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Abstract. Replication involves creating and managing multiple dupli-
cates of objects on various storage devices, workers, or computers. Repli-
cation is widely used in RAID (Redundant Array of Independent Disks)
systems, database systems, storage clusters, cloud storage networks, com-
pute clusters, etc. The main goal of duplicating, known as replicating, is
to enhance the availability of the data, thus improving fault tolerance and
performance. The replication factor (degree of duplication, multiplicity)
determines the number of copies or replicas of objects, indicating the
level of redundancy and thus giving a guarantee. In many cases, such as
multi-disk storage, distributed file systems, and database systems, poli-
cies fix the replication factor (3, for example) to balance storage expenses
and performance. This research presents a global search with an evolu-
tionary genetic algorithm for finding multiplicities of partial replications
to fit the system and improve costs.
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1 Introduction

Replication involves generating duplicates or replicas of objects (e.g., files) and
managing them in terms of access, updates, and lifetime. Multiple locations or
nodes guarantee redundancy and accessibility. Replication and placement are
part of data management that improve metrics such as latency, transfer rates,
and local load and ensure fault tolerance. Data tiering is a placement technique
that aims to classify objects into tiers. Hot objects (e.g., data) used or read more
frequently are placed in the high tier. High-tier locations or sites provide high
bandwidth or faster storage, increasing performance. The different tiers depend
on the definition of performance or goodness and so on a metric or measure of
some dimension.

Replication defines how often objects are replicated/duplicated/copied (the
term depends on the field and is sometimes arbitrary). The replication factor
/ multiplicity / degree indicates the cardinality of objects as replicas / copies
/ duplicates among various locations such as nodes, servers, caches, nodes etc.
A replication factor (Rf) of 1 implies only one primary copy of a particular
object(s). This scenario is often described as a single-replica or non-replicated
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configuration. A replication factor of 2 provides a single-point failsafe, implying
that a single node can fail and that the full extension or operation can still be
provided. Higher-fold replications are chosen to improve this guarantee or expec-
tation on dimensions such as average latency, bandwidth, throughput, etc. The
number of replications required depends on the desired guarantee. It is based on
cost-benefit analysis (trade-off) by architects, administrators, or users. Replica-
tion always incurs certain costs for storage, communication, and management.

The replication problem covers three partial problems:

1. The replication factor or multiplicity - how many copies shall be produced
2. Which subset of objects are subject to replication
3. Where should the objects (subset) be placed or located

This work shows a replication method for 1) and 2) cases in which ’optimal’
placement does not play a role due to location independence or lack of informa-
tion. There are different use cases for that:

– One case may be an entire storage provided as one tier in one device. One
tier means equal performance for the entire placement. This can be a logical
device such as a file server or a network-attached storage (NAS).

– In another case, no information is available on the nodes (servers, storages,
caches) or tiers. This would include, for example, a case with an external,
managed storage or with alternating use patterns of objects that hinder the
application in improving the placement for cost decrease.

Contribution: This work presents an algorithm that, in principle, generates a
near-optimal replication with a superposition of partial replications. This covers
tasks 1) and 2). The novel result indicates that optimal replication consists
of several replication factors applied to subsets. The optimization model can
update the allocation by running on a new set of objects and, hence, combine
the previous and current allocation outputs.
Assumptions: Objects to be replicated are i.i.d. Observed values for the cost
function (network) are accurate (sufficient). This means that the regime does
not change.

2 State-of-the-Art

Replication has been a fundamental aspect since the advent of distributed databases
and parallel computing. It enhances availability by distributing resources across
multiple endpoints to mitigate the effects of individual endpoints becoming over-
loaded, unresponsive, or offline. The term ’running hot’ refers to the condition
where an endpoint is subjected to excessive requests, overwhelming its processing
capacity. Replication also improves runtime performance, evidenced by reduc-
tions in latency. Many systems use process and data replication [1] [2]. A form of
replication is data replication, which manages copies/replicas for distribution to
machines or locations. Data management offers techniques like tiering, caching,
or replication [1] [2] [3]. Publications either focus on practical applications and
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best operational practices or on theoretical work showcasing optimization bene-
fits. Applied methods include simplifications, local and greedy optimization, and
various models such as linear, deterministic, and stochastic.

