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Abstract. Early diagnosis and treatment of tomato leaf diseases en-
hance plant productivity, efficiency, and quality. Misdiagnosis can lead
to inadequate treatment, damaging both the plants and the agroecosys-
tem. Therefore, accurate disease detection is essential. A rapid, precise
approach to disease identification will benefit farmers significantly. Tra-
ditional manual inspection methods, while effective, are labor-intensive
and prone to human error. To address these challenges, this research pro-
poses an automated disease detection system using a custom Convolu-
tional Neural Network (CNN). A comprehensive dataset of tomato leaves
was collected, and a comparative performance analysis was conducted be-
tween YOLOv5, MobileNetV2, ResNet18, and our custom CNN model.
The custom CNN model achieved an impressive accuracy of 95.2%, sig-
nificantly outperforming the other models. Finally, the best-performing
model was deployed in a web-based end-to-end (E2E) system, allowing
tomato cultivators to classify tomato leaf diseases efficiently in real time.

Keywords: Convolutional Neural Networks (CNN), Deep learning, Tomato
leaf, YOLOv5, MobilenetV2, ResNet18

1 Introduction

Agriculture plays a key role in feeding the global population, and technologi-
cal advancements, particularly Artificial Intelligence (AI), have significantly im-
proved farming practices. AI helps farmers increase crop yields, optimize resource
use, and streamline operations. AI-driven solutions are widely used for optimiz-
ing irrigation [1], predicting crop yields [2], and automating pest control [3].
These technologies leverage machine learning (ML) algorithms to analyze large
volumes of agricultural data, enabling informed, real-time decision-making. A
key application of AI is computer vision for plant health monitoring, where deep
learning (DL) techniques allow for accurate disease detection. Studies show how
ML can optimize crop output and minimize environmental impact [4], enhancing
farm productivity. Another study [5] examines AI integration in vertical farming,
highlighting its role in improving decision-making in controlled environments.

Tomatoes are one of the most widely cultivated and economically significant
crops globally. In addition to being nutrient-rich, tomatoes offer pharmacological
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(a) Healthy leaf images (b) Diseased leaf images

Fig. 1: sample of leaf images(random) collected from the field

benefits, providing protection against conditions such as hypertension, hepati-
tis, and gingival bleeding [6]–[7]. However, various leaf-borne diseases adversely
affect tomato yield and quality. As illustrated in Fig. 1, healthy tomato leaves
typically exhibit vigor, uniform coloration (unless variegated), open growth, and
an upright posture. In contrast, diseased leaves often display visible symptoms
and deformities. The inability to accurately detect leaf diseases can significantly
reduce both yield and quality, which in turn can negatively impact a country’s
economy [9]. According to the Food and Agriculture Organization (FAO) of the
United Nations, global agricultural output must increase by 70% by 2050 to
meet rising food demands [10]. However, the use of disease-control chemicals
like fungicides and bactericides can pose risks to the environment, and misdiag-
nosis of diseases often leads to ineffective treatments that further damage crops.
Expert-led field assessments are time-consuming and costly. As a result, there is
an urgent need for a fast and reliable method for disease classification in agri-
culture. Recent advancements in technology—particularly image processing offer
promising solutions for early identification of tomato leaf diseases [8] which helps
reduce crop loss, lower processing expenses, and minimize environmental harm
caused by chemical contamination of soil and water [11]. Our key contributions:

1. We proposed a new dataset consisting of 482 healthy leaves and 546 diseased
leaves for disease detection.

2. We propose an optimized custom CNN model for classifying tomato leaf
diseases into healthy and diseased categories.

3. Our proposed custom CNN model achieved satisfactory classification accu-
racy and outperformed pre-trained models such as MobileNetV2, ResNet18,
and YOLOv5, as well as other existing models.

4. The model has been deployed in a web-based application, providing farmers
with an accessible and user-friendly tool for early disease detection.

2 Literature Review

Several studies have been conducted to detect and classify tomato leaf dis-
eases, leveraging various machine learning and deep learning (DL) techniques
to improve classification accuracy. Hatuwal et al. [13] explored multiple machine
learning models, including Support Vector Machine (SVM), K-nearest Neighbour
(KNN), Random Forest Classifier (RFC), and CNN for plant disease detection.
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Among these, the CNN model achieved the highest accuracy of 97.89%, sur-
passing RFC, SVM, and KNN. Madhulatha et al. [15] used a deep CNN model
based on the AlexNet architecture, achieving 96.50% accuracy for the Plant Vil-
lage dataset, which contains 54,323 images across 38 disease categories. Zhang et
al. [16] introduced an improved Faster RCNN to classify four disease categories
and healthy tomato leaves using a depth residual network for image feature
extraction and a k-means algorithm for bounding box clustering.

