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Abstract. This paper introduces a novel, unconventional method to en-
hance the visual clarity of monochrome images derived from non-visual
data sources. The approach involves a two-step process: image pseudo-
colorization followed by decolorization. Surprisingly, this counterintuitive
technique can signi�cantly improve discernibility of image features, ir-
respective of their size, shape, or original visual prominence. The paper
delves into the algorithmic details of this method and presents experi-
mental results on a representative dataset of IR, X-ray, MRI, and ultra-
sound images. When disregarding factors related to natural image ap-
pearance (which are irrelevant in non-visual domains), this method out-
performs conventional image enhancement techniques, including sophis-
ticated ones, in terms of standard image quality criteria, i.e., sharpness,
contrast, and overall detail perceptibility. This superiority is substanti-
ated by both subjective evaluations and objective metrics. The success
of this technique hinges on the careful selection of color maps and the
application of a speci�c, recently proposed decolorization scheme. The
technique is well-suited for various visual data analysis tasks in non-
visual domains, primarily in AI-based solutions.

Keywords: Non-visual domains · Monochrome images · Image enhance-
ment · Pseudo-coloring · Decolorization.

1 Motivation and Introduction

Grayscale imaging is a widely-used visualization technique for non-visual data
that bene�ts from conversion into 2D images. This method �nds application in
various domains, mainly in infrared, X-ray (including CT), MRI, and ultrasound
imaging. Infrared imaging is particularly valuable in challenging visual condi-
tions, while X-ray, MRI, and ultrasound imaging are essential for non-invasive
visualization in �elds like biomedical diagnostics and quality control.

In these applications, physical variables such as temperature, re�ectivity, ra-
diation absorption or coherent radiation emission are represented by grayscale
intensities. This enables the visual detection and classi�cation of scene compo-
nents based on their grayscale levels. While these visual tasks can be performed
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by humans (often requiring highly skilled operators), automated systems uti-
lizing advanced identi�cation and classi�cation algorithms, including AI-based
approaches, are increasingly taking over.

However, since these images originate from non-visual domains, the grayscale
values directly linked to physical variables often hold secondary importance for
image content analysis. Prioritizing grayscale values that enhance the percepti-
bility and prominence of scene components is more crucial, even if those values
only indirectly relate to the physical variable of imaging. If needed, the origi-
nal grayscale values (directly representing temperature, re�ectivity, etc.) can be
used for further analysis of already identi�ed features or objects. An example in
Figures 1(a) and 1(b) shows the original MRI image, and its variant where the
grayscale levels are di�erently assigned but the overall clarity and visual appeal
of the image is signi�cantly enhanced.

(a) (b) (c)

Fig. 1. Comparison of (a) the original MRI image and (b) the enhanced MRI image
obtained using the method proposed in this paper, and (c) the intermediate pseudo-
color image (more details to follow) generated during the enhancement process.

In images acquired from natural visual domains, image enhancement em-
ploys various processing algorithms (e.g., �lters, transform-based approaches,
etc.) tailored to speci�c image categories, often leveraging human visual experi-
ences and expectations. The goal is to improve perceived image quality, which
can be de�ned by multiple factors. Numerous works delve into various aspects of
image quality and enhancement, e.g. [3, 5, 13], concluding that overall subjective
quality is primarily determined by naturalness, color consistency (inapplicable
to monochrome images), sharpness, contrast, and detail perceptibility. Occa-
sionally, certain image characteristics may be undesirable and require correction
(e.g., by deblurring, denoising, transfer function compensation, etc.). However,
this is usually problem-speci�c, and the corresponding algorithms are applied
selectively.

For monochrome images from non-visual domains, where the concept of nat-
uralness is less applicable, quality enhancement generally follows similar prin-
ciples, as surveyed in [4, 23]. The objective remains to achieve images that are
sharp, well-contrasted, and have clearly discernible details.
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Enhanced Monochrome Visualization 3

In this paper, we focus on the challenge of enhancing the discernability of
monochrome images acquired from non-visual domains, regardless of their spe-
ci�c physical characteristics or image content. Our approach is novel and, to the
best of our knowledge, has not been previously reported in the public domain.
Generally, we depart from standard methods such as �ltering, transform-based
techniques, or contrast enhancement. Instead, we propose a counterintuitive se-
quence of two operations.