Numerous studies demonstrate the NP-hard nature of optimally resolving
data placement and replication problems. It is evident from the combinatorial
growth that replication falls within NP. [4] illustrates this by converting a de-
cision/satisfaction problem in replication to an NP-complete partitioning issue.
Additionally, they contend that certain instances of the replication problem are
non-approximable, necessitating the use of heuristics or simplifications.

To manage the complexity of replica placement, algorithms often simplify
elements of the problem or its solution. Similar to other complex issues, local
optimization is examined and applied to replication challenges. Some approaches
integrate properties like caches, bandwidth, or input data. In the research by [3],
a greedy cooperative cache management strategy is introduced, dividing the
input set into N caches, each of which is optimized locally. A different greedy
approach focused on cost metrics per object and network costs is introduced in
[5]. This method uses a greedy replication algorithm to handle caching. Objects
are ranked on the basis of their cost contributions, determining their placement
in specific locations.

In [6], a segment of the cache servers’ storage is dedicated to holding the tar-
geted content data. The authors suggest enhancing these cache portions to strike
a balance between improved network performance and computational expense.

A number of studies incorporate the concept of data popularity as a weight-
ing factor. This popularity is often referred to as (local) probability, weight,
or hotness. As noted in [3], popularity can be influenced by the user commu-
nity. Additionally, a temporal aspect can affect popularity. According to [7], the
probability of data utilization is examined over time and location, accounting for
varying resources and user requests. This research also investigates an uncertain
job dispatching mechanism that impacts the cost function.

For high-cardinality problems, the machine learning method of clustering
may be used. Instead of dealing with single objects, similar objects are grouped
into clusters that can be handled as input objects. [6] [7]

Multiple requests to websites, especially to those with high demand, can cause
the site to become overwhelmed. Strategically placing duplicates in advance helps
to spread the potential load during peak times [1]. The endpoints in consideration
can be geographically dispersed, even on a global scale, such as in cloud or
grid computing, where replication techniques are frequently used. Duplicating
processes allows for parallel processing and enhances fault tolerance, while data
replication is essential for ensuring fault resilience and boosting performance [2].

Database systems implement protection and replication strategies for failover
and load balancing, ensuring high availability (HA) and fast data access. Data
parallelization requires intricate coding within the database management system
(DBMS) because the DBMS must write, read, and update data using multiple
table replicas concurrently. [8] Managing and updating replicas necessitates a
flexible approach.
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Data replication plays a vital role in RAID systems (Redundant Array of In-
dependent Disks), which are utilized in personal computers, servers, and network-
attached storage (NAS). The hardware involved may consist of various technolo-
gies like disk or solid-state storage. RAID configurations employ data stripping
and replication to distribute data segments across multiple persistent storage
units. The specific numbers vary based on the RAID level and system, guaran-
teeing data accessibility and integrity even during storage failures. Upon disk
replacement, duplicate data is restored to the new disk to maintain secure and
regular operation. [9] RAID continues to see active development, such as inte-
gration into Unix kernel modules [10].

Storage clusters must balance network load across nodes to ensure reli-
able, fast access through redundancy [11]. The Hadoop Distributed File System
(HDFS) is intended for large volumes of files and stores files on commodity hard-
ware, offering a large capacity for computations or video content. It is highly
fault-tolerant and provides high data throughput due to replication. Files are
partitioned into blocks, each replicated multiple times by default with a factor
of 3, adjustable at the application level [12].

The vast landscape of grid computing, where data- and compute-intensive
applications typically comprise multiple data centers, can be considered from a
storage cost and energy cost perspective. [13] [14].

Some approaches select a fixed number of replicas (replication factor) based
on constraints or best practices. These approaches miss the opportunity to vary
the number of replications to expand the search space and eventually find a
better solution.

3 Network and Cost

A network has several costs depending on the resources and user, such as CPU
wall time, energy per request, communication cost, transfer time, etc. A specific
communication cost is chosen to showcase the optimization algorithm, which
is the latency of files that affects the delays. Such delays are central to many
applications and perceived by users, especially for data-intensive computing or
content networks.

Several network architectures exist depending on their use and extension,
such as local, wide, and global networks. The network of content providers or
grids may be hierarchical. Content providers have autonomous systems (AS)
connected to internet service providers (ISPs) and add several caching servers
to provide the (replicated) content. In grids, there may be some high-tier sites
with connected low-tier nodes (nucleus) each.

