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Abstract. In this paper, we employ a global aggregate subgradient
method for the numerical solution of hemivariational inequality problems
arising in contact mechanics. The method integrates a global search pro-
cedure to identify starting points for a local minimization algorithm. The
algorithm consists of two types of steps: null steps and serious steps. In
each null step, only two subgradients are utilized: the aggregate subgra-
dient and the subgradient computed at the current iteration point, which
together determine the search direction. Furthermore, we compare the
performance of the proposed method with selected solvers using a rep-
resentative contact mechanics problem as a case study.
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1 Introduction

Hemivariational inequalities are generalizations of variational inequalities. In
most cases hemivariational inequalities can be reformulated as substationary
point problems of the corresponding nonsmooth nonconvex energy functions.
The theory and some applications of hemivariational inequalities can be found in
[11,13]. To date, various methods have been developed for solving hemivariatio-
nal inequalities in different applications including in contact mechanics [4,5,16].
A nonsmooth optimization approach to such problems is studied in [7, 10].

The aim of this paper is to develop a nonsmooth nonconvex optimization
method for the numerical solution of hemivariational inequalities. The proposed
method is a combination of the local search subgradient method and a global
search simulated annealing method. The use of the subgradient method allows
to address nonsmoothness of the problem and the use of the simulated annealing
method allows to deal with the nonconvexity of this problem. More specifically,
we apply the subgradient method to find stationary points of the so-called energy
function and then use the simulated annealing method to escape from these
stationary points to find a better starting point for the local search method.
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The paper is structured as follows. In Section 2, first, we introduce the subgra-
dient method for solving hemivariational inequalities and study its convergence.
Then we describe the hybrid method. The application of the hybrid method
for solving the contact mechanics problems is discussed in Section 3. Numerical
results are presented in Section 4. Section 5 provides some concluding remarks.

2 A subgradient method for hemivariational inequalities

We consider the following minimization problem{
minimize L(u)
subject to u ∈ Rn,

(1)

where

L(u) = 1

2
⟨Au,u⟩+ ⟨b,u⟩+ J(u). (2)

Here A ∈ Rn×n is a symmetric, positively defined matrix, b ∈ Rn is a vector
and J : Rn → R is a locally Lipschitz function, in general, nonsmooth nonconvex.
In what follows we denote by Rn the n-dimensional Euclidean space, ⟨u,w⟩ =∑n

i=1 uiwi is the inner product of vectors u,v ∈ Rn and ∥u∥ = ⟨u,u⟩1/2 is the
associated norm. Bϵ(u) = {w ∈ Rn : ∥u −w∥ < ϵ} is an open ball centered at
u with the radius ϵ > 0. S1 is the sphere of the unit ball in Rn.

In addition, we assume that for any u ∈ Rn and d ∈ S1 function L satisfies

L(u+ τd)− L(u) ≤ τ⟨v,d⟩, v ∈ ∂L(u+ τd), τ > 0. (3)

Here and below ∂L(v) denotes the Clarke subdifferential of L at point v [11].
Moreover, let us remark that the above assumption (3) is satisfied when J is for
instance a difference-of-convex function [3]. The objective function L in prob-
lem (1) is represented as the sum of three terms. The third term in this rep-
resentation is a nonconvex and nonsmooth function. This makes the problem
nonconvex, having many local minimizers. Therefore, we propose an algorithm
consisting of two phases. In the first phase, using the current starting point, we
apply the aggregate subgradient method to find a local minimizer of this prob-
lem, and then we apply a special procedure to escape from this local minimizer
and find a better starting point for the aggregate subgradient method. Different
versions of the subgradient and aggregate subgradient methods can be found
in [1–3].

The method proceeds as follows. First, we choose tolerances ε > 0, δ > 0
and three constants γ ∈ (0, 1), c1 ∈ (0, 1) and c2 ∈ (0, c1).
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Algorithm 1: Solving problem (1) for a given starting point u

1: [Initialization of outer iteration] Set l← 1 and η ← 1.
2: [Initialization of inner iteration] Set k ← 1, select any direction dk ∈ S1

and compute vk ∈ ∂L(u+ ηdk). Set ṽk ← vk.
3: Solve the following problem

minimize φk(λ) ≡ ∥λvk + (1− λ)ṽk∥2 subject to λ ∈ [0, 1].

