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Abstract. In this work, we present SupResDiffGAN, a novel hybrid architecture
that combines the strengths of Generative Adversarial Networks (GANs) and
diffusion models for super-resolution tasks. By leveraging latent space represen-
tations and reducing the number of diffusion steps, SupResDiffGAN achieves
significantly faster inference times than other diffusion-based super-resolution
models while maintaining competitive perceptual quality. To prevent discriminator
overfitting, we propose adaptive noise corruption, ensuring a stable balance be-
tween the generator and the discriminator during training. Extensive experiments
on benchmark datasets show that our approach outperforms traditional diffusion
models such as SR3 and I2SB in efficiency and image quality. This work bridges
the performance gap between diffusion- and GAN-based methods, laying the
foundation for real-time applications of diffusion models in high-resolution image
generation.
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1 Introduction

Image super-resolution (SR) has become an essential task in various fields, aiming
to enhance the quality of low-resolution images by reconstructing finer details and
improving overall clarity (Figure 1).

Among the different methods explored for SR, GAN-based methods [15, 31, 30]
have demonstrated considerable success in producing high-resolution images by learn-
ing complex data distributions. GANs are particularly effective at generating realistic
textures, making them a popular choice for SR tasks.

Diffusion models [26, 20, 41] have recently gained attention for their ability to refine
noisy images into high-quality outputs. These models work by iteratively removing noise
from an image, following a learned reverse process that models the underlying data
distribution. Diffusion models are particularly effective at generating fine-grained details,
making them a powerful alternative to GANs for SR tasks, especially in scenarios that
require highly detailed and stable textures over time, such as in applications involving
time-lapse imagery or video sequences.

Despite the advancements in both GAN-based and diffusion-based super-resolution
techniques, the use of diffusion models in combination with GANs for SR remains
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Fig. 1: Two representative SupResDiffGAN outputs: (top) 4× face superresolu-
tion at 128×128→512×512 pixels (bottom) 4× natural image super-resolution at
125×93→500×372 pixels.

relatively unexplored. Diffusion models offer a complementary approach to the gener-
ative capabilities of GANs. However, architectures that integrate these two powerful
techniques are still rare, and there is significant potential to explore how such hybrid
systems could further enhance image quality, reduce noise, and preserve critical details.

In this paper, we introduce a novel architecture that combines the strengths of GANs
and diffusion models for super-resolution tasks. By incorporating a discriminator network
trained adversarially within the diffusion framework, we enhance the generator’s ability
to produce realistic predictions with fewer inference steps. Our approach operates in
the latent space, leveraging its compressed representation to improve efficiency while
maintaining high-quality outputs. By combining the fast inference time of GANs with
the noise-reduction capabilities of diffusion models, we achieve superior image quality.
We believe this architecture has the potential to advance research in SR and extend the
capabilities of existing methodologies. In summary, our key contributions are as follows:

– We introduce SupResDiffGAN, a novel SR architecture that combines the realistic
texture generation of diffusion models with the high inference efficiency of GANs.
Additionally, latent-space modeling further accelerates generation.

– To address the problem of overfitting the discriminator, we propose adaptive noise
corruption, a technique that maintains a stable balance between the generator and
discriminator during training.

– Extensive experiments on top benchmark datasets demonstrate that SupResDiffGAN
outperforms existing diffusion-based super-resolution methods in image quality
(measured by the LPIPS metric) and inference speed.
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2 Related Work

GANs in SR. The introduction of GAN-based architectures in the SR task, particularly
with SRGAN [15], represents a significant advancement over traditional CNN models
trained to minimize the distance between prediction and ground truth in the pixel
space [7, 13, 19]. A key innovation introduced by GAN-based models was the use of
adversarial loss function, which, unlike conventional mathematical loss functions such
as L1 and L2, prioritizes perceptual quality more than minimizing pixel-wise differences.
Over time, GAN architectures in SR have evolved by improving the stability of the
learning process, with innovations like Relativistic GAN loss introduced in ESRGAN
[31], Wasserstein GAN loss [2] and further refinements through fine-tuning and data
augmentation techniques in ESRGAN+ [23]. Subsequent iterations have expanded the
capabilities of the architectures by adapting to handle real, unprocessed data, as seen in
RealSR [11], Real-ESRGAN [30], BSRGAN [43] or by adding multiple discriminators,
like in MPDGAN [16].

