
Exact and approximate methods for solving the
edge-strength problem

Eduardo Rodriguez-Tello1[0000−0002−0333−0633], Eric
Monfroy2[0000−0001−7970−1368], and Claudia
Vasconcellos-Gaete2[0000−0001−9487−0573]

1 Cinvestav Unidad Tamaulipas.
Km. 5.5 Carretera Victoria-Soto La Marina, 87130 Victoria Tamps., Mexico

ertello@cinvestav.mx
2 LERIA, Université d’Angers

2 Bd de Lavoisier 49000 Angers, France
{eric.monfroy, claudia.vasconcellos}@univ-angers.fr

Abstract. The Edge-Strength (ES) problem is a graph labeling prob-
lem where the goal is to assign integer labels to the edges of a finite
undirected graph in such a way that the maximum sum of labels be-
tween any two adjacent edges, known as edge-strength, is minimized.
This work introduces the first methods to solve the ES problem exactly
and approximately, including two constraint satisfaction problem (CSP)
models and a simulated annealing (SAes) metaheuristic. The first CSP
model is based on constrained optimization using the AllDifferent global
constraint, while the second employs extensional constraints. Computa-
tional experiments on 40 standard topology graph instances demonstrate
the effectiveness and robustness of these approaches. The CSP models
provide exact solutions for smaller instances, while the SAes algorithm
efficiently approximates solutions for larger and complex graphs. These
contributions advance the state-of-the-art in solving the ES problem and
pave the way for further research.

Keywords: Edge-strength problem · Exact solution methods · Con-
straint programming · Simulated Annealing · Metaheuristics

1 Introduction

There has been a growing interest in studying graph labeling problems (GLP)
in recent years. Theoretically, these problems are essential since they generally
belong to the NP-hard class. They are also relevant in the industry because they
can be used as abstract models that allow engineers to solve diverse practical
application problems.

The Edge-Strength (ES ) is a GLP, which was first stated in [6]. It can be
formally stated as follows. Let G(V,E) be a finite undirected graph of order
n = |V | and size m = |E|. Given an injection φ : E → {1, 2, . . . ,m}, which
represents a labeling of the edges of the graph, the edge-strength (cost) of G for
φ is defined as:

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


2 E. Rodriguez-Tello, E. Monfroy and C. Vasconcellos-Gaete

estr(G,φ) = max
{
φ(e1) + φ(e2) : e1, e2 are adjacent edges of G

}
, (1)

where φ(ei) denotes the label associated to the edge ei ∈ E. Thus, the ES prob-
lem consist in finding a labeling φ∗, such that estr(G,φ∗) is minimized, i.e.,

φ∗ = argmin
φ∈Φ

{
estr(G,φ)

}
,

where Φ is the set of all the possible labelings. The labeling φ∗ satisfying this
condition is known as optimum.

For example, consider the graph G(V,E) of order n = 7 and size m = 6
depicted in Figure 1(a) with the labeling φ given by the numbers shown over
each edge. The distance between each pair of adjacent edges is calculated using
the expression φ(e1) + φ(e2) and presented in column 2 of Table 1. For this
particular labeling φ, the edge-strength (cost) of G is estr(G,φ) = 11. For the
labeling φ′ of G, presented in Figure 1(b), the edge-strength is estr(G,φ′) = 9
and represents the optimal solution for this particular graph (see column 3 of
Table 1).

ab

c

d

e

f

g

estr(G,φ) = 11

5

4

6

2

1

3

(a) Labeling φ for the graph G.

ab

c

d

e

f

g

estr(G,φ′) = 9

5

4

3

1

2

6

(b) Labeling φ′ for the graph G.

Fig. 1. Example of an Edge-Strength (ES) problem instance.

Given its recent introduction, the ES problem has received less attention
than other well-known graph labeling problems. Up to now, most of the research
on this problem has been concentrated on the theoretical study of its properties
to find exact solutions for certain specific families of graphs: paths, cycles, stars,
complete graphs, bipartite complete graphs [6, 7]. A list of formulas for com-
puting the optimal edge-strength for those specific graph families is presented
in Table 2. In the case of general graphs, a lower bound can be computed using
the following formula [5]:

estr(G) ≥ m+ 2(δ(G)− 1) ,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


Exact and approximate methods for solving the edge-strength problem 3

Table 1. Computing the edge-strength for two different graph labelings shown in
Figure 1.