Let λk be a solution to this problem. Set

v̄k ← λkvk + (1− λk)ṽk.

4: [Switching phase] If
∥v̄k∥ ≤ δ (4)

then go to Step 9.
5: Compute the search direction by dk+1 ← −∥v̄k∥−1v̄k.
6: If

L(u+ ηdk+1)− L(u) ≤ −c1η∥v̄k∥, (5)

then go to Step 8.
7: Compute vk+1 ∈ ∂L(u+ ηdk+1). Set ṽk+1 ← v̄k, k ← k + 1 and go to

Step 3.
8: Compute u← u+ σldk+1, where σl is defined as follows

σl = max
{
σ ≥ η : L(u+ σdk+1)− L(u) ≤ −c2σ∥v̄k∥

}
.

Set l← l + 1 and go to Step 2.
9: Set η ← γη. If η < ε then STOP. Otherwise go to Step 2.

Algorithm 1 consists of two loops: inner and outer loops. For a given value of
η > 0 the search directions are calculated in the inner loop (Steps 2-7). The new
iteration is calculated and also the parameter η is updated in the outer loop.
First, we prove that for any fixed η > 0 the inner loop terminates after finite
number of iterations.

Proposition 1. Suppose that L : Rn → R is a locally Lipschitz function, u ∈ Rn,
η > 0 and the constant C1 < +∞ is such that

C1 = max {∥v∥ : v ∈ ∂L(u+ ηd),d ∈ S1} . (6)

If c1 ∈ (0, 1) and δ ∈ (0, C1), then the inner loop in Algorithm 1 terminates after
finite many iterations m > 0, where

m ≤ 2 log2(δ/C1)/ log2 C2 + 1, C2 = 1− [(1− c1)(2C1)
−1δ]2.
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Proof. The inner loop in Algorithm 1 will terminate the search for a descent di-
rection only when either condition (4) or (5) is satisfied. To prove that the search
for the descent direction concludes in at most m steps, it suffices to establish an
upper bound on the number of steps where condition (4) is satisfied. The proof
is conducted in three stages: first, we demonstrate that each step identifies a new
subgradient vk+1 that is not a convex combination of vk and v̄k; next, we show
that this subgradient is the best fit in terms of minimizing the corresponding
functional φk, i.e., φk+1(λk+1) < φk(λk); and finally, we establish that the norm
of the aggregated subgradient becomes smaller than any fixed δ within a finite
number of steps. Let us assume, therefore, that none of the stopping conditions
are met; thus, we have

L (u+ ηdk+1)− L (u) > −c1η ∥v̄k∥ .

It follows from (3) that

L (u+ ηdk+1)− L (u) ≤ η ⟨vk+1,dk+1⟩ ,

so we have
−c1η ∥v̄k∥ < η ⟨vk+1,dk+1⟩ ,

which can be simplified by using definition of dk+1 to

⟨vk+1, v̄k⟩ < c1 ∥v̄k∥2 . (7)

Moreover, since v̄k is the minimal value of φk(·) it can be shown that

⟨λvk + (1− λ)ṽk, v̄k⟩ ≥ c1 ∥v̄k∥2 , for all λ ∈ [0, 1]. (8)

Thus, based on equations (7) and (8), we can deduce that

there is no λ ∈ [0, 1] such that vk+1 = λvk + (1− λ)ṽk,

which is what we aimed to demonstrate in the first step. Using the definition of
v̄k+1 and the fact that λk+1 minimizes φk+1(·), we can write

∥v̄k+1∥2 = ∥λk+1vk+1 + (1− λk+1)ṽk+1∥2

≤ ∥λvk+1 + (1− λ)ṽk+1∥2 ∀λ ∈ [0, 1],

which is equivalent to

∥v̄k+1∥2 ≤ λ2∥vk+1 − ṽk+1∥2 + ∥ṽk+1∥2 + 2λ ⟨vk+1 − ṽk+1, ṽk+1⟩ ∀λ ∈ [0, 1].