First, the image undergoes pseudo-colorization, a common technique for rep-
resenting grayscale images from diverse non-visual domains, e.g., [2, 11, 19, 27].
While this technique can enhance the visual appeal of images, it usually fails
to signi�cantly improve discernability due to the one-to-one mapping between
intensities and colors.

In the second step, the pseudo-color image is decolorized into a monochrome
image using a recently proposed scheme [22]. This method e�ectively preserves
and enhances �ne details from the original color image by incrementally de-
termining pixel intensities based on the colors and intensities of their already
processed neighbors. This two-step approach can result in a monochrome im-
age with signi�cantly improved perceptibility compared to both the original
grayscale image and the intermediate pseudo-color variant, provided a suitable
color map is chosen in the �rst step.

Figure 1 demonstrates a successful application of this methodology. Con-
versely, Figure 2 illustrates a case where the �nal monochrome image shows
only minor improvement due to an unsuitable color map choice.

(a) (b) (c)

Fig. 2. Comparison of (a) the original MRI image and (b) the processed MRI im-
age. While the intermediate pseudo-color image (c) is visually appealing, the output
monochrome image o�ers only minor enhancements of discernability. Nevertheless, it
does maintain sharper edges than the pseudo-color version.

The remainder of this paper delves into the details of our method for enhanc-
ing monochrome images through such an unconventional approach. First, Sec-
tion 2 presents an overview of the foundational processes, i.e., pseudo-colorization
and decolorization. Section 3 describes our methodology in detail, covering the
testing procedure, dataset selection, and the subjective and objective quality
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4 A. �luzek

assessments of the enhanced images. Section 4 summarizes the experimental re-
sults, which validate the method. Section 5 discusses its further aspects, and
concludes the paper.

2 Foundations

2.1 Image Pseudo-colorization

Pseudo-colorization is a technique that assigns prede�ned colors to grayscale
image intensities. This is achieved through a color map, a function that maps
intensities to RGB color values. For instance, the sine color map employs the
following equations:

R(I) = −0.5 cos(πI) + 0.5, G(I) = sin(πI), B(I) = 0.5 cos(πI) + 0.5. (1)

For standard 8-bit grayscale images, color maps are often implemented as simple
lookup tables that map each of the 256 levels to a speci�c color.

Various color maps are designed to achieve speci�c visual goals, primarily
enhancing aesthetic appeal and content perception in diverse applications [8, 16,
19, 27]. For this study, we selected nine popular color maps with varied charac-
teristics, as depicted in Figure 3. Actually, the hot and jet maps are included in
two slightly di�erent variants, visually indistinguishable but with minor di�er-
ences in their lookup coe�cients. Speci�cally, Figure 1 employs the parula color
map, while Figure 2 utilizes the warm color map.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Popular color maps for pseudo-colorization: (a) bone, (b) cool, (c) hot, (d) jet,
(e) parula, (f) pink, (g) sine, (h) summer, (i) warm.

2.2 Decolorization

Decolorization converts color images into grayscale images. Typically, this pro-
cess involves linear rgb-to-gray mappings, represented by the equation

I = kRR+ kGG+ kBB, (2)

where the standard values of [kR, kG, kB ] are [0.299, 0.587, 0.114].
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To address the loss of visual detail that can occur during grayscaling, espe-
cially for colors with similar luminance, various methods have been developed
over the past two decades. These methods optimize the coe�cients in Eq. 2, ei-
ther globally (e.g., [12, 14, 24, 28]) or locally (e.g., [25, 26]), to enhance the visual
expressiveness of the resulting monochrome images.

In [22], a decolorization scheme is proposed that is particularly e�ective in
enhancing contrast in grayscale images compared to their color counterparts,
as supported by subjective evaluation and relevant performance metrics. This

.