Diffusion Models in SR. Diffusion models, initially recognized for their success
in image generation tasks [5, 9], were later adapted for the SR, with SR3 [26] and
SRDiff [17] as precursors. Through their training stability, as well as their improved
representation of detail in the image, they quickly became the new state-of-the-art
techniques for the SR task (SR3+ [25]). Their strength lies in modeling data distribution
through iterative noise removal, enabling them to capture richer details compared to
earlier single-step GAN approaches [11, 30]. Over time, diffusion models have evolved
rapidly by improving control over the upsampling process, as seen in the Implicit
Diffusion Model [8]; modifying sampling trajectories, such as ResShift [41] and I2SB
[20]; and accelerating inference, as demonstrated by SinSR [32]. More recently, efforts
to push the limits of SR performance have focused on the use of the stable diffusion
architecture, as evidenced by StableSR [29], OmniSSR [18] or PASD [40].

GAN-Diffusion architecture. Recent studies [14] have highlighted the advantages
of GAN models, indicating that they are more suitable for the SR task compared to
diffusion models [33]. These works point to key disadvantages of diffusion models,
particularly their computational complexity and long inference times [38], which make
them unsuitable for real-world applications [35]. Similar issues have been addressed
in domains such as image generation, text-to-image, or image translation [21, 39]. One
promising solution may be the integration of GAN and diffusion models in a Diffusion-
GAN architecture [33, 37]. The approach combines the high-quality image generation of
diffusion models with the faster inference speed of GANs.

Initial applications of this architecture for SR have shown promising results [22, 36],
but we aim to take it a step further by sampling in the latent space [28] of the pretrained
VAE model introduced in [24]. To prevent Dgan from overfitting, we employ adaptive
noise augmentation to its input, following the approach introduced in [33]. This approach
will reduce the computational complexity and improve the quality of the upsampling
process.
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3 Preliminary

Denoising Diffusion Probabilistic Models (DDPMs) [9] are generative models that
synthesize high-quality data samples by iteratively transforming random noise into mean-
ingful data. This is achieved by reversing a forward diffusion process that progressively
corrupts the data with noise.
Diffusion models operate as two Markov chains: the forward process and the reverse
process. The forward process incrementally adds Gaussian noise to the data, degrading
it to pure noise. In contrast, the reverse process learns to reconstruct the original data
distribution by modeling the reverse dynamics.

The forward process is crucial for training the diffusion model. Given a clean sample
x0, it creates a sequence of noisy versions of that sample, following the formula

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where βt is a noise scheduler that controls the noise level at timestep t. By repeating
this formula, we get more and more noisy samples as t increases, and eventually, after a
sufficient number of steps t → T , we get xT which should be indistinguishable from
pure noise N (0, I). After clever reparametrizations αt = 1 − βt; ᾱt =

∏t
s=1 αt, we

can marginalize all intermediate states to obtain

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (2)

The main idea behind the forward process is to create training samples (xt, x0) with any
arbitrary timestep t, so we can train a neural network that reverses this process.

The reverse process aims to transform pure noise xT ∼ N (0, 1) to clean data x0.
Theoretically, it is impossible because the posterior q(xt−1 | xt) is intractable. However,
we can make it tractable with the additional condition on a clean sample x0

q(xt−1 | xt, x0) = N
(
xt−1;

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0,

1− ᾱt−1

1− ᾱt
βtI

)
.