From the boundedness assumption (6), we know that ∥vk+1 − ṽk+1∥ ≤ 2C1,
and furthermore, using (7) for k > 1, we obtain

⟨vk+1 − ṽk+1, ṽk+1⟩ = ⟨vk+1, v̄k⟩ − ⟨v̄k, v̄k⟩ ≤ (c1 − 1) ∥v̄k∥2 .
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Thus, we derive

∥v̄k+1∥2 ≤ (2λC1)
2 + (1 + 2λ(c1 − 1) ∥v̄k∥2)∥v̄k∥2 ∀λ ∈ [0, 1]. (9)

Choosing arbitrary λ0 ∈ [0, 1]

λ0 =
(1− c1)∥v̄k∥2

(2C1)2
,

and substituting it into inequality (9) we get

∥v̄k+1∥2 ≤

(
1−

(
(1− c1)∥v̄k∥

2C1

)2
)
∥v̄k∥2.

From assumption that (4) is not satisfied we know that δ < ∥v̄k∥. Denoting
C2 = 1 − ((1 − c1)δ)

2(2C1)
−2 and using the boundedness assumption (6) for

∥v̄k∥2 it follows
∥v̄k∥2 < C2

1C
k
2 .

From above and the fact that C2 ∈ (0, 1) we deduce that (4) is satisfied if

δ2 ≥ C2
1C

k
2 ,

what is true if k = m.

For a given η > 0 consider the following convex hull of the set of subgradients

Wη(u) = conv
{
v ∈ Rn : v ∈ ∂L(u+ ηd), d ∈ S1

}
.

Let δ > 0 be given. A point ū is called an (η, δ)-stationary point of the function L
iff

0 ∈Wη(ū) +Bδ(0).

Proposition 2. Suppose that function L is bounded below

L∗ = inf {L(u) : u ∈ Rn} > −∞. (10)

Let u0 ∈ Rn be an initial point. Then Algorithm 1 terminates after finite many
iterations M > 0 and produces (η, δ)-stationary point uM where

M ≤M0 ≡
⌊
L(u0)− L∗

c2ηδ

⌋
+ 1. (11)

Proof. We conduct proof by contradiction. Let us assume that the sequence
{ul} generated by Algorithm 1 is infinite and for any l ∈ N+ the point ul is not
(η, δ)-stationary point, i.e.

min{∥v∥ : v ∈Wη(ul)} > δ, ∀l ∈ N+.
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Then we know that the descent direction dk+1 can be found so that

L(ul + ηdk+1)− L(ul) < −c1η∥v̄k∥ ≤ −c2η∥v̄k∥

It follows from the definition that σl ≥ η. Therefore, we get

L(ul+1)− L(ul) = L(ul + ηdk+1)− L(ul) < −c2σl∥v̄k∥ ≤ −c2η∥v̄k∥,

in addition the condition ∥v̄k∥ > δ is satisfied that implies

L(ul+1) ≤ L(u0)− (l + 1)c2ηδ.

Therefore, L(ul) → −∞ as l → ∞, which contradicts (10). Clearly, the upper
bound for the number of iterations M necessary to find the (η, δ)-stationary
point is M0 given by (11).

To describe the hybrid algorithm we will use the Metropolis function

R(w,u, T ) = min
{
1, exp((L(u)− L(w))/T )

}
where u,w ∈ Rn and T > 0. Let ei ∈ Rn be the i-th standard unit vector.

Algorithm 2: Hybrid subgradient and simulated annealing method for
solving problem (1)

1: [Initialization] Select the initial point u0 ∈ Rn, the initial temperature
T0 ∈ (1,∞), the minimum temperature Tmin < T0, the temperature reduction
factor α ∈ (0, 1). Set ubest ← u0,Lbest ← L(u0), ū← u0 and k ← 0.

2: Apply Algorithm 1 starting from the point ū and find the stationary point of
problem (1). Denote it by uk+1. If L(uk+1) < Lbest then update
ubest ← uk+1,Lbest ← L(uk+1).

3: Generate a uniformly distributed random number µ from [0, 1], randomly select
i ∈ {1, . . . , n} and calculate a trial point w̄← uk+1 + µei.