On recent study, Zhao et al. [19] utilized a deep CNN with residual blocks and
attention extraction modules, achieving 96.81% accuracy with the SE-ResNet-50
model on a dataset of 22,925 augmented images across ten classes. Kannan et al.
[20] used a pre-trained ResNet model to classify tomato leaf diseases, achieving
97.00% accuracy with ResNet-50 on a dataset of 12,206 images, demonstrating
the effectiveness of deep CNN models in plant disease classification. Another
study by Rajasree et al. [14] used YOLOv5 for real-time detection of tomato
leaf diseases, achieving a notable accuracy of 93%. They compared YOLOv5
with MobileNetV2-YOLOv3 techniques, showing that the latter provided supe-
rior accuracy and stability for tomato leaf spot detection. Agarwal et al. [12]
proposed a CNN model that outperformed pre-trained models such as VGG16
(77.2%), MobileNet (63.75%), and Inception (63.4%), achieving 91.2% accuracy.
Their study emphasized the advantages of using a custom CNN model, which
required less storage space (1.5 MB) compared to pre-trained models (100 MB).
Elhassouny [21] developed a CNN-based model deployed on a mobile applica-
tion for recognizing tomato leaf diseases, achieving 90.30% accuracy. While deep
CNN models show great potential, there remains a gap in classifying diseases
under varying lighting conditions. This study proposes a custom CNN model
deployed in a web application, providing a practical tool for farmers to detect
tomato leaf diseases and take timely action.

3 Methodology

Fig 2 illustrates the system architecture in two phases: building and deploy-
ment. In the building phase, tomato leaf images are augmented (rescaling, ro-
tation, shifting, zooming, flipping) and used to train a custom CNN for binary
classification with the Adam optimizer and binary cross-entropy loss. In the de-
ployment phase, models are evaluated using accuracy, loss, and confusion matrix
metrics, and the best-performing model is deployed via an Web-based system
for predicting tomato leaf diseases.

3.1 Dataset Description

We collected tomato leaf images from fields in Mohammadpur, Brahmanbaria,
Bangladesh, using two smartphones: the Redmi Note 10 Pro and Samsung
Galaxy A10 [17]. The images, which included healthy leaves, diseased leaves,
and those affected by environmental stresses, were taken with the consent of the
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Fig. 2: A systematic representation of our proposed approach

garden owners in early February 2024. The weather varied between sunny (26-
29°C) and foggy (17-18°C) days. A total of 482 healthy leaves and 546 diseased
leaves were captured and organized into ’Healthy’ and ’Diseased’ separately.
Data preprocessing is essential for improving model performance and reducing
training time. First, we annotated the images with bounding boxes for each leaf
to be detected, using the YOLO annotation format (class labels and bound-
ing box coordinates). The images were manually labeled using the MakeSense 3

software and exported the annotations in a text file.

3.2 Proposed Custom CNN:

The proposed custom CNN model processes resized tomato leaf images of 224×
224 dimensions with three color channels. The architecture consists of 4 con-
volutional layers, each with a 2 × 2 kernel and "same" padding, followed by
max pooling layers of the same size for down-sampling. This reduces spatial di-
mensions and improves computational efficiency. The model includes 3 dropout
layers with a 20% rate to prevent overfitting, and a fully connected (FC) layer
connected to a dense output layer using SoftMax for multiclass classification.
Weights are initialized using the Xavier Glorot uniform method( r =

√
6

Xi+Xo
)

where Xi and Xo are the input and output connections. The ReLU activation
function (y = max(0, x)) is used in hidden layers for non-linearity and faster
learning . The Adam optimizer, with a learning rate of 0.001, is used to mini-
mize prediction error and adjust weights efficiently. Categorical Cross-Entropy
is used as the loss function, combining SoftMax and Cross-Entropy to calculate
the model’s prediction accuracy. The training involves 100 epochs with a batch
size of 32. Callbacks monitor validation loss to ensure the best-performing model
is saved. Training parameters are summarized in Table 1.

4 Experiment

4.1 Benchmark Models

– CNNs: CNNs consist of convolution layers (for feature extraction), pooling
layers (e.g., max pooling for dimension reduction), and fully connected layers

3 https://www.makesense.ai/
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Table 1: Training Parameters for the Proposed Custom CNN Model
Parameter Description

Optimization algorithm Adam optimizer
Learning rate (α) 0.001
Weight initialization Xavier Glorot uniform
Batch size 32
Number of epochs 100
Dropout rate 0.2 (20%)
Loss function Categorical Cross-Entropy
Activation function (hidden layers) ReLU
Activation function (output layer) SoftMax
Kernel size (convolution layers) 2× 2 with "same" padding
Kernel size (max pooling layers) 2× 2

for classification. Techniques like ReLU activation, dropout, and batch nor-
malization help improve performance and prevent overfitting, making CNNs
ideal for tasks like image classification [8].