Adjacent edges φ(e1) + φ(e2) φ′(e1) + φ′(e2)

ab,ac 5 + 4 = 9 4 + 5 = 9

ab,ad 5 + 6 = 11 4 + 3 = 7

ab,ae 5 + 2 = 7 4 + 1 = 5

ac,ad 4 + 6 = 10 5 + 3 = 8

ac,ae 4 + 2 = 6 5 + 1 = 6

ad,ae 6 + 2 = 8 3 + 1 = 4

ae,ef 2 + 1 = 3 1 + 2 = 3

ae,eg 2 + 3 = 5 1 + 6 = 7

ef,eg 1 + 3 = 4 2 + 6 = 8

where m is the size of G and δ(G) its minimum degree. Despite this fundamental
advancement, many different graph topologies exist for which optimal solutions
remain unknown.

Table 2. Formulas reported in the literature for computing the optimal edge-strength
for the following graph families: Path (Pn), Cycle (Cn), Star (Sn), Double star (Sn1,n2)
and Complete bipartite (Kn1,n2).

Graph type |V | estr(G) Ref.

Pn (n ≥ 3) n n [6]

Cn (n ≥ 3) n n+ 2 [6]

Sn (n ≥ 2) n 2n− 3 [6]

Sn1,n2 n1 + n2 2(n1 + n2)− 5 [6]

Kn1,n2 (n1 > n2 ≥ 2) n1 + n2 2n1n2 − 2n2 + 1 [7]

As far as we know, no exact or approximate solution algorithms have been
reported in the literature for tackling the edge-strength problem. This article ad-
dresses this gap by introducing two new constraint satisfaction problem (CSP)
models designed to find exact solutions for small instances of the problem. More-
over, we propose an approximation approach based on the simulated annealing
algorithm for dealing with medium-scale benchmark instances. These contribu-
tions provide a comprehensive framework for tackling the edge-strength problem
across different scales, advancing the state-of-the-art and opening new avenues
for further research.

The remainder of this work is organized as follows. Section 2 introduces two
CSP models – one using arithmetic constraints and the other using extensional

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


4 E. Rodriguez-Tello, E. Monfroy and C. Vasconcellos-Gaete

constraints – designed for the exact resolution of the ES problem. Section 3
outlines the key implementation details of the proposed simulated annealing al-
gorithm, called SAes. In Section 4, we describe the experimental setup used to
assess the practical performance of both the exact and heuristic methods. This
is followed by an analysis of the computational results, demonstrating the effi-
ciency and robustness of our approaches across the selected benchmark problems.
Finally, Section 5 summarizes the key contributions of this work and discusses
potential directions for future research.

2 Modeling the problem as a COP or CSP

2.1 A COP - arithmetic model

We propose a first model based on constrained optimization (COP) that relies
on the efficiency of the global constraint AllDifferent to treat inequalities [1, 14].

In the ES problem, we have m variables le1 , . . . , lem ; each lei has a domain
[1..m], and represents the label of edge ei. Like in any other labeling problems,
we must first state that each label is unique (2). Then, the COP model proposed
minimizes the maximum sum of two labels of adjacent edges (3), where L∗(G)
represents the edge-strength of G.

AllDifferent({le1 , . . . , lem}) , (2)

L∗(G) = minimize
(
max{l(u,v) + l(v,w) | ∀((u, v), (v, w)) ∈ E(G)× E(G)}

)
. (3)

However, our preliminary experiments showed that this COP model could
be inefficient. Indeed, all the constraints (except the AllDifferent constraint) are
in the objective function, and thus, constraint solvers cannot prune the search
space properly. We thus propose a CSP model based on extensional constraints,
i.e., table constraints [11].

2.2 A CSP model with extensional constraints

The main idea of this CSP model is to convert the problem into a constraint
satisfaction problem, looking for a labeling L(G) ≤ k for a given positive integer
k. Thus, given k, we can deduce which pairs of labels are permitted for adjacent
edges. Let’s call T (m, k) this set of pairs of permitted labels:

T (m, k) = {(l, l′) ∈ [1..m]× [1..m] | l + l′ ≤ k}

We need the same variables as in the COP model. Thus, we consider m finite
domain variables le1 , . . . , lem with domains [1..m], representing the labels of the
edges of G. We still need to state that each label is unique by using constraint (2).