4: If L(w̄) < Lbest , then update ubest ← w̄, Lbest ← L(w̄), set ū← w̄, k ← k + 1
and go to Step 2.

5: Sample a uniformly distributed random number β from [0, 1]. If
β ≤ R(w̄,uk+1, T ), then set ū← w̄ and go to Step 2.

6: Set T ← αT . If T < Tmin then STOP. ubest is a solution. Otherwise go to Step 3.

Remark 1. Algorithm 2 is based on the combination of Algorithm 1 and the si-
mulated annealing method. We apply Algorithm 1 to find the stationary point of
the function L and then apply the simulated annealing method to escape from
this point and find a new starting point for Algorithm 1. The convergence of
the simulated annealing method is studied, for example, in [9]. In the proposed
hybrid algorithm, the simulated annealing method is only used to find starting
points for the local search algorithm. This means that the hybrid method de-
veloped in this paper converges to the global minimizer of the function L with
probability one.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_28

https://dx.doi.org/10.1007/978-3-031-97557-8_28
https://dx.doi.org/10.1007/978-3-031-97557-8_28


Hybrid subgradient and simulated annealing method for HVIs 7

3 Contact Mechanics Problem

In this section, we present an example of contact mechanics problem with the
relevant physical context and notations.

An elastic body is considered to occupy a domain Ω ⊂ Rd, where d = 2, 3
in applications. The boundary Γ of the domain is divided into three measurable
parts: ΓD, ΓC , and ΓN , with ΓD having positive measure. The boundary Γ
is Lipschitz continuous ensuring the existence of the outward normal vector ν
almost everywhere on Γ . Boundary conditions specify that the body is clamped
on ΓD meaning the displacement satisfies u = 0 there. A surface force with
density fN acts on ΓN , while a body force density f0 is applied throughout
Ω. The contact interaction on ΓC are govern by using general subdifferential
inclusions. For the sake of simplicity we consider frictionless case. The objective
is to determine the displacement of the body in static equilibrium.

The scalar product and Euclidean norm in Rd or Sd (the space of symmetric
second-order tensors) are denoted by “·” and ∥ · ∥, respectively. The normal and
tangential components of displacement u and stress σ on ΓC are represented by
uν = u · ν, uτ = u− uνν, σν = σν · ν, and στ = σν − σνν, respectively. The
small strain tensor is defined as ε(u) = (εij(u)), where: εij(u) = 1

2 (
∂ui

∂xj
+

∂uj

∂xi
).

Problem P : Find a displacement u : Ω → Rd and a stress σ : Ω → Sd satisfying

σ = A(ε(u)) in Ω, (12)
Div σ + f0 = 0 in Ω, (13)

u = 0 on ΓD, (14)
σν = fN on ΓN , (15)

−σν ∈ ∂j(uν) on ΓC , (16)
στ = 0 on ΓC . (17)

Here, equation (12) represents an elastic constitutive law and A is an elastic-
ity operator. Equilibrium equation (13) reflects the fact that problem is static.
Equation (14) represents clamped boundary condition on ΓD and (15) repre-
sents the action of the traction on ΓN . Inclusion (16) describes the response of
the foundation in normal direction, where j is a given potential. Equation (17)
means that contact is frictionless.

The Hilbert spaces for the problem are

H = L2(Ω;Sd), V = {v ∈ H1(Ω)d | v = 0 on ΓD},

the latter with norm defined through strain tensors and Korn’s inequality en-
suring completeness. The trace operator γ : V → L2(ΓC)

d is continuous by the
Sobolev trace theorem.

Using the Green formula and the definition of generalized subdifferential,
a weak formulation of Problem P is derived as a hemivariational inequality.
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Problem Phvi: Find u ∈ V such that

(A(ε(u)), ε(v))H +

∫
ΓC

j0(uν ; vν) da ≥ ⟨f ,v⟩V ∗×V for all v ∈ V,

where for f0 ∈ L2(Ω)d, fN ∈ L2(ΓN )d

⟨f ,v⟩V ∗×V =

∫
Ω

f0 · v dx+

∫
ΓN

fN · γv da.

