.181) or our approach and [6] (pvalue = 0.638).

6 Summary and conclusions

In this study we investigated the generalization ability of the SOTA deepfake
image detectors when the training set consisted only of DM-generated images.
We conducted the experiments on the GenImage dataset using the state-of-
the-art CLIP+ViT-L/14 backbone as a feature extractor, combined with the
recently proposed frequency masking approach. Such frequency masks were used
to augment the training data in order to better expose the frequency domain of
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the analyzed images. Combined with the feature space of the CLIP+ViT-L/14
model, the masking yielded very good results. A key conclusion that emerges
from the performed experimental studies is that the artifacts left by di�usion
models are relatively universal. There are probably some common patterns or
features between them and artifacts left by GANs, autoencoders, or other types
of image generators. A comparative analysis reveals that a training set made up
of di�usion model images can increase the average precision across a wide range
of generators, resulting in a higher degree of model generalization. Moreover,
training the detectors on DM data can result in relatively high accuracy in
detecting also GAN-based deepfake images.
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