Then, we have to enforce that the sum of labels of each pair of adjacent edges
is smaller than or equal to k:

∀((u, v), (v, w)) ∈ E(G)× E(G), (l(u,v), l(v,w)) ∈ T (m, k) (4)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


Exact and approximate methods for solving the edge-strength problem 5

The CSP model is thus given by:

MCSP,m,k = Constraint (2) ∧ Constraint (4)

Note that the model MCSP,m,k is parameterized by the number of edges m of
the graph and the integer k.

By instantiating MCSP,m,k for a graph G with |E(G)| = m, we obtain a
finite domain CSP instance ICSP,G,m,k. Solving ICSP,G,m,k with a standard
finite domain solver, we are thus able to decide whether G has an edge-strength
less than or equal to a given integer k.

2.3 Minimizing k with the CSP model

A standard incremental optimization can be used: starting with k equal to the
lower bound of the instance, we try to find a labeling with an edge-strength value
smaller than k. If satisfiable, we have the minimum edge-strength; otherwise, we
increment k and continue the same iterative process. However, this optimization
is not efficient at all.

We thus propose an optimization based on a property of the ES problem.

Property 1. If there is a labeling with edge-strength value k, there is also a
labeling with edge-strength value k + 1. If no labeling results in a cost k + 1,
there is also no solution for value k.

Proof (Sketch of the proof).
=⇒ consider two adjacent edges (u, v) and (v, w) such that l(u,v) + l(v,w) =

max{l(u,v)+ l(v,w) | ∀((u, v), (v, w)) ∈ E(G)×E(G)} = k. Consider l(u,v) < l(v,w)

and thus, l(u,v) < m. Then, we swap the label l(u,v) with the label l(u,v)+1 which
was on edge (x, y). Thus, the sum of each pair of adjacent edges with x or y in
common is decreased by one and is thus strictly less than k. The sum of each
pair of adjacent edges with u or v in common is increased by 1, and a fortiori,
l(u,v) + l(v,w) = k + 1. We thus obtain a labeling of cost k + 1.

⇐= we have shown that "labeling of cost k" → "labeling of cost k+1", which
is the same as "no labeling of cost k" ∨ "labeling of cost k + 1", which is also
the same as "no labeling of cost k + 1" → "no labeling of cost k".

Using the previous property, we propose a dichotomic algorithm (see Algo-
rithm 1) for optimization of k between the standard lower and upper bounds,
using the model MCSP,m,k:

3 Simulated annealing algorithm

Simulated Annealing (SA) is a versatile probabilistic optimization method pro-
posed independently in [10, 16]. Since its introduction, it has demonstrated its
effectiveness in approximating globally optimal solutions for numerous NP-hard
problems [4, 8, 9]. The core principle of this optimization approach involves oc-
casionally accepting a neighboring solution that worsens the current one, with

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


6 E. Rodriguez-Tello, E. Monfroy and C. Vasconcellos-Gaete

Algorithm 1: Optimize Function
Data: G, lb, ub

1 best_k ← ub;
2 while lb < ub do
3 k ← (ub+ lb)÷ 2;
4 if solve(ICSP,G,|E(G)|,k) is SAT then
5 ub← k;
6 best_k ← ub;

7 else
8 lb← k + 1;

9 return best_k

this acceptance governed by a carefully managed probability. As the algorithm
progresses, the likelihood of accepting such non-improving moves gradually de-
creases [2].

We illustrate in Algorithm 2 the pseudo-code of our SA implementation for
solving the ES problem. Next, we describe its main components.

Search space. Given a graph G = (V,E) of size |E| = m, the search space
Φ for the ES problem is composed of all possible labelings (solutions) of G,
φ : E → {1, 2, . . . ,m}. Therefore, m!/2 possible solutions exist for such a graph,
given that every one of the m! possible labelings can be inverted to obtain an
equivalent edge-strength (cost).