An example network is depicted in Fig. 1. The network may be different in
shape, which must be considered in the cost function.

This distributed network can be modeled as a graph in Fig.2. clientx and
nodex represent nodes nearby at location x. This locality implies the shortest
path between them modeled as one hop. Clients trigger actions on objects. For all
M=8 nodes, storage is defined by capacity. The capacity values for those logical
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Fig. 1. Storage network connected to a network. Clients request objects from the stor-
age nodes.

bins bin1, ..., binM , S1, ..., SM , are randomly chosen in the interval [0.2, 1] each.
The capacity values are then normalized to provide the necessary capacity for all
replicated objects. Only relative values and not absolute values are interesting.

Fig. 2. Storage network connected to a dense network. Clients request objects from
the storage nodes.

The core network is densely connected, so some inner nodes are intercon-
nected, providing the communication network as would be for a wide area net-
work (WAN). Clouds, grids, communication networks, and content networks are
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WANs that are part of the Internet. The experiment shall impose a variation
of architectures on the optimization model. A link between two inner nodes is
established with probability 0.5 (50 %), which decides whether a link exists. The
inner nodes are routers/ core switches. The transfer rate depends on the transfer
speeds of the involved nodes, so the hops the communication path extends.

The use patterns of objects affect the cost. Since read operations (retrieving
a page, playing a video file, reading measurement data, etc.) are much more
likely than write operations, the average ratio is set to 3:1 between read and
writes, reflected as a factor of 3 in the probabilities. Read operations request
object copies (pull), which have been improved due to replication. Let P r =
[P r

1 , P r
2 , . . . , P r

N ]T be the read probabilities of the object. T stands for transposed.
Write operations update all the replicas of the related object, which results in a
higher effort (cost). P w = [P w

1 , P w
2 , . . . , P w

N ]T the write probabilities for objects
with the same index. The probabilities express the demands for objects to be
fetched or updated. The values are randomly sampled from a Zipf distribution.
Zipf means that the probability of observed frequency is inversely proportional to
a top-to-bottom order. The distribution is observed in many applications. Some
items are frequently in demand, while the majority are rarely used. Since there is
no location-dependent information on the clients, the cost function incorporates
only a random client selection (uninformed).

A replicated placement of objects is defined by the parameter A = [amn].
amn = 1 if and only if a replica of the object n is stored at m, 0 otherwise.
The index n always points to the object (prototype) from which replicas are
placed. The index m points to the location (endpoint, node, storage, etc.) that
is virtually considered bin as depicted in Fig. 3 and Fig. 4. A cost is generally
defined based on the system and the intended dimension on which to act and
depends on A. The total cost related to the selected replication, c = c(A),
factorizes into N terms, cn, per object (prototype) n:

c(A) = 1
N

∑
n=1,...,N

cn(A) =

= 1
N

∑
n=1,...,N

(P r
ntr

mn(A) + P w
n tw

mn(A))|m=client()

A =


a1
a2
...

aM

 =


a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aM1 aM2 · · · aMN

 aij ∈ {0, 1}

(1)

, in which tr
mn(A) is a composed cost function for read operations from client m

to object n, and tw
mn(A) is a composed cost function for write operations analog

as before, and client : Ω → {1, 2, . . . , M}, with P(client = m) = 1
M ∀m ∈

{1, 2, . . . , M} selects a random client. Before evaluation, M2 minimum routes
between M clients and M endpoints for tr

mn and tw
mn must be stored (number of

hops as a predictor distance and thereby delay time).
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tr
mn(A) seeks the replicas of the object n and outputs an approximate read

latency. Since the bandwidth can be shared, the replication factor/multiplicity
changes the weighing with the inverse of the replication number 1/|n|. For each
replica, the shortest route is selected, equal to a route with the minimal number
of hops, and the transfer t is calculated by t = sn · cr

n · |hops|/|n| where sn is the
size of the object n transferred, |n| is the replication factor/multiplicity of n, cr

n is
a category-dependent cost multiplier, and |hops| is number of hops between the
source and the destination. Each category is given a random cost multiplier in
[.25, 1] at the beginning of each evaluation. Such categories may be based on the
use profiles of user groups (personas) or resource dependency of the object. The
calculated t’s for all replicas of n are then averaged, obtaining the cost tr

mn(A).
tw
mn(A) seeks the longest of the shortest paths from the client m to all replicas

of n and outputs an estimated update time. This is an approximated worst-case
for updating replicas of n in a protocol with multi-peer communication. With
the one selected path, the final update time is calculated as tw

mn = sn · cw
n · |hops|

with the variables as before, but with cw
n as a category-dependent cost multiplier

for updates of n. This is also randomly selected for each category in [.25, 1].