Below we present the rest of necessary assumptions for existence of the solution
to Problem Phvi (see more [7]).

The elasticity operator A : Ω × Sd → Sd satisfies

(a) A(x, τ ) = (aijkh(x)τkh) for all τ ∈ Sd, a.e. x ∈ Ω, aijkh ∈ L∞(Ω),
(b) A(x, τ1) · τ2 = τ1 · A(x, τ2) for all τ1, τ2 ∈ Sd, a.e. x ∈ Ω,
(c) ∃mA > 0 such that A(x, τ ) · τ ≥ mA∥τ∥2 for all τ ∈ Sd, a.e. x ∈ Ω.

The potential j : ΓC × R→ R satisfies

(a) j(·, ξ) is measurable on ΓC for all ξ ∈ R and there exists e ∈ L2(ΓC) such
that j(·, e(·)) ∈ L1(ΓC),

(b) j(x, ·) is locally Lipschitz continuous on R for a.e. x ∈ ΓC ,
(c) there exist c0, c1 ≥ 0 such that

|∂j(x, ξ)| ≤ c0 + c1|ξ| for all ξ ∈ R, a.e. x ∈ ΓC ,
(d) there exists α ≥ 0 such that

j0(x, ξ1; ξ2 − ξ1) + j0(x, ξ2; ξ1 − ξ2) ≤ α|ξ1 − ξ2|2

for all ξ1, ξ2 ∈ R, a.e. x ∈ ΓC .

We define the functional J : L2(ΓC)
d → R by

J(v) =

∫
ΓC

j(vν) da for all v ∈ L2(ΓC)
d.

To find a solution of the discrete version of hemivariational inequality (Prob-
lem Phvi) we use an optimization-based method described in detail in [7]. Let
V h ⊂ V be a finite dimensional subspace with a discretization parameter h > 0.
The corresponding optimization problem in the case of Problem Phvi is as fol-
lows.

Problem Ph
opt: Find uh ∈ V h that minimizes functional L : V → R defined by

L(v) =
1

2
(A(ε(v)), ε(v))H − ⟨f ,v⟩V ∗×V + J(γv) for all v ∈ V.

To numerically solve the above optimization problem, we use the finite ele-
ment method. We discretize the elasticity operator, the forces f , and the contact
condition, which allows us to construct the functional in the form (2).
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4 Numerical results

To verify the accuracy and efficiency of the proposed method, we conducted
a series of simulations. To keep this work concise, we focus on the simplified
model introduced in the previous section. The schematic representation of the
modeled 2D beam is shown in Figure 1. The beam thickness is 10 mm, length
210 mm and it is clamped at both ends and rests directly on a soft obstacle made
of a composite material. A force is applied to the beam from above:

fN (x) =

(
0,−LS

(
1− (x− 105mm)2

(105mm)2

))
,

where beam upper surface S = 1000mm2 and L is applied loading.

Fig. 1. Modeled beam under loading.

As the beam deflects under the applied force and penetrates the obstacle.
The composite nature of the foundation is characterized by the subgradient of
the functional jn. Examples of the functional jn for n = 2 (black) and n = 7
(gray) are illustrated in Figure 2. For more examples of composite materials, see
e.g. [14,15]. The presented contact law corresponds to a material whose reaction
force increases with penetration until a critical point is reached, at which a
composite layer cracks, causing a reduction in the foundation’s reaction force.

The function j2 represents two composite layers represents a soft base covered
by a thin (3mm) protective layer, which is responsible for the initial increase
in reaction force with penetration. Once the critical penetration threshold is
exceeded, the protective layer cracks, and the reaction force ceases to increase,
stabilizing at a constant level. Similarly, in the function j7 represents seven
layers, where are six progressively thicker protective layers, each contributing to
the force response until crack occurs. The total thickness of all protective layers
is constant and equal to 3 mm. For any n > 2 function jn is nondifferentiable
and nonconvex.
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Fig. 2. A nonmonotone contact law and the corresponding functional j(u).

For a sake of simplicity, we neglect the body internal forces, i.e., f0 = 0.
Elasticity tensors are given by

(Aτ )ij =
Eκ

(1 + κ)(1− 2κ)
(τ11 + τ22)δij +

E

1 + κ
τij

∀ τ = (τij) ∈ S2, i, j = 1, 2.

