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Abstract. The MEAL300 dataset, comprising 300 food ingredient classes,
poses a significant challenge for image classification models. In this study,
we explore various Convolutional Neural Network (CNN) architectures
and optimization techniques to improve classification accuracy on MEAL300.
We evaluate baseline CNN models and apply transfer learning with fine-
tuning strategies to adapt pre-trained models to the dataset. By opti-
mizing fine-tuning methodologies and incorporating regularization tech-
niques, we achieve significant performance improvements. Our proposed
model, a fine-tuned ConvNeXtXLarge, attains a state-of-the-art accuracy
of 93.79%, outperforming other architectures such as MobileNetV3Large
(85.29%) and EfficientNetV2B0 (83.56%). These findings demonstrate
the effectiveness of transfer learning and fine-tuning for large-scale food
ingredient classification and contribute to advancing automated food
recognition systems with applications in nutrition tracking, food safety,
and smart kitchen technologies.

Keywords: Food Ingredients · Image classification · Transfer learning ·
Fine-tuning.

1 Introduction

Food ingredient classification, a key computer vision task, supports applications
like dietary assessment and automated ingredient recognition. Unlike dish-level
classification, it faces challenges from high intra-class variation and visual simi-
larities across ingredients. The MEAL300 dataset [1], with 300 ingredient classes,
is a robust benchmark for this task. Convolutional Neural Networks (CNNs) ex-
cel in image recognition but require optimized architectures, data augmentation,
and transfer learning for best results. This study evaluates CNN architectures
and techniques on MEAL300 to identify effective configurations for ingredient
classification, highlighting their strengths and limitations.
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2 Related Work

Food ingredient classification has advanced with machine learning and computer
vision, moving beyond labor-intensive manual inspection. DeepFood [2], a deep-
learning framework trained on the MLC-41 dataset (41 ingredient categories,
100 images each), combines ResNet features, Information Gain selection, and
SMO classification to achieve 87.78% accuracy. Similarly, the Meal300 dataset,
with 300 ingredient categories, supports models like the Tree Adaptation Net-
work (TAN) [1], which uses transfer learning to improve ingredient identification
and quality assessment for catering, outperforming traditional methods. Transfer
learning also enhances dish recognition, as seen in a framework using EfficientNet
on the UEH-VDR dataset, achieving 92.33% accuracy for Vietnamese dishes [3],
with applications in culinary tourism. However, ingredient-level classification on
Meal300, particularly addressing class imbalance and large-scale CNN optimiza-
tion, remains underexplored.

3 Methodology

3.1 Dataset

In this study, we utilize the MEAL300 dataset, which is specifically curated
for research in food ingredient recognition. It includes a diverse range of food
ingredient classes (Figure 1), with the number of images per ingredient varying
significantly, as shown in Figure 2.

Fig. 1. A preview of the MEAL300 dataset’s food ingredient classes.
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Fig. 2. Distribution of images across ingredient classes.

To ensure a balanced training dataset and reduce bias during both training
and evaluation, we limited each ingredient class to a maximum of 100 images.
This threshold was selected because certain classes contained as few as 50 images;
allowing significantly more samples for other classes would introduce distribu-
tional imbalance, potentially leading to biased learning and unreliable perfor-
mance metrics. The final class distribution after this filtering step is illustrated
in Figure 3.

Fig. 3. Image distribution per class after selecting a maximum of 100 images per class.

To facilitate effective model evaluation, the dataset is partitioned into three
subsets as follows:

– Training set (70%): Used for learning and optimizing model parameters.
– Validation set (20%): Utilized for hyperparameter tuning and model selec-

tion.
– Test set (10%): Reserved for assessing final model performance.

The MEAL300 dataset includes 300 food ingredient classes with varying im-
age counts. To balance the dataset, we capped each class at 100 images, resulting
in 20,037 training, 5,753 validation, and 2,835 test images. Images were resized
to 224×224 pixels and converted to RGB for compatibility with CNN models.
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3.2 Transfer learning, fine-tuning and hyperparameter tuning

Transfer learning uses a pre-trained model on a large dataset, reusing early layers
while adjusting later layers to recognize new patterns. It powers models like
ResNet [4], VGG [5], EfficientNet [6], and ConvNeXt [7], supporting tasks like
MEAL300 classification by reducing computing costs and improving efficiency.

Fine-tuning modifies specific layers of a pre-trained model, retaining gen-
eral knowledge while learning dataset-specific patterns. It’s useful when the new
dataset differs from the original, refining the model without full retraining.

Fig. 4. Architecture of proposed model

To enhance food ingredient classification on the MEAL300 dataset, we ap-
plied transfer learning using ConvNeXt-XLarge pre-trained on ImageNet. In
figure 4, instead of training from scratch, we froze all layers except the last
nine, as empirical testing showed that this configuration balances adaptation to
MEAL300-specific features while retaining general feature extraction capabili-
ties from ImageNet pre-training. This finding is supported by the performance
comparison in Table 1, where fine-tuning the last nine layers yields the highest
accuracy. We also reduced the learning rate of Adam optimizer [8] to 3e-5 to
ensure stable optimization and prevent catastrophic forgetting.