(3)

Our goal here is to propose a model pθ(xt−1 | xt) with its parameters θ such that
minimizes Kullback-Leibler divergence between tractable posterior across all timesteps

θ∗ = argmin
θ

T∑
t=1

DKL (pθ(xt−1 | xt) || q(xt−1 | xt, x0)) , (4)

which can be simplified to L2 norm between true and predicted noise ϵt in noisy state xt.
Assuming a previously trained model pθ(xt−1 | xt), we can generate new sample,
starting with xT ∼ N (0, I) and iteratively denoise one step using our model

pθ(x0:T ) = q(xT )

T∏
t=1

pθ(xt−1 | xt). (5)
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Fig. 2: The training process of our proposed model. Ground truth x0 and low-resolution
image xlow are embedded into latent space. The ground truth latent z0 is diffused to
random timestep t and goes as input to the generator with low resolution latent zlow.
The output of generator ẑ0 and z0 are diffused to specific timestep s and decoded to
pixel space where they are assessed by the discriminator which sample is real. The final
loss function of the model is the mean square error between z0 and ẑ0 enriched by the
adversarial loss provided by the discriminator.

4 Method

In this section, we present SupResDiffGAN, a novel diffusion model for the SR task. Con-
sistent with prior works, we assume that the low-resolution xlow and high-resolution x0

images have matching spatial resolutions, achieved if necessary through pre-upsampling
the xlow image using bicubic interpolation. SupResDiffGAN combines a latent space
representation with a hybrid diffusion-GAN architecture, achieving a trade-off between
perceptual quality and computational efficiency.

Training The training setup is illustrated in Figure 2. The architecture of the models con-
sists of a U-net generator G, a discriminator network Dgan, and a pretrained variational
autocoder (VAE) with frozen parameters. These are divided into an encoder Evae and a
decoder Dvae. For each training pair, high-resolution x0 and low-resolution xlow, we
encode them first to latent representations z0 and zlow using encoder Evae. This latent
encoding enables efficient processing in a lower-dimensional space.

Next, We create the noised version of z0, zt using the diffusion forward process from
Equation (2) at a random timestep t. The triplet (zt, t, zlow) is then fed into the generator
G, which aims to predict ẑ0 as close to the ground-truth latent z0 as possible.

To further refine the prediction, both z0 and ẑ0 undergo an additional diffusion step
to the same timestep s, following Equation (2). The resulting ẑs and zs are then decoded
into pixel space using a pretrained decoder Dvae. These decoded images are passed to the
discriminator Dgan. The timestep s is dynamically adjusted based on the discriminator’s
accuracy to prevent overfitting, ensuring robust training.
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Generator The generator G, a U-Net in our case, is integrated into the diffusion process,
taking as inputs: (1) the current latent state zt, (2) the time step t, and (3) a low-
resolution image in the latent space zlow to guide generation. Its primary goal is to
produce a realistic estimation of a clean latent ẑ0 for each timestep t in the diffusion
reverse process

ẑ0 = G(zt, t, zlow). (6)

During inference, after performing diffusion sampling in the latent space, the final gener-
ated representation ẑ0 is decoded into pixel space by the decoder Dvae, producing the
high-resolution output image x̂0.

Discriminator The discriminator Dgan is designed to differentiate between real high-
resolution images x0, and super-resolution generated images x̂0.

To prevent Dgan from overfitting, we introduced Gaussian noise augmentation,
which utilizes the diffusion forward process in the latent space and applies it to the
discriminator input

zs ∼ N (
√
ᾱsz0, (1− ᾱs)I), (7)

ẑs ∼ N (
√
ᾱsẑ0, (1− ᾱs)I). (8)

For further stabilization of training, we employed an Exponential Moving Average
(EMA) mechanism on the accuracy of the discriminator to dynamically adjust the
augmentation timestep s associated with the noise strength applied to the inputs

acc(i)ema = accbatch · λema + acc(i−1)
ema · (1− λema). (9)

Where acc(i)ema and acc(i−1)
ema are EMA values on discriminator accuracy at the i and (i−1)

training iteration. accbatch is the accuracy of the discriminator at the current batch, and
λema is the EMA weight set to 0.05. EMA monitors the discriminator’s accuracy during
training and adjusts s with the formula

s =

⌊
max

(
2T

(
accema −

1

2

)
, 0

)⌋
, (10)

where T is the maximum diffusion timestep. This ensures that the discriminator’s task
is neither easy nor difficult, preventing overfitting and promoting adversarial stability.
Noisy latents zs and ẑs are then decoded to xs = Dvae(zs); x̂s = Dvae(ẑs).