Here and below δij is the Kronecker delta, and E and κ are Young’s modulus and
Poisson’s ratio of the body material, respectively. We chose E = 9.646 · 107 MPa
and κ = 0.4.
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Fig. 3. Deflection of the beam under loading.

We present the results of numerical experiments conducted for the contact
law based on the functions j2, j3, j7, and j10. For each case, we performed 10
simulations under varying load conditions. The optimization problem in each
simulation was solved using six different methods which was: four optimization
techniques from the numpy package [6] and two proposed in the following paper.
A mesh with a finite element size not exceeding 1.75 mm was used.
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Figure 3 highlights the increased differences between methods observed in
multi-layered materials, further illustrating the complexities introduced by ad-
ditional layers in the composite structure. In the left plot, we see the deformation
of the body in the case of two layers (protective and base), while the right plot
shows the deformation for seven layers.

The methods - BFGS, Conjugate Gradient Method (CG), “gradiented BFGS”,
and “gradiented Conjugate Gradient Method” (“gradiented CG”) - exhibited
short optimization times but failed to yield satisfactory results. The prefix “gra-
diented” indicates that the method explicitly utilized the computed subgradient
of the cost function, as opposed to its non-prefixed counterparts, which estimated
the gradient. These methods are marked in shades of gray in the presented plots.

A more notable approach is Powell’s method, which demonstrated signifi-
cantly better results. Although Powell’s method generally exhibits high preci-
sion, it is computationally expensive. Moreover, as illustrated in the left column
of Figure 4, it does not always find the optimal solution. Notably, its performance
fluctuates around intermediate force values, which correspond to the progressive
rupture of individual material layers - an inherently nonlinear phenomenon.

Our proposed methods, denoted as “subgradient” and “global subgradient”,
perform notably better when dealing with a larger number of composite material
layers. Due to the possibility of multiple local minima, the basic subgradient
method may occasionally become trapped. To mitigate this issue, we developed
a strategy for selecting promising initial points for the subgradient method.
Specifically, we employed a search algorithm that identified five starting points
for each optimization run.

Note that in Figure 4 the y-axis of the plots employs a logarithmic scale, and
the cost function values are presented with a negative sign to enhance readability
- thus, higher values indicate better results. The right column of Figure 4 presents
the computational time required for optimization. The markers distinguish three
categories of results: squares indicate the lowest achieved cost function value
Lbest, circles represent values within section (0.9Lbest + 0.01,Lbest), and “x”
denotes results that deviate more significantly from Lbest. These plots reveal
that the “global subgradient” method outperforms the others in finding the global
minimum while also being computationally more efficient than Powell’s method.

It is worth emphasizing that subgradient and global subgradient methods
were implemented in Python. We employ our original open-source package con-
mech [12], a user-friendly Pythonic tool designed for contact mechanical si-
mulations. The package is a comprehensive simulation framework, allowing for
straightforward definition of body geometry and material properties, automatic
generation of computational meshes, and empirical error analysis. It supports
simulations for static, quasistatic, and dynamic problems in both two and three
dimensions. The software is designed with modularity in mind, enabling seamless
extension of existing models with additional physical effects. To improve compu-
tational robustness in conmech we utilize the just-in-time compiler Numba [8].
Wall times for CPU depicted in right column of Figure 4 are obtained on com-
modity hardware: MacBook Pro M1 16GB.
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Fig. 4. Energy function values for selected simulations (left column) and the corre-
sponding computation time (right column).
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5 Conclusion

In this paper, we developed a method for the numerical solution of hemiva-
riational inequalities. The hemivarional inequalities problem is reduced to the
minimization of the so-called energy function. This function is both nonsmooth
and nonconvex. The proposed method is a hybrid of the subgradient and the si-
mulated annealing methods. The subgradient is applied to find stationary points
of nonsmooth energy function and the simulated annealing is used to escape
from these stationary points and find better starting points for the subgradient
method. In this way the proposed hybrid method can efficiently deal with both
nonsmoothness and nonconvexity of the problem under consideration.
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