Fig. 4. Two images from COLOR250 dataset [14] decolorized using the method de-
scribed in [22].

approach recognizes that a pixel with [R,G,B] color can only be assigned inten-
sities I within the range:

min(R,G,B) ≤ I ≤ max(R,G,B), (3)

regardless of the speci�c values of [kR, kG, kB ].
From Eq.3, we identify pixels with the narrowest range of potential intensi-

ties. Their grayscale values are randomly chosen from this limited set of options
or even assigned deterministically, if min(R,G,B) = max(R,G,B).

These pixels serve as the initial list for the decolorization scheme, which is
a randomized variant of a popular �ood-�ll algorithm. In this scheme, pixels
with decolorized neighbors are assigned grayscale intensities (subject to Eq.3)
proportionally to the color di�erences between themselves and their already
decolorized neighbors. This iterative process continues, randomly selecting pixels
from the current list and assigning them grayscale values, until the list is emptied,
i.e., the entire image is decolorized. For more details, refer to [22].

This scheme produces vivid, high-contrast grayscale images (see examples in
Figure 4), outperforming alternative algorithms on benchmark datasets. How-
ever, like other local methods, it can introduce spurious artifacts, primarily low-
contrast edges, in regions of nearly uniform colors. These artifacts, which tend to
appear randomly, can be e�ectively suppressed by averaging multiple decoloriza-
tion results. Actual image details remain una�ected by this averaging process.

In the context of the proposed two-step monochrome image enhancement, the
advantages of this decolorization method are further discussed in Section 5.2.
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3 Methodology

3.1 Implementation Framework

To investigate the properties of our method, the following operations are em-
ployed:

Initially, each test image is pseudo-colorized using the nine color maps de-
tailed in Section 2.1. These intermediate, pseudo-color images are not evaluated
or assessed for quality.

.

Fig. 5. Example outdoor IR image (top-left) and its variants processed using 9 color
maps (in the order from Fig. 3) and then by 8 standard image processing techniques.

Subsequently, each pseudo-color image is decolorized 15 times using the al-
gorithm outlined in Section 2.2. Averaging multiple decolorizations mitigates
potential low-contrast artifacts, as discussed in Section 2.2. The number of iter-
ations is �exible and can be adjusted as needed, as the decolorization algorithm
is computationally e�cient and has minimal impact on processing time.

Additionally, for reference and comparative purposes, each original monochrome
image is processed using eight general-purpose image enhancement methods. We
intentionally exclude methods designed for speci�c tasks, such as noise removal,
directional deblurring, or background suppression. Instead, we focus on methods
with broad applicability, and varying in complexity, such as:

� histogram equalization;
� Gaussian �ltering;
� linear stretching;
� adjustment (i.e., stretching and gamma-correction with extreme intensities
clipped);

� contour enhancement (by adding Laplacian edge detector);
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� LoG �ltering;
� sharpening using unsharp masking (e.g., Matlab© imsharpen function);
� local Laplacian �ltering [18].

Consequently, each test image is represented by 18 variants: the original im-
age, 9 decolorized pseudo-color versions, and 8 standard image processing results.
Figure 5 showcases an example of an outdoor IR image and its corresponding 17
processed versions.

3.2 Image Quality Evaluation

The primary objective of this study is to experimentally determine if our pro-
posed method more e�ectively enhances monochrome images, especially those
from non-visual domains, compared to standard image enhancement techniques.
To achieve this, we evaluate the quality of the enhanced images using both
subjective assessments and metric-based objective analyses. This evaluation is
conducted on a dataset of representative images to allow for a statistically sig-
ni�cant comparative analysis of various color maps and standard algorithms, as
detailed in the subsequent sections.

Subjective Evaluation We �rst subjectively identify the most perceptually
prominent variants for each test image. Three evaluators independently assess
the original image and its enhanced variants, selecting the two images with
the highest detail discernability. They then collaborate to reach a consensus.
Evaluators are instructed to focus solely on the perceivability of image details,
regardless of their size, shape, or texture, disregarding any notions of image
naturalness.

Figure 6 presents example MRI, X-ray, IR, and ultrasound images, along
with their most discernible variants as identi�ed by the evaluators.