To enhance the robustness of the adversarial training, the input of the discriminator
consists of a concatenation ⊕ of both images xs and x̂s along the channel dimension in
a randomized order

xs ⊕rand x̂s =

{
xs ⊕ x̂s, with probability 0.5

x̂s ⊕ xs, with probability 0.5.
(11)

The discriminator is trained to distinguish xs from x̂s by predicting a binary label y
corresponding to the correct order of concatenation. The randomness in ⊕rand prevents
the discriminator from relying on input order, encouraging it to focus on the details of
given images instead.
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The discriminator loss (12) is calculated using binary cross-entropy (BCE) between
the predicted label and the ground truth input order. It is defined as

(12)
LD = −

[
1

N

N∑
n=1

y(n) log(Dgan(x
(n)
s ⊕ x̂(n)

s )) +

+(1− y(n)) log(1−Dgan(x̂
(n)
s ⊕ x(n)

s ))

]
,

where N is the batch size, and (n) is the index of a sample.

Generator Loss The generator loss LG is a weighted combination of two key com-
ponents: content loss (Lmse) and adversarial loss (Ladv). Each component serves a
distinct purpose in ensuring the quality and realism of the generated images.

The content loss minimizes the structural difference between the generated image
and the ground truth in latent space using Mean Squared Error (MSE). This term ensures
that the generated image closely resembles the target image at a pixel level. For a ground
truth latent z0 and its generated counterpart ẑ0, the content loss is defined as

Lmse = ||z0 − ẑ0||2 (13)

The adversarial loss encourages the generator to produce realistic textures and
details by fooling the discriminator Dgan. It is defined as the negative discriminator loss

Ladv = −LD (14)

The total generator loss (15) combines these components with their respective
weights, balancing structural similarity, perceptual quality, and realism:

LG = Lmse + λadv · Ladv (15)

Here, λadv = 1 × 10−3 is a hyperparameter controlling the contributions of the
adversarial losses. These weights ensure the generator prioritizes structural accuracy
while enhancing perceptual appeal and realism. Balancing these terms is critical to
achieving high-quality results.

The model weights are updated alternately using discriminator loss (12) and genera-
tor loss (15).

Inference The inference process is illustrated in Figure 3. It begins by encoding the
low-resolution input image xlow into the latent space zlow. The diffusion reverse process,
which starts from pure Gaussian noise in the latent space, incorporates the generator G
to gradually reduce the noise.

Although the generator is trained to estimate the clean latent ẑ0, we can use Equation
(3) to obtain the estimation from subsequent timestep ẑt−1. Once the reverse process is
complete, the final prediction ẑ0 is decoded into pixel space using a decoder Dvae.
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Pixel SpaceLatent Space

Diffusion steps

Pixel Space

Fig. 3: The sampling process of our model. We first embed the input xlow to the latent
representation zlow. We then start the diffusion reverse process from the pure Gaussian
noise and gradually remove the noise to obtain the final sample in the latent space ẑ0
which is decoded to pixel space.

5 Experiments

This section evaluates the performance and efficiency of the proposed SupResDiffGAN
model architecture for single-image super-resolution (SR). The experiments aim to
demonstrate that the proposed approach achieves high-quality image restoration at differ-
ent scales and maintains superior perceptual and quantitative performance compared to
current methods. In addition, the impact of hyperparameters and architecture elements
on the model results was tested.

Training details We use over 400k high-resolution (HR) images from the ImageNet
dataset [4] as the training dataset. These images are provided at various resolutions and
irregular shapes ranging from 300 to 400 pixels in height and from 400 to 500 pixels in
width, ensuring the adaptability and scalability of the model to diverse input sizes. To
generate the corresponding low-resolution (LR) images, the HR data are downsampled by
a factor of 4 using bicubic interpolation and then resized back to their original dimensions
for use in the diffusion model. The model is trained using the Adam optimizer [6] with a
constant learning rate of 1e-4. We set the batch size to 8. To encode the input data into
the latent space, we utilize a pretrained VAE from the Stable Diffusion model [24].