Fig. 3. Single cost values cn dependent on topology, replication, and object properties.

4 Optimization

Replication is a selection problem with particular boundaries. Depending on the
use case, an algorithm must generate sets of replicas and place them at locations
such as sites or machines. If M is the number of bins (subsets), there are maximal
M-fold replicated objects. For the replication factors Rf = [Rf1, Rf2+2, . . . , M ],
the same number of replication subsets correspond. If all possible replication
factors are computationally feasible, then Rf = [1, 2, . . . , M ] for M bins. A case
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with eight bins and ten different objects is shown in Fig. 4. With these variables,
the optimization task is the following:

argmin
Â

c(At=1)

Rf = [Rf1, Rf1 + 1, . . . , Rfmax] N ∋ Rfmax ≤ M > 1
N ∋ Rf1 ≥ 1

At=1 = place(Â) Â =


Rf1 · a1

(Rf1 + 1) · a2
...

Rfmax · aRfmax


s.t.

⟨At=1, s⟩ ≤ S

(2)

where Â are the partial replication sets a1, a2, . . . , aM of the objects denoted
as a matrix, At=1 the replicated objects placed to the bins, and the cost c(·)
has been defined before. Â is not an allocation matrix as was introduced with
Boolean entries since it also indicates the multiplicity/replication number. s is
the sizes of the objects in vector form, S is the size vector of the bins.

In the dynamic case, objects are added (altered) to the system (others are
removed). The number of nodes is constant, and the optimization considers a
steady state in which the values of the system (properties of the system) do
not change. Otherwise, the mapping of the bins and the cost function must be
changed.

Fig. 4. Replication of objects into bins.

The optimization method presented separates the replication and placement
steps for computational feasibility. The optimization model needs to perform the
following steps:
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1. The model selects feasible replication factors, Rf = [Rf1, Rf1+1, . . . , Rfmax].
The first replication factor, Rf1, depends on the guarantee and may be one
for persistence without fail safety or 2 with single-point fail safety. The max-
imum in Rf depends on the total capacity relative to the object sizes and
the number of bins (subsets). An object in a bin has no cardinality other
than 0 or 1. The search for subsets must occur within a sufficient but feasible
range Rf to approach the global optimum.

2. The model selects partial subsets [a1, a2, . . . , aM ], corresponding to the num-
bers in Rf . Each am has length N (objects) and indicates a selected object n
with 1 at position n, otherwise 0. These vectors are Boolean and are disjoint
from a set perspective. If an object has been selected for a replication factor,
it cannot be selected again. A subset can be varied in size as long as the
capacity allows, as was denoted in Equ. 2. The subsets a1 + a2 + · · · + aM

are further related by the size condition imposed on them. The capacity oc-
cupied by a Rf is the weighted sum Rf1 ⟨s, a1⟩ + · · · + (Rf1 + M) ⟨s, aM ⟩
where ⟨·, ·⟩ is the inner product.

3. After sets of replicas/copies are generated, placement is necessary in dis-
tributed systems. place(·) is defined as hash binning to be applied. Objects
are assigned to bins (storage locations) to obtain the At=1. Hash binning is
a weighted placement: Objects are hashed into an extensive range of virtual
bins mapped into the M bins in proportional numbers. If the capacities of all
bins were equal, the same number of virtual bins would be assigned per bin.
If there is no prediction on the client side reading and updating the objects,
then this process cannot be improved. In a uniform system, where transac-
tions are uniformly distributed (load balancing); just the replication factor
determines the performance/cost. With a feasible placement/final allocation
At=1 (capacities S), a cost value can be calculated to measure the goodness
(fitness in an evolutionary context).