– YOLOv5: It is a powerful object detection model which incorporates dy-
namic anchor boxes, spatial pyramid pooling, and a CSPDarknet backbone
for feature extraction. The model uses SiLU and Sigmoid activations, opti-
mizing training with Binary Cross Entropy and CIoU loss [14].

– MobileNetV2: It is a lightweight CNN designed for mobile and embedded
vision applications using depthwise separable convolutions, inverted residu-
als, linear bottlenecks, and squeeze-and-excitation blocks to reduce complex-
ity while maintaining performance.

– ResNet18: It is a deep residual network that mitigates the vanishing gra-
dient problem using residual learning. Its 18 layers with residual blocks,
Batch Normalization, and ReLU activations improve feature extraction and
training efficiency [18].

4.2 Evaluation Metrics

Model effectiveness is evaluated using accuracy(A), precision (P), recall(R),
and F1-score(F1). Accuracy, defined as the percentage of correct predictions
( TP+TN
TP+TN+FP+FN , where TP, TN, FP, and FN represent true positive, true

negative, false positive, and false negative, respectively). Precision ( TP
TP+FP ),

measures the proportion of true positives among predicted positives. Recall
( TP
TP+FN ), measures the proportion of true positives among actual positives.

The F1-score (2× Precision×Recall
Precision+Recall ), is the harmonic mean of precision and recall,

providing a balanced measure of a model’s performance..
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5 Experimental Results

Table 2 presents the experimental results, including validation loss (L). Our
proposed model achieved the highest performance across all metrics, with an
accuracy of 95.2%, a recall of 0.92, and a balanced F1 score of 0.92, indicating
strong performance in identifying diseased leaves. YOLOv5 achieved 84% accu-
racy, with a recall of 0.82 and F1 score of 0.83. MobileNetV2 performed similarly,
with 89% accuracy, a recall of 0.88 and precision of 0.87. ResNet18 showed the
lowest performance, with 82% accuracy and an F1 score of 0.84. These results
highlight the challenges faced by pre-trained models in this specific task.

Table 2: Comparison among differ-
ent models
Model R P F1 A L
Custom CNN 0.92 0.93 0.92 95.2% 0.22
YOLOv5 0.82 0.84 0.83 84% 0.48
MobileNetV2 0.88 0.87 0.88 89% 0.30
ResNet18 0.81 0.88 0.84 82% 0.51

Table 3: Result comparisons with re-
lated studies
Reference Best Model

(Accuracy)
Agarwal et al.
[12]

Custom CNN
(91.2%)

Zhang et al. [16] ResNet with SGD
(96.51%)

Basavaiah et al.
[11]

RT (94.00%)

Zho et al. [19] ResNet-50
(97.00%)

Elhassouny [21] MobileNet
(90.3%)

Our proposed ap-
proach

Optimized CNN
(95.00%)

Table 3 presents recent works on tomato leaf disease classification, listing the
applied architectures and best-performing models with their accuracy. Various
CNN models, including transfer-learning-based CNNs and custom CNNs, have
been used for this task, along with ML models, Fuzzy SVM, and R–CNN. Unlike
many studies that used small datasets, our study utilizes a larger dataset with
images captured in diverse environments. Additionally, our study processed a
compact and efficient model that achieves higher accuracy compared to other
research in this area. Furthermore, we deployed the best-performing model in a
web-based application for real-time classification of tomato leaf diseases. Fig. 3
illustrates the process of the locally deployed tomato leaf disease system, where
users can upload a tomato leaf image for classification by the proposed model.
The system’s frontend is built using HTML and CSS, while the backend uti-
lizes the Python Flask framework. The result is displayed on the screen after
classification.

6 Conclusion

This study used deep learning to classify healthy and diseased tomato leaves,
comparing YOLOv5, MobileNetV2, ResNet18, and our proposed Custom CNN
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Fig. 3: Web application for tomato leaf disease classification using our proposed
Custom CNN model.

model. The Custom CNN achieved the highest accuracy of 95.00%, outper-
forming the other models. While YOLOv5 and MobileNetV2 performed well,
ResNet18 showed weaker results, particularly in recall and precision. The study
also deployed the best model in a webapp for real-time tomato leaf disease predic-
tion. Future work can expand on these findings for real-time classification tasks
and apply the approach to other plants, combining techniques like segmentation
and feature extraction for improved results.
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