Datasets: We conduct experiments on diverse datasets commonly used in SR re-
search. For general testing, we use 512 images from ImageNet [4], aligned with training
specifications. CelebA-HQ [12] is used for evaluating fine-grained facial details. Div2K
[1], and Urban100 [10] assess adaptability across resolutions and detail recovery. Real-
world degradation is tested with RealSR [3], containing images from Canon 5D3 and
Nikon D810. Finally, we included Set14 [42], a widely-used but small benchmark.
This selection ensures a comprehensive evaluation across synthetic, high-detail, and
real-world scenarios.

Methods: Several state-of-the-art Super-Resolution (SR) methods are selected as
baselines for comparison. To evaluate the performance of the proposed model against
GAN-based approaches, we include SRGAN [15], ESRGAN [31], and Real-ESRGAN
[30]. For diffusion-based methods, comparisons are made with SR3 [26], ResShift [41],
and I2SB [20].

Metrics: The model was evaluated using quantitative and qualitative indicators.
PSNR and SSIM [34] were used to assess fidelity, while LPIPS [44] was used to assess
perceptual quality and realism. Additionally, the time needed to generate a batch of
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Table 1: Comparison of methods on CelebA-HQ dataset across 5 metrics: LPIPS, SSIM,
PSNR, MSE and Time per batch [s]. The best and second best results are highlighted in
bold and underline. Methods are categorized into Diffusion-based and GAN-based to
reflect their distinct architectural frameworks.

Metric Lpips ↓ SSIM ↑ PSNR ↑ MSE ↓ Time per batch [s] ↓
GAN-based methods

SRGAN 0.2441 0.8186 27.8723 0.0017 0.0109
ESRGAN 0.1903 0.6844 23.4248 0.0047 0.0870

Real-ESRGAN 0.1690 0.7426 26.2697 0.0025 0.0816
Diffusion-based methods

SR3 0.2229 0.8149 28.0799 0.0016 0.3072
I2SB 0.2221 0.7990 27.2533 0.0020 0.1184

ResShift 0.3275 0.7254 23.5016 0.0047 0.4394
SupResDiffGAN 0.1875 0.7485 26.1134 0.0026 0.1832

images was measured to evaluate the model’s suitability for real-world applications. All
methods were evaluated under the same conditions using an NVIDIA A100 GPU and
the same batch size to ensure fair comparisons.

5.1 Comparison with State-of-the-Art Methods

Experimental setup: All seven tested methods, including SupResDiff, were trained on
ImageNet with 330,000 steps and a batch size of 8, ensuring fair comparison. The final
checkpoint is selected based on the best LPIPS score on the validation set. Diffusion-
based methods share the same U-Net architecture (50M), while GANs retain their
original implementations. For evaluation, all diffusion models use a step size of 10,
except for CelebA-HQ, where a step size of 3 is used due to easier modality. Identical
datasets and batch settings ensure consistency, allowing an objective assessment of
efficiency and quality across models.

Quality Comparison: As shown in Tables 1 and 2, GAN-based methods, particularly
ESRGAN and Real-ESRGAN, achieve the best LPIPS performance across all datasets.
While the proposed method performs slightly worse than these, it significantly improves
upon other diffusion-based models, achieving the best results—including SR3, a purely
diffusion-based approach to super-resolution. Although our method does not perform as
well in terms of PSNR and SSIM, these metrics tend to favor overly smooth results.

The relatively lower performance of diffusion models in this study compared to their
original benchmarks is due to the fact, that both GANs and diffusion models share similar
model sizes. Since diffusion models typically require more parameters and converge
more slowly, their performance is constrained under these conditions. Despite being
outperformed by GANs in this setting, the proposed architecture demonstrates strong
potential. Enhancing diffusion models while incorporating adversarial elements serves
as a promising bridge between GANs and diffusion-based approaches, with the potential
to surpass state-of-the-art methods in the future.
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Table 2: Comparison of LPIPS metric across all evaluation datasets. The best and second
best results are highlighted in bold and underline. Methods are categorized into Diffusion-
based and GAN-based to reflect their distinct architectural frameworks.