Solutions representation. In our SAes algorithm a labeling (solution) φ is
represented as a vector l of integers with length m, which is indexed by the edges
and whose i-th value l[i] denotes the label assigned to the edge ei.

Evaluation function. The quality estr(G,φ) of the labeling φ is evaluated by
using the evaluation function (1). Every edge in the graph G must be analyzed
to compute it. As a result, O(|E|) instructions must be executed by this com-
plete evaluation scheme. Nevertheless, the proposed SAes algorithm employs an
incremental evaluation of neighboring solutions. To this end, the edge-strength
of each edge in the graph is stored using an appropriate data structure. Indeed,
suppose that the labels of two different non-adjacent edges (eu, ev) are exchanged
in a labeling φ to produce a neighboring solution φ′. We should only recompute
the edge costs that change to obtain the new edge-strength of φ′. It takes only
O(|A(eu)|+ |A(ev)|) operations, where |A(ei)| represents the number of adjacent
edges to ei. Therefore, our SAes algorithm can analyze thousands of neighboring

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


Exact and approximate methods for solving the edge-strength problem 7

Algorithm 2: Simulated annealing algorithm (SA)
Data: N , f, l, α

1 ti, tf ← ComputeTemperatures();
2 φ← GenerateInitialSolution();
3 φ∗ ← φ;
4 tk ← ti;
5 k ← 0;
6 while ¬StopCriterion() do
7 Select randomly φ′ ∈ N (φ);
8 ∆f ← f(φ′)− f(φ);
9 Generate a random u ∈ [0, 1];

10 if (∆f <= 0) or (e−∆f/tk > u) then
11 φ← φ′;
12 if f(φ′) < f(φ∗) then
13 φ∗ ← φ′;

14 if TemperatureLength() then
15 tk ← αtk−1;

16 k ← k + 1;

17 return φ∗

solutions, employing only a small fraction of the time required by the complete
evaluation scheme.

Initial solution. The initial solution is the starting labeling used for the algo-
rithm to begin the search for better configurations in the search space Φ. In our
implementation, the starting solution is randomly generated.

Initial and final temperatures. Our algorithm’s initial and final temperatures
are computed using the following formulas proposed in [3].

ti = ∆fmin +
∆fmax −∆fmin

10
, (5)

tf = ∆fmin , (6)

where ∆fmin and ∆fmax are the minimum and maximum cost difference between
consecutive visited labelings during a random walk, of length m(m−1)

4 , through
the search space.

Neighborhood function. The main objective of the neighborhood function in
a local search algorithm is to identify the set of potential solutions that can be
reached from the current solution [13]. In our SAes algorithm, we implemented
the neighborhood function N1(φ) that is formally defined as follows:

N (φ) = {φ′ = swap(φ, eu, ev) : eu, ev ∈ E and ev /∈ A(eu)} , (7)

where swap(φ, eu, ev) is a function allowing the exchange of the labels of a pair
of non-adjacent edges eu and ev to produce a new labeling φ′. The operation

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


8 E. Rodriguez-Tello, E. Monfroy and C. Vasconcellos-Gaete

that replaces the incumbent solution with a new neighboring labeling is called a
move.

Acceptance criterion. Our SAes algorithm employs the Metropolis condi-
tion [12]. It systematically accepts moves to improving or equal quality neigh-
boring labelings and could execute worsening moves with a probability that
depends on the increase of the evaluation function value and the temperature tk
(see line 10 in Algorithm 2).

Temperature length. The maximum number of neighboring solutions visited
at each temperature value (maxConfigurations) depends directly on the num-
ber of edges (m) of the graph because more moves are required for denser graphs:
maxConfigurations = β ×m.

Cooling schedule. A geometry cooling schedule is used in our simulated an-
nealing implementation: Tk = α× Tk−1 [10].

Termination Condition. The SAes algorithm stops when the current tem-
perature reaches the computed final temperature Tf value.

4 Computational experiments

In this section, computational experiments for assessing the practical usefulness
of the COP/CSP models and the SAes algorithm introduced above are pre-
sented. We employed a benchmark set composed of 40 instances. It includes
graphs with standard topologies (path, cycle, star, double star, complete bipar-
tite, cycle power, hypercube, complete, Möbius ladder, triangulated grid, r-level
t-ary tree, wheel, Petersen, Cartesian products). These graphs’ order (|V | = n)
ranges from 5 to 20, while their size (|E| = m) spans from 4 to 32 edges.