Table 1. Performance comparison between different numbers of layers at the end of
the ConvNeXtXLarge that can be trained

Trainable Layers 0 1 2 3 5 7 9 11 13
Accuracy 0.9090 0.9160 0.9129 0.9185 0.9263 0.9326 0.9379 0.9333 0.9337
Precision 0.9117 0.9254 0.9175 0.9237 0.9311 0.9398 0.9431 0.9372 0.9377
Recall 0.9106 0.9164 0.9093 0.9208 0.9266 0.9315 0.9405 0.9344 0.9325

F1 0.9060 0.9138 0.9060 0.9148 0.9237 0.9301 0.9370 0.9309 0.9302

To improve generalization and prevent overfitting, we added Batch Normal-
ization [9] and Dropout layers after the ConvNeXt-XLarge backbone. Specifi-
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cally, we applied Dropout(0.8) after feature extraction, followed by two Dense(512,
ReLU) [10] layers with Batch Normalization, and a final Dropout(0.7) before the
output layer. The classification layer consisted of 300 neurons with softmax ac-
tivation.

We trained the model using categorical cross-entropy loss and the Adam
optimizer with a learning rate of 3e-5. A lower learning rate was chosen to
ensure stable convergence and prevent drastic weight updates, which is especially
important when fine-tuning a large pre-trained model like ConvNeXt-XLarge.
This approach helps retain valuable pre-trained features while allowing the model
to adapt effectively to the new dataset. With this setup, our model achieved a
state-of-the-art accuracy of 93.8%, outperforming other architectures.

4 Experiments and Results

Experiments were conducted on Kaggle Notebooks using an NVIDIA Tesla P100
GPU with TensorFlow/Keras. To prevent overfitting, we used early stopping
with a patience of 15 epochs and evaluated performance using accuracy, preci-
sion, recall, and F1-score.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2TP

2TP + FP + FN

Table 2. Comparison of Models on Accuracy, Precision, Recall and F1

Model Accuracy Precision Recall F1
VGG16 0.6423 0.6521 0.6425 0.6298

ResNet50 0.7658 0.7783 0.7681 0.7587
EfficientNetV2B0 0.8356 0.8376 0.831 0.8247
MobileNetV3Large 0.8529 0.8609 0.8559 0.8497

ConvNeXtBase 0.9086 0.9131 0.9127 0.9051
ConvNeXtXLarge 0.9252 0.9295 0.9272 0.9215
Proposed Model 0.9379 0.9431 0.9405 0.9370

Our experiments evaluated multiple deep learning architectures on the MEAL300
dataset, focusing on classification accuracy, precision, recall, and F1-score. The
results, summarized in Table 2, highlight the performance differences across var-
ious models.
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Fig. 5. The confusion matrix of the proposed model on Meal300 dataset

Fig. 6. Accuracy and loss graph of proposed model when training on Meal300 dataset
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Figure 5 shows the confusion matrix, highlighting misclassifications primarily
among visually similar classes. Figure 6 illustrates the training and validation
accuracy/loss curves, demonstrating convergence after 20 epochs.

Our proposed model, which fine-tunes ConvNeXtXLarge, significantly out-
performed all baselines, achieving a state-of-the-art accuracy of 93.79%, along
with the highest precision (94.31%), recall (94.05%), and F1-score (93.70%).
These improvements stem from selective fine-tuning, learning rate adjustments,
and regularization techniques such as Batch Normalization and Dropout, which
enhanced generalization and robustness.

The results indicate that transfer learning with ConvNeXtXLarge is highly
effective for food classification tasks, with our enhancements pushing the model’s
performance beyond existing benchmarks. The high recall and F1-score further
confirm the model’s reliability in distinguishing between the 300 different food
ingredient classes, making it well-suited for real-world applications in food recog-
nition and dietary analysis.

The high accuracy and F1-score demonstrate the model’s potential for real-
world applications such as automated dietary tracking and food safety monitor-
ing. However, the computational demands of ConvNeXt-XLarge may limit its use
on resource-constrained devices, highlighting the need for model optimization or
lightweight alternatives.

5 Conclusion and Future Work

We investigated food ingredient classification on the MEAL300 dataset with 300
classes. Using transfer learning and fine-tuning ConvNeXtXLarge, our model
achieved 93.79% accuracy, outperforming MobileNetV3Large and EfficientNetV2B0.
Optimized layer selection and regularization enhanced robustness. This demon-
strates ConvNeXt’s effectiveness for large-scale food classification, with applica-
tions in dietary assessment and nutrition analysis.

5.1 Limitations

Our model is limited by class imbalance and varying image quality in MEAL300,
which may affect generalization. ConvNeXtXLarge’s high computational cost
hinders deployment on low-power devices, and single-label classification restricts
its use for multi-ingredient images.

5.2 Future Work

Future research will explore self-supervised and contrastive learning to enhance
feature extraction with fewer labeled samples, address class imbalance through
data augmentation or re-weighting loss functions, develop lightweight architec-
tures like distilled ConvNeXt or Vision Transformers (ViTs) [11] for real-time
edge deployment, and expand the dataset with diverse real-world images to im-
prove robustness in practical food recognition scenarios.
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