5 Method

Rf determines the number of subsets in the optimization and, therefore, the
complexity of the search. Simplifications may be necessary depending on the
length of Rf . The complexity of the search increases exponentially with an
increase in length of Rf . This work leaves the optimal range open to discus-
sion. There must be a balance of computational cost and accuracy. For the
search of subsets to replication factors, an Allocation Optimization Model has
been developed. Within this model, solution candidates are in-memory objects
that use clustering for subset generation. There are a1, a2, . . . , aM subsets for
which cluster methods are used. am can be further decomposed into subclusters
a′

m, a′′
m, . . . , amaxm

m whereas it always starts with one basic cluster a′
m. A dy-

namic maxm increases the computational effort to vary the output subset am.
So, the allocation model should increase maxk of a random k and trial and er-
ror to improve the outcome. In the same way, it can decrease this number to
make the search simpler. This is a subordinate random walk in the parameter
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maxk in the evolutionary process. The decomposed subsets are generated by
clustering methods illustrated in Fig. 5. These clustering methods are part of

the allocation model of the solution candidate. The allocation model has con-
trolled clustering based on a nearest-neighbor search. The control in the cluster-
ing means that the clustering parameters can be modified in different trajectories
in the evolutionary process:

– The center of the cluster
– The size of the cluster can be varied within the size constraint under Eq.2

in which replication factors affect the output size of replicated subsets.

a′
1 + a′′

1 + . . . + amax1
1

a′
2 + a′′

2 + . . . + amax2
2

. . .

a′
M + a′′

M + . . . + amaxM
M

Fig. 5. The allocation model outputs subsets a1, a2, . . . , aM that are composed of
subsets from clusterings.

For improving the solution to the nonconvex problem, the Allocation Opti-
mization Model is based on an evolutionary algorithm. In an evolutionary con-
text, multiple solution candidates live in a pool of candidates that communicate
and compete with each other. The evolution contains candidate solutions. Evo-
lutionary genetic techniques change how variation evolves. Evolution accelerates
the convergence to an optimal solution with different operators, such as selection
and propagation. The parameters are modified iteratively and shared among so-
lution candidates. Candidates for a better solution are more likely to persist
(chance). The solution candidates run in parallel (processes), and any solution
may take the lead. The solution candidates in the evolution pool/population are
simplified in Fig.6. The colored boxes represent the collected subsets.

Genetic/evolutionary operators must be adapted to the solution parameters
to provide the full potential of the meta-optimization. The set of operators is at
least the following:
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Fig. 6. Solution candidates ’walk’ in their parameter space and probe the replication
subsets (in colors).

– The selection operator selects candidate solutions from the population based
on their fitness to pick winners and losers. Fitness is the inverse cost.

– Crossover or recombination combines parameters from two solutions to pro-
duce an offspring. A child z by single-point crossings x and y is represented
as z = (x0, x1, . . . , xp−1, yp, yp+1, . . . , yn−1)
A child z from a 2-point crossover between x and y is represented as:
z = (x0, x1, . . . , xp−1, yp, yp+1, . . . , yq, xq+1, xq+2, . . . , xn−1) The exchanged
parameters are the subsets of the allocation a1, a2, . . . , aM with their indi-
vidual clusterings as illustrated in Fig. 5.

– Mutation or variation randomly changes the parameters to match the chang-
ing parameters to introduce diversity into the pool (random walk).

– Discard or annihilation selects candidate solutions to discard.

6 Justification

A validation has been carried out with the global optimization as discussed.
All properties of the network model and objects are randomly sampled for each
experiment run, as discussed in Section 3. The number of bins are fixed to 8.
There are N = 100′000 objects that represent files in the considered showcase
and, for which the following data are given, X = [s, [k]0/1, P r, P w] with the
columns size s, columns category in Boolean encoding [k]0/1, read and write
probabilities columns P r, P w per object. Nominal features of the category are
represented in 1-hot encoding.

The observed relative gains of the repetitions of the experiments are averaged.
Each experiment consists of a run for each total capacity value as multipliers
such as 1x, 2x, etc. ticked on the x-axis in Fig.7.

– The complexity of the calibration of the model is very high due to the number
of iterations needed to probe the points in the search space. For each opti-
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mization run, one million iterations and more are executed, but this number
by far does not exhaust the search.

– With the calibration of the model, the static case is done.
– Dynamic means that objects are passed to the model that have been un-

seen before. Usually, new objects are inbound from a stream of data from
users, computations, or measurements. The Allocation Optimization Model
is aware of a previous placement, At=0. An update, At=1, must be com-
plementary to the previous subsets defined with a prior At=0. With this in
mind, the final placement is At=0 + At=1. This term is plugged into Equ. 2.
This leads to argmin of the cost for the prior and update placements

argmin
Â

c(At=0 + At=1)

. such that ⟨At=0 + At=1, s⟩ ≤ S whereas S must be updated for the ad-
ditional allocation. The control variable Rf affects only At=1 = At=1(Rf).