Objective Metrics To objectively evaluate image enhancement, we propose
three metrics based on well-established image quality assessment concepts. First,
we employ the gradient recall ratio (GRR, [22, 24]) to estimate the extent to
which the overall edge information of the input image Iin is preserved (GRR < 1)
or ampli�ed (GRR > 1) in the output image Iout.

GRR =

∑
(x,y)

√
∂xIout(x, y)2 + ∂yIout(x, y)2∑

(x,y)

√
∂xIin(x, y)2 + ∂yIin(x, y)2

. (4)

Consistent with previous research (e.g., [9, 10, 17, 21]), we also consider metrics
based on image transforms: discrete wavelet transforms (e.g., Haar wavelets) and
Fourier (or DCT) transforms. The ratios between the transform coe�cients of
the output and input images are used as measures of enhancement.

For the Fourier transform, we apply the FFT recall ratio (FFTRR):

FFTRR =
1

N

∑
(ωx,ωy)

|FFTout(ωx, ωy)|
|FFTin(ωx, ωy)|

, (5)
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where coe�cients with zero input value (FFTin(ωx, ωy) = 0) are excluded. The
DC coe�cient FFT (0, 0) is also excluded, as it is insigni�cant for image discern-
ability. N is the number of retained coe�cients.

This metric quanti�es the ampli�cation of periodic image components, such
as textures. It is crucial to recognize that the inherent limited intensity range
of monochrome images restricts the excessive ampli�cation of high-magnitude
frequencies. Consequently, elevated FFTRR values signify the ampli�cation of
lower-amplitude frequencies, thereby increasing their visual prominence.

.

Fig. 6. Example MRI, X-ray, IR, and ultrasound images (left to right) and their most
discernible variants selected by evaluators.

Finally, two variants of a metric based on the Haar wavelet transform (HWT)
are employed to estimate the enhancement in discernability of image fragments
across a range of their sizes, shapes and locations.

HWTRR1 =
1

N

∑
(jx,jy,kx,ky)

|HWTout(jx, jy, kx, ky)|
|HWTin(jx, jy, kx, ky)|

, (6)

where coe�cients with zero input value, and the DC component of HWT, are
excluded. N is again the number of retained coe�cients.

As the number of HWT coe�cients grows quadratically with the scale num-
ber, �ne scales, which capture high-frequency details, have a greater impact
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on the HWTRR1 metric, prioritizing the discernability of small details. Conse-
quently, in the second HWT-based metric, similar results are computed inde-
pendently for each scale and subsequently averaged across all scales.

HWTRR2 =
1

S

S∑
s=1

 1

Ns

∑
(jx,jy,ksx,ksy)

|HWTout(jx, jy, ksx, ksy)|
|HWTin(jx, jy, ksx, ksy)|

 , (7)

where S is the number of scales and Ns are numbers of coe�cients at each scale.
All metrics utilize the original grayscale image as input, and the output

image is generated either by our method or by an alternative image processing
algorithm.

3.3 Test Dataset

The performance of our method has been evaluated and compared to general-
purpose image enhancement methods on a dataset of IR, X-ray, MRI, and ul-
trasound images (all �gures show images from this dataset).

Given that evaluators had to inspect 18 (or even 27, as explained in Sec-
tion 5.2) variants of each image, we selected a smaller collection of 132 represen-
tative images for subjective quality assessment. Objective metrics were computed
for a very large number of images, but all statistics in Section 4 are based on the
132 images to ensure consistency between subjective and objective approaches.

The images were randomly selected from a range of publicly available datasets,
including CAMEL [6], FLIR ADAS [1], OTCBVS [7] and KAGGLE [15, 20], as
well as from personal collections.

4 Experimental Results

Following the methodology outlined in Section 3, we compare the performances
of the image enhancement techniques (i.e., 9 color maps and 8 standard image
processing algorithms) using both objective and subjective evaluations.