Model / Dataset Imagenet Celeb Div2k RealSR-nikon RealSR-canon Set14 Urban100
Metric LPIPS ↓

GAN-based methods
SRGAN 0.3452 0.2441 0.3327 0.3464 0.3050 0.2901 0.3156

ESRGAN 0.2320 0.1903 0.2649 0.3380 0.3053 0.2375 0.2408
Real-ESRGAN 0.2123 0.1690 0.2562 0.3309 0.3020 0.2301 0.2285

Diffusion-based methods
SR3 0.3519 0.2229 0.3396 0.4018 0.4008 0.3015 0.2428
I2SB 0.3755 0.2221 0.3309 0.4069 0.3867 0.3169 0.2635

ResShift 0.5360 0.3275 0.4724 0.4959 0.4671 0.4832 0.4822
SupResDiffGAN 0.3079 0.1875 0.2876 0.3970 0.3853 0.2789 0.2570

Table 3: Comparison of time of the batch inference in seconds. The best and second best
results are highlighted in bold and underline. Methods are categorized into Diffusion-
based and GAN-based to reflect their distinct architectural frameworks.

Model / Dataset Imagenet Celeb Div2k RealSR-nikon RealSR-canon Set14 Urban100
Metric Time per batch [s]

GAN-based methods
SRGAN 0.0671 0.0109 0.0193 0.0367 0.0113 0.0888 0.0070

ESRGAN 0.2188 0.0870 0.2316 0.2711 0.1504 0.2049 0.0821
Real-ESRGAN 0.1392 0.0816 0.1899 0.2468 0.1427 0.2361 0.1013

Diffusion-based methods
SR3 1.9953 0.3072 7.6377 8.4242 3.6420 0.8627 1.5028
I2SB 1.6776 0.1184 6.7292 7.0910 3.1629 1.8049 1.2395

ResShift 2.2466 0.4394 8.6647 8.9677 4.1880 0.5983 1.6762
SupResDiffGAN 0.2954 0.1832 0.9333 1.0021 0.6114 0.3542 0.3206

Efficiency Comparison: Table 3 compares inference times per batch across differ-
ent models and datasets, highlighting the computational efficiency of SupResDiffGAN.
While GAN-based methods like SRGAN and ESRGAN are known for their fast inference
speeds, diffusion models such as SR3 and I2SB typically suffer from significantly longer
times due to their iterative denoising process. In contrast, SupResDiffGAN achieves
inference speeds comparable to ESRGAN, making it highly suitable for real-world ap-
plications. This efficiency results from two key factors: (1) Latent Space Representation:
By operating in a reduced-dimensional latent space, SupResDiffGAN accelerates the
diffusion process. (2) Reduced Diffusion Steps: Leveraging the latent space, SupResDif-
fGAN generates high-quality images in as few as 10 steps, compared to the thousands
required by traditional diffusion models.

Visual Performance: Figure 4 compares the performance of SupResDiffGAN with
GAN-based models (ESRGAN, RealESRGAN, SRGAN), diffusion methods (SR3, I2SB,
ResShift) and Bicubic Resize. While GAN-based models can preserve a great degree
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Bicubic SRGAN ESRGAN Real ESRGAN

SR3 ResShift I2SB Ours

Bicubic SRGAN ESRGAN Real ESRGAN

SR3 ResShift I2SB Ours

Fig. 4: Qualitative comparison of visual performance on two example images from
ImageNet. Low-quality inputs are on the left, while results from bicubic upscale and
seven SR models: SRGAN, ESRGAN, Real-ESRGAN, SR3, ResShift, I2SB, and Ours
are on the right.

of reference information, they have a lower ability to reconstruct more detailed parts
that often appear blurry, as can be observed in the bottom part of the flower image.
Similarly, SR3 and ResShift fail to reproduce complex details, leading to overly smooth
outputs. In contrast, models like I2SB and our approach generate highly detailed super-
resolution images. SupResDiffGAN leverages the strengths of both GANs and diffusion
models, achieving sharp, accurate results with minimal artifacts by balancing information
retention and fine-detail generation.