These experiments were run on a computer equipped with an Intel® Xeon®

E5-2630 v4 processor at 2.20 GHz, 64 GB of RAM, and a Linux operating system.
The COP/CSP models were coded in Python using the PyCSP3 v2.4 library [15].
The allotted execution time for completing the optimization() function over
each benchmark instance was 120 hours, which can lead to several calls to the
CSP solver (same instance, with different k values).

Our SA algorithm was implemented in C++ and compiled using g++ v14.2
with the -O3 optimization flag. Given its stochastic nature, we conducted 10
independent sequential runs for each selected benchmark instance. The algo-
rithm requires only two input parameters: β and α. The parameter β determines
the maximum number of neighboring solutions evaluated at each temperature
level (maxConfigurations), while α controls the temperature reduction after
processing maxConfigurations solutions. The values for α and β were chosen
experimentally and fixed to 0.99 and 5, respectively.

The detailed results from our experiments can be found in Table 3. The
first three columns in this table display the name of the graph, its order (n),
and its size (m). Column 4 lists the optimal edge-strength cost (Opt) found by
the proposed COP model. The lower (lb) and upper (ub) bounds established

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


Exact and approximate methods for solving the edge-strength problem 9

by the CSP model, as well as the best cost (B⋆) attained by it, are presented
in columns 6 to 8. Columns 10 to 13 register the average cost (Avg), standard
deviation (Std), average CPU time in seconds, and the best cost (B⋆) reached
by our SAes algorithm in 10 executions with each instance. The computational
time (t) in seconds expended by the COP/CSP models are also presented in
columns 5 and 9.

We observe several key findings based on data provided in Table 3. To begin,
we will delve into the analysis of the COP model, which uses basic arithmetic
constraints (see Section 2.1). It successfully found the optimal solutions for sim-
pler graph structures such as path, cycle, and star graphs with a small number
of edges (m). However, as the complexity of the graph increased, the expended
computational time rose significantly. For instance, the path graph with 19 edges
took 78.5 seconds, and the cycle graph with 15 edges took 93.0 seconds, indi-
cating a substantial computational burden. Despite these challenges, the COP
model demonstrated its capability of reaching the optimal solutions when given
sufficient time, making it suitable for small to medium-sized graphs. Nonethe-
less, it is important to note that it did not resolve 13 out of 40 instances within
the maximum allotted 120 hours (rows marked with symbol “–”), highlighting
its limitations when dealing with larger and more complex graphs.

Turning to the CSP model (see Sections 2.2 and 2.3), which employs ex-
tensional constraints and a dichotomic search algorithm, the results indicated
a more efficient handling of larger graph instances than the COP model. The
CSP model found the optimal or near-optimal solutions with relatively lower
computational times for all the 40 tested instances. For example, it efficiently
solved instances like the complete bipartite and double star graphs. However, for
highly complex graphs like cycle power and hypercube, the CSP model’s bounds
(lb and ub) still left some gaps, indicating that while it is faster, it may not
always reach the exact optimal solution quickly. The CSP model was, in fact,
able to handle graphs with up to 32 edges in a much shorter time frame.

Analyzing the results of our Simulated Annealing algorithm implementation
(SAes), it is evident that this heuristic approach is highly efficient for larger in-
stances, providing near-optimal solutions within very short computational times.
For instance, it consistently found optimal or close to optimal solutions for all
graph types, including highly complex graphs such as the Möbius ladder and
Cartesian products for which their solutions were still unknown. The average
CPU time for SAeswas the lowest among the three tested solution approaches,
demonstrating its effectiveness in quickly approximating solutions. The standard
deviation values were also minimal, indicating the robustness and reliability of
our metaheuristic in providing consistent results across multiple executions. No-
tably, even for graphs with up to 32 edges, SAesshowed remarkable performance.