The first step of the optimization model is to read a batch of 5, 6, 7, 8, 9,
and 10 % of input objects (calibration set). Small batch inputs are desirable
to achieve the number of optimization iterations or evolution steps. The entire
data population is used for validation in the static replication case. The best
optimization run among these batches is selected. Fig.7 shows the yield versus
the benchmark case with a uniform global replication factor (1) measured by the
defined cost function. There are three cases in total:

1. Uniform global replication is the benchmark with one replication factor at
a time, Rf = [Rf ′] for Rf ′ = 1, 2, . . . , 8 as depicted on the x-axis in Fig.7.
The replication factor Rf ′ defines the total capacity in terms of the order
of magnitude of the size of the input objects for all cases (1.), (2.), and (3.).
The cost values are normalized to 1 (0 %).

2. The search includes all possible replication factors for the M = 8 bins, Rf =
[1, 2, 3, 4, 5, 6, 7, 8]. The static case covers all objects at once. The entire
set is the validation set. The dynamic case means that the capacity is
extended by the size of the added objects (50% of objects in the first static
run and 50% of objects in the dynamic run). The proportion of bin capacities
is conserved and could be changed due to the adaptability of place(·). The
subsets are searched using the capacity available. Other parameters could be
changed in the Allocation Optimization Model for update runs. It can be seen
that the yield of the dynamic case drops a bit. This is likely because global
optimization in a static case becomes two iterative local optimizations that
combine the outputs. On the other hand, 50 % implies that the convergence
is faster, which can be investigated in more depth with feasibility and the
definition of Rf in another study.

The minimum and maximum cases, 1x and 8x, cannot be improved in con-
trast to a uniform replication: 1x is the edge case where one and only one
replica/copy exists per object (primary copy), and no additional capacity is left.
In the introduced notation, the variation would be searched for in Rf = [1] and
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Fig. 7. Replication methods versus uniform, global replication.

nothing can be done. With 8x, all objects are maximally replicated; in this case,
the search would occur in Rf = [1, 2, 3, 4, 5, 6, 7, 8] but no further improvement
can be achieved. The global optimization method outperforms uniform replica-
tion, especially with replication factors RF=2,3. The relative improvement at
low replication factors is higher. At high replication factors (with higher total
capacity), the effect of an optimization is weakened asymptotically toward 0%.

7 Conclusion and Future Work

The findings imply that uniform global replication, for example, with replication
factor 3, can be improved without including placement in optimization. This is
valuable when placement dependency does not play a role or cannot be predicted.
Spatial load may be balanced or change continuously.

Not only can a minimal replication factor Rf1 be defined with the intended
range of replication factors, but a search for replication factors in relation to
storage or transfer cost can also be analyzed (not covered in this paper). The
minimal replication factor of objects in the system should follow a policy accord-
ing to a service-level agreement (SLA). The maximal replication factor can be
varied to observe the gain over a cost function. This cost function can consider
the storage cost / management cost, or may be balanced versus such cost (vector
optimization).

The novel algorithm adapts to the provided capacity (multiple of the input
size of the objects) and exhibits potential for broad application in distributed
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systems using static (one-time) and dynamic replication (objects are added or
changed). Clustering and evolution work in a broad field of data cases. The
one shown is just an example. Non-continuous cost functions are feasible for
evolutionary algorithms as well.

The demonstrated optimization model can be plugged into a replication sys-
tem with with a fixed global replication, which lacks near-optimal replication
to improve the system. The range of replication factors can be set. Prominent
storage systems like Hadoop and Ceph have a default global replication fac-
tor (number of copies, e.g., 3), and some of them provide a configuration-based
replication configuration per keyspace or bucket, or object-wise [15–19].

In the future, the heuristic may be investigated in more detail to introduce an
improvement to guide the coordination of the partial replication sets. Further-
more, the problem has affine properties, and some parameters of the replication
subsets may be approximated with an affine model (in a continuous space in-
stead of a discrete one). From such a model, there may be insight for the overall
optimization.
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