Table 1 presents the mean values of the HWTRR1, HWTRR2, FFTRR, and
GRR metrics across the test dataset. The techniques are ranked based on the
combined strength (weighted average) of all metrics. The top performers are the
jet, sine, parula and hot maps, followed by four image enhancement algorithms.
The lower part of the table is occupied by less suitable color maps and the re-
maining algorithms. The last position of the Gaussian �lter is unsurprising. As
the only (deliberately included) processing algorithm with smoothing charac-
teristics, it cannot enhance the perceivability of �ne details and sharp features.
This limitation is fully con�rmed by its low metric values.

The results of the subjective evaluation align closely with the objective �nd-
ings. Table 2 shows the overall (i.e., across the entire dataset) contributions of
color maps and algorithms to the group of top two images identi�ed by the
evaluators.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97564-6_4

https://dx.doi.org/10.1007/978-3-031-97564-6_4
https://dx.doi.org/10.1007/978-3-031-97564-6_4
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Table 1. Mean values of the metrics across the test dataset.

Rank Technique HWTRR1 HWTRR2 FFTRR GRR
1 jet map 5.326 7.263 8.844 2.592
2 sine map 3.528 4.948 5.590 2.113
3 parula map 3.291 4.035 6.439 1.862
4 hot map 2.668 4.148 3.458 2.041
5 local Laplacian 2.893 2.998 3.467 1.766
6 LoG 2.916 3.339 2.190 2.271
7 sharpening 2.917 2.561 3.268 2.252
8 histogram equal. 2.627 3.182 3.036 1.766
9 warm map 1.840 2.542 2.520 1.770
10 cool map 1.409 3.375 2.464 1.041
11 contour enhancement 2.019 1.840 2.076 1.591
12 adjustment 1.324 1.353 1.403 1.298
13 pink map 0.927 1.334 1.298 0.890
14 stretching 1.057 1.057 1.057 1.057
15 bone map 0.745 1.188 1.051 0.929
16 summer map 0.744 1.192 0.868 0.727
17 Gaussian 0.910 0.973 0.379 0.644

The table is dominated by the same four color maps (jet, sine, parula and
hot), which collectively contribute 90.32% of the images selected by the evalua-
tors, with only minor or insigni�cant contributions from other maps or standards
algorithms.

Table 2. Images ranked highest in discernibility by evaluators.

Rank Technique percentage in top-two images
1 jet map 27.58%
2 sine map 26.52%
3 parula map 18.64%
4 hot map 17.58%
5 local Laplacian 4.54%
6 LoG 3.18%
7 pink map 0.76%
8 warm map 0.61%
9 sharpening 0.30%
10 histogram equal. 0.30%

In summary, we can conclude that the proposed method generally outper-
forms standard image enhancement methods, provided that color maps are care-
fully selected in the �rst step. Incorrectly selected maps o�er no improvement.
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5 Discussion and Conclusions

5.1 Color Maps and Pseudo-color Images

The experimental results in Section 4 clearly demonstrate that the selection of
the color map signi�cantly in�uences the quality of enhanced images. It is crucial
to emphasize, however, that the visual characteristics of the pseudo-color images
are not directly exploited in our method. The examples in Figures 1, 2 and 7
are provided solely for illustrative purposes. Instead, the color maps serve two
critical roles in our method:

(a) For each input intensity, its corresponding pseudo-color determines the range
of possible output values (Eq.3).

(b) The distance between intensities is de�ned as the distance between their
respective pseudo-colors, as outlined in Section 2.2 and detailed in [22].

Consequently, in future applications, color maps can be replaced with lookup
tables. These tables would directly provide the range of output values for each
input intensity (in (a)), and precomputed distances between intensities derived
from the color map (in (b)). This substitution would enhance e�ciency.

Nonetheless, color maps and pseudo-colored images provide an intuitive ap-
proach to explaining the fundamental concepts of the proposed method.

5.2 Signi�cance of Decolorization Algorithm

In another experiment, we investigated the criticality of the decolorization al-
gorithm adapted from [22] in the second step of our method. To this end, we
decolorized all pseudo-color images generated in the �rst step using a standard
approach (Eq. 2) with coe�cients [0.299, 0.587, 0.114]. Analysis revealed that
these alternative outputs exhibited a noticeable decline in quality.