5 Conclusions and future work

This work addressed the edge-strength (ES ) problem in graphs, presenting the
first exact and approximate methods to solve this problem. The key contribu-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


10 E. Rodriguez-Tello, E. Monfroy and C. Vasconcellos-Gaete

Table 3. Experimental results reached with the introduced COP/CSP models and the
SAes algorithm over 40 graphs with diverse standard topologies.

COP CSP SAes

Instance n m Opt t lb ub B⋆ t Avg Std B⋆ t

path10 10 9 10 0.8 10 10 10 0.9 10.0 0.0 10 0.1
path15 15 14 15 1.3 15 27 15 0.9 15.2 0.4 15 0.1
path20 20 19 20 78.5 20 20 20 2.6 20.5 0.5 20 0.1
cycle10 10 10 12 1.7 11 12 12 0.9 12.0 0.0 12 0.1
cycle15 15 15 17 93.0 16 29 17 1.1 17.2 0.4 17 0.1
cycle20 20 20 – – 21 30 22 1.6 22.5 0.5 22 0.1
star5 5 4 7 2.2 5 7 7 0.9 7.0 0.0 7 0.1
star7 7 6 11 2.4 7 11 11 0.9 11.0 0.0 11 0.1
star10 10 9 17 5.5 10 17 17 0.9 17.0 0.0 17 0.1
star15 15 14 – – 15 27 27 0.6 27.0 0.0 27 0.2
dStar6-3 9 8 13 1.6 9 15 13 0.9 13.0 0.0 13 0.1
dStar5-5 10 9 15 4.3 10 17 15 0.9 15.0 0.0 15 0.1
dStar6-6 12 11 19 87.2 12 21 19 0.9 19.0 0.0 19 0.1
dStar8-4 12 11 19 71.6 12 21 19 0.9 19.0 0.0 19 0.1
bipartite3x3 6 9 14 2.5 10 14 14 0.9 14.0 0.0 14 0.1
bipartite4x3 7 12 19 79.6 13 23 19 0.9 19.0 0.0 19 0.1
bipartite5x3 8 15 – – 16 29 25 0.7 25.0 0.0 25 0.1
bipartite4x4 8 16 – – 17 24 26 1.0 26.0 0.0 26 0.1
cyclePow15-2 10 30 – – 31 59 47 1.2 47.0 0.0 47 0.2
hypercube3 8 12 – – 13 23 18 1.5 18.0 0.0 18 0.1
k5 5 10 17 8.1 11 17 17 0.9 17.0 0.0 17 0.2
k6 6 15 – – 16 29 26 0.6 26.0 0.0 26 0.2
mobLadder6 6 9 14 2.2 10 17 14 0.9 14.0 0.0 14 0.1
mobLadder8 8 12 18 53.0 13 23 18 0.9 18.0 0.0 18 0.1
mobLadder10 10 15 22 15139.2 16 29 22 0.9 22.0 0.0 22 0.1
mobLadder12 12 18 – – 19 35 26 0.6 26.0 0.0 26 0.1
triangle6 6 9 14 3.1 10 17 14 0.9 14.0 0.0 14 0.1
triangle8 8 13 20 295.8 14 25 20 1.0 20.0 0.0 20 0.1
tree2x2 7 6 9 2.3 7 9 9 0.9 9.0 0.0 9 0.1
tree2x3 13 12 19 316.0 13 23 19 0.9 19.0 0.0 19 0.1
tree3x2 15 14 19 724.9 15 19 19 0.9 19.0 0.0 19 0.2
wheel5 5 8 13 2.6 9 13 13 0.9 13.0 0.0 13 0.1
wheel7 7 12 – – 13 18 19 1.0 19.0 0.0 19 0.2
petersen 10 15 22 14425.1 16 29 22 1.0 22.0 0.0 22 0.1
c4xc4 16 32 – – 33 63 50 2.3 50.0 0.0 50 0.4
p2xp3 6 7 – – 8 11 10 0.6 10.0 0.0 10 0.1
p3xp3 9 12 17 18.5 13 17 17 0.9 17.0 0.0 17 0.1
p2xc3 6 9 – – 10 14 14 0.6 14.0 0.0 14 0.1
p3xc3 9 15 – – 16 23 23 0.7 23.0 0.0 23 0.1
st3xst3 9 12 17 15.3 13 23 17 1.0 17.0 0.0 17 0.1

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


Exact and approximate methods for solving the edge-strength problem 11

tions are the development of two constraint satisfaction problem (CSP) models
and a metaheuristic based on simulated annealing (SAes). The CSP models
include an arithmetic constraints-based model and a model using extensional
constraints, while the SAes metaheuristic is designed to handle medium-sized
instances efficiently.