Table 4: Ablation study on the influence of the GAN component in the SupResDiffGAN
architecture. Evaluation metrics on the CelebA-HQ dataset comparing (1) a model
without a discriminator or adversarial loss, 2) a model with a discriminator but without
Gaussian noise augmentation, and (3) the full proposed architecture.

Metric Lpips ↓ SSIM ↑ PSNR ↑ MSE ↓
(1) SupResDiffGAN - no adv 0.1620 0.7377 25.9726 0.0027

(2) SupResDiffGAN - without noise 0.1591 0.7363 25.7346 0.0028
(3) SupResDiffGAN - our 0.1537 0.7527 26.2138 0.0026

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_5

https://dx.doi.org/10.1007/978-3-031-97564-6_5
https://dx.doi.org/10.1007/978-3-031-97564-6_5


12 D. Kopeć et al.

5.2 Ablation Studies

In this section, we conduct a comprehensive analysis of the proposed GAN-Diffusion
model to evaluate the impact of key architectural components. Specifically, we examine:
(1) the role of adversarial loss to determine whether it enhances model performance,
(2) the effect of the number of denoising steps and the influence of different sampling
strategies.

Influence of GAN Component Adversarial loss plays a crucial role in our model
by integrating the GAN framework within the diffusion process, as detailed in Section
4. To evaluate its impact on output quality, we conduct an experiment comparing three
configurations: (1) a model without a discriminator or adversarial loss, (2) a model with
a discriminator but without Gaussian noise augmentation, and (3) the full proposed
architecture incorporating a discriminator, adaptive noise, and EMA. All models are
trained under identical conditions on CelebA-HQ for the same number of generator
learning steps, with performance assessed using 10 inference steps on the CelebA-HQ
test set.

As shown in Table 4, the full model (3) achieves the best overall performance.
Interestingly, while the model without GAN (1) surpasses the simple GAN setup (2) in
SSIM, PSNR, and MSE, configuration (2) achieves better LPIPS scores, underscoring
the role of adversarial loss in enhancing perceptual quality. The full model (3), which
combines adversarial learning and EMA, offers the best balance—improving realism
and perceptual fidelity while maintaining strong structural similarity. These results
highlight the effectiveness of integrating adversarial loss within the diffusion framework,
demonstrating its ability to refine the model’s output quality without compromising
efficiency.

Number of steps and stochasticity of the inference After training the model, we
evaluated its performance in a different number of sampling steps using the DDPM [9]
and DDIM [27] methods. We used the LPIPS metric due to its strong correlation with
human perception. As shown in Figure 5, the model performed well even with very few
steps (e.g. 3 steps), reducing inference time by up to ×200 compared to the standard
1000-step process while preserving perceptual quality and fidelity. By using adversarial
training, the model learned to generate more realistic outputs, reducing the need for
many sampling steps. DDPM performed slightly better than DDIM at lower step counts
(1–10), but the difference diminished as steps increased.

6 Limitations and Conclusions

Thanks to the adversarial term enhancing the diffusion process, our model achieves
significant improvements in both efficiency and quality (measured by LPIPS) over
traditional diffusion-based methods. However, it still has some limitations. First, due
to the strong influence of the diffusion loss term, the model requires a paired dataset
for training. Second, while the adversarial term enables high performance with fewer
diffusion steps—leading to faster inference—the overall training time may be longer, as
the discriminator must be trained alongside the generator.

The proposed SupResDiffGAN bridges GAN-based and diffusion-based super-
resolution, balancing efficiency and quality. It employs adaptive noise corruption to
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Fig. 5: Impact of diffusion step size and sampling method on SupResDiffGAN per-
formance, evaluated using LPIPS. Results are based on the CelebA-HQ dataset. The
model maintained quality with fewer steps, significantly reducing inference time. DDPM
outperformed DDIM at low step counts, but their results converged with more steps.

prevent discriminator overfitting and leverages latent space representations along with
fewer diffusion steps to achieve GAN-like inference speeds. Though it doesn’t surpass
top GAN-based models in some metrics, its strong performance highlights its potential.
This work paves the way for future hybrid architectures, emphasizing scalability, inter-
pretability, and real-world robustness, bringing SR models closer to practical adoption.
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