Table 3 quantitatively supports this observation, demonstrating a signi�cant
deterioration in mean metric values for the top-performing colormaps (jet, sine,
parula and hot) when the standard decolorization replaced the scheme from [22].
Furthermore, Figure 7 visually illustrates the subjective quality degradation re-
sulting from this substitution. Preliminary experiments with other decolorization
models [12, 24] con�rmed similar performance declines.

In conclusion, the applied decolorization scheme plays a crucial role in image
enhancement, equally important as the selection of the color map.

5.3 Applications in Visual Domains

The proposed method is primarily intended for enhancing monochrome images
representing non-visual data. However, it can also be applied to grayscale im-
ages of natural scenes. In such cases, image naturalness becomes an important
factor, and preserving luminance monotonicity is essential. Therefore, for visual
domains, we should only consider sequential color maps where the pseudo-colors
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Table 3. Mean metric values with standard and [22] decolorization.

Color map HWTRR1 HWTRR2 FFTRR GRR
std/ [22] std/ [22] std/ [22] std/ [22]

jet 1.655/5.326 2.250/7.263 2.956/8.844 1.505/2.592
sine 1.158/3.528 1.509/4.948 1.793/5.590 0.989/2.113
parula 0.676/3.291 0.781/4.035 0.897/6.439 0.581/1.862
hot 1.146/2.668 1.307/4.148 1.493/3.458 1.250/2.041

.

Fig. 7. Pseudo-color images and their grayscale counterparts, decolorized using stan-
dard (left) and [22] (right) methods.

exhibit monotonic luminance progression (from very dark to very bright). Fig-
ure 3 illustrates several such color maps, with the hot map being one of the top
four identi�ed in Section 4.

Therefore, we applied our method to a selection of natural images employing
the hot map. The preliminary results, as exempli�ed in Figure 8, are encouraging.

.

Fig. 8. Example monochrome images of natural scenes enhanced by our method using
the hot map.

5.4 Summary

The main contribution of this paper is a novel and unconventional method for
enhancing the visual clarity of monochrome images derived from non-visual data
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sources. The approach involves a two-step process: �rst, pseudo-colorization us-
ing carefully selected color maps, followed by decolorization through a speci�c
scheme. Surprisingly, this counterintuitive technique signi�cantly improves the
perceptibility of image details, regardless of their size, shape, location, or original
visual prominence.

Using a representative dataset of IR, X-ray, MRI, and ultrasound images,
we experimentally identi�ed four color maps that consistently outperformed a
range of broadly applicable image enhancement algorithms, as demonstrated
by both subjective evaluations and objective metrics. However, our study con-
sidered only a limited selection of color maps, suggesting that future research
could explore additional options with the potential for even greater performance
improvements. In fact, approximately 15 other color maps have recently been
identi�ed with performances � based on the proposed metrics � comparable
to the top four maps identi�ed in this study.

Likewise, we have con�rmed that the selection of the decolorization scheme
from [22] signi�cantly impacts the method's performance. Determining whether
this is the optimal scheme, however, requires further investigation. Toward this
end, we might explore developing a mathematical model of the process, though
the nonlinearities and random factors in mapping original to output image in-
tensities could present considerable challenges.

Nonetheless, a key avenue for future research is the integration of the pro-
posed method into vision-based diagnostic systems for diverse biomedical ap-
plications. We anticipate that improving the discernibility of all image features
(regardless of size, shape, location, or initial perceptibility) in monochrome vi-
sualizations of ultrasound, X-ray, MRI, and other imaging data can enhance
the reliability of decisions made by human diagnosticians and, particularly, by
AI-driven systems.

In the illustrative example shown in Figure 9, the outline and structure of
a malignant tumor are much clearer in the image enhanced by our method
compared to the original USG image.

.

Fig. 9. Outline of a tumor, as identi�ed by a diagnostician, displayed in the original
USG image from [20] (left) and in the image enhanced by our method (right).
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NOTE: All �gures are best viewed in high resolution.
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