The experimental results demonstrate the effectiveness of these methods.
The CSP models can find exact solutions for smaller instances. In contrast, the
SAes algorithm performs well for larger and more complex graphs, providing
near-optimal solutions in significantly less computational time. These findings
indicate that our proposed approaches offer a comprehensive framework for tack-
ling the ES problem across different scales.

For future research, several avenues can be explored to advance the study of
the ES problem further:

– Developing other metaheuristic algorithms, such as genetic algorithms or
particle swarm optimization, to compare their performance against our sim-
ulated annealing implementation.

– Investigating the fitness landscape of the es problem to understand its struc-
ture and optimization challenges, potentially leading to more efficient solu-
tion methods.

– Studying graph instances with more edges and other complex topologies to
evaluate the proposed models’ and algorithms’ scalability and applicability
in various industrial contexts.

Acknowledgments. The first author thankfully acknowledge a sabbatical leave granted
by Cinvestav (01/09/2024 - 31/08/2025), as well as the courtesies and facilities of the
LERIA, Université d’Angers France.

References

1. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. Tech. Rep.
Research Report SICS T2005-08, Swedish Institute of Computer Science, Kista.
(May 2005), https://hal.science/hal-00485396

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys 35(3), 268–308 (sep 2003).
https://doi.org/10.1145/937503.937505

3. Connolly, D.T.: An improved annealing scheme for the QAP. European Jour-
nal of Operational Research 46(1), 93–100 (1990). https://doi.org/10.1016/0377-
2217(90)90301-Q

4. Franzin, A., Stützle, T.: Revisiting simulated annealing: A component-
based analysis. Computers & Operations Research 104, 191–206 (2019).
https://doi.org/10.1016/j.cor.2018.12.015

5. Ichishima, R., Oshima, A., Takahashi, Y.: Bounds for the edge-strength of graphs.
Memoirs of the Kokushikan University Information Science 41, 9–15 (2020)

6. Ichishima, R., Oshima, A., Takahashi, Y.: The edge-strength of graphs. Discrete
Mathematics Letters 3, 44–49 (2020)

7. Ichishima, R., Oshima, A., Takahashi, Y.: Some new results on the edge-strength
and strength of graphs. Discrete Mathematics Letters 12, 22–25 (2023)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30


12 E. Rodriguez-Tello, E. Monfroy and C. Vasconcellos-Gaete

8. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simu-
lated annealing: An experimental evaluation; part i, graph partitioning. Operations
Research 37(6), 865–892 (1989). https://doi.org/10.1287/opre.37.6.865

9. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization
by simulated annealing: An experimental evaluation; part ii, graph color-
ing and number partitioning. Operations Research 39(3), 378–406 (1991).
https://doi.org/10.1287/opre.39.3.378

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671–680 (1983)

11. Lecoutre, C.: Optimization of simple tabular reduction for table constraints. In:
Stuckey, P.J. (ed.) Principles and Practice of Constraint Programming, CP 2008.
Lecture Notes in Computer Science, vol. 5202, pp. 128–143. Springer (2008)

12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H.: Equation of
state calculations by fast computing machines. Journal of Chemical Physics 21(6),
1087–1092 (1953)

13. Talbi, E.: Metaheuristics: From design to implementation. John Wiley & Sons
(2009)

14. van Hoeve, W.: The alldifferent constraint: A survey. In: 6th Annual Work-
shop of the ERCIM Working Group on Constraints. pp. 1–12 (2001).
https://doi.org/10.48550/arXiv.cs/0105015

15. XCSP3 Team: PyCSP3 v2.4 (2024), https://www.pycsp.org/
16. Černý, V.: A thermodynamic approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applications
45(1), 41–51 (1985)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_30

https://dx.doi.org/10.1007/978-3-031-97557-8_30
https://dx.doi.org/10.1007/978-3-031-97557-8_30

