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Abstract. Global approximation models are often used in design and
analysis activities in lieu of expensive simulations. Surrogate modeling
with adaptive sampling is an efficient approach for creating these global
models. There is a growing interest in global neural network (NN) mod-
eling since it can approximate complex functions and can handle large
datasets. Hence, this work proposes a novel method, called separate
adaptive sampling (SAS), for creating global models using NNs. SAS
performs exploration and exploitation using two criteria, unlike existing
methods which use a single criterion. An exploration point is obtained
from a space-filling sampling algorithm, while an exploitation point is
obtained by maximizing the uncertainty in the NN prediction. Three
existing global modeling algorithms are used for comparison. These al-
gorithms are demonstrated on three test cases. The first two test cases
are analytical functions with 3 and 8 dimensions, while the third test case
is a physics-based airfoil modeling problem consisting of 16 dimensions.
SAS performs best for the analytical cases while achieving comparable
performance for the third case. Moreover, the NN training time for each
method is nearly constant as the number of samples increase.

Keywords: global modeling · neural networks · adaptive sampling ·
space-filling sampling

1 Introduction

Computer simulations have become an essential tool for analyzing and designing
systems. These simulations, such as computational fluid dynamics, solve a set of
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mathematical equations that represent a complex phenomenon. Hence, the com-
putational resources required for these simulations is often considerable, limiting
their direct application in design activities. This issue can be alleviated by using
a surrogate model [2], which approximates the simulation output while offer-
ing faster evaluation times. Consequently, surrogate models have been widely
adopted in various design and analysis activities [14].

Some of the popular models are kriging and neural networks (NNs). Kriging
is an interpolating model that approximates function responses based on spatial
correlation between samples [2]. However, the computational cost scales cubically
with increasing number of samples [17]. Meanwhile, NNs can model complex
functions and also scales better with larger datasets [4]. Hence, this work focuses
on global modeling using NNs.

A global model approximates the underlying system across the entire design
space [10]. There are two primary approaches for creating a global model: one-
shot sampling and adaptive sampling [10]. In one-shot sampling, a design of
experiment (DOE) is created using a sampling technique such as Latin hypercube
sampling (LHS) [12]. The corresponding system output is then evaluated. Next,
a surrogate model is created using the dataset and if the model’s accuracy is
insufficient, then the entire dataset is discarded, and the process is repeated
with a larger DOE. This approach is inefficient for global modeling as it discards
all the generated samples [1].

In adaptive sampling, a surrogate model is iteratively refined by adding new
sample points [3]. Specifically, an initial DOE is created and the system is evalu-
ated to obtain the corresponding observations. Next, a surrogate model is built
using the dataset and if the model’s accuracy is insufficient, then new samples
are added to the DOE using an infill criterion. This iterative process continues
until a stopping criterion is met. In this approach, the infill criterion plays a key
role by balancing exploration and exploitation. Liu et al. [10] and Fuhg et al. [3]
provide a detailed review of global modeling algorithms.

Many approaches have been proposed for global NN modeling. For instance,
Gupta et al. [5] proposed an adaptive sampling strategy that uses information
matrix and maximin distance criterion to select infill points. However, the com-
putational cost for this method grows nonlinearly with increasing number of
samples. Eason and Cremaschi [1] introduced the mixed adaptive sampling al-
gorithm (MASA) that uses uncertainty in the NN prediction and the distance
between samples for identifying the next point. Here, k-fold cross-validation was
used to compute the uncertainty. However, recently more effective methods have
been proposed for estimating this uncertainty such as deep ensembles [9].

In this work, a novel algorithm is proposed for global NN modeling, called
separate adaptive sampling (SAS), that performs exploration and exploitation
separately. Instead of using a single infill criterion, SAS consists of two separate
criteria, one for exploration and the other for exploitation, and hence, adds two
points in each iteration. The exploitation point is obtained by maximizing the
uncertainty in the NN prediction. The exploration point is selected using a space-
filling sampling sequence. SAS is demonstrated on three problems consisting of
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3, 8, and 16 dimensions. For comparison, MASA is implemented, along with pure
exploration- and pure exploitation-based methods.

The remainder of this paper is organized as follows. Section 2 describes the
proposed adaptive global modeling technique along with the other three meth-
ods. Section 3 outlines the three test problems and discusses the results. Section
4 summarizes this work and provides some recommendations for future work.

2 Methods

This section first describes a general adaptive sampling framework used in this
work for creating global NN models. Then, the space-filling sampling method is
presented, which is used as a part of the infill criteria. Lastly, it describes four
different methods investigated in this work.

2.1 Global surrogate modeling using adaptive approach

A surrogate model is a simple, cheaper to evaluate approximation of a com-
putationally expensive function f : Rn → R. These models are used in design
and analysis tasks that require repeated evaluations of the underlying function.
Hence, a global model is often preferred, as it approximates a system over the
entire design space. One of the ways to efficiently create a global model is to use
an adaptive approach, where the model is gradually refined based on a criterion.
Figure 1 illustrates an adaptive global modeling framework used in this work.

The process starts with an initial sampling plan X created using a DOE
technique. The function f is then evaluated to obtain the output y. Next, the
iterative phase begins in which a surrogate model is created using the dataset
(X,y). Then, an error metric is calculated using a test dataset to measure the
model’s accuracy. If the stopping criterion is not met, then a new sample xnew

is selected using an infill criterion, and its output ynew is evaluated. The new
data point (xnew, ynew) is added to the training data and the surrogate model is

Fig. 1: The adaptive global modeling framework used in this work.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_25

https://dx.doi.org/10.1007/978-3-031-97557-8_25
https://dx.doi.org/10.1007/978-3-031-97557-8_25


4 Koratikere et al.

retrained. This process repeats until the stopping criterion is met. In this work,
the error metric is the normalized root mean squared error (NRMSE), which is
written as

NRMSE =
1

ymax − ymin

√√√√ 1

N

N∑
i=1

[
y(i) − ŷ(i)

]2
. (1)

The y and ŷ is the true and predicted value, respectively, while N is the number
of samples. The ymax and ymin represent the maximum and minimum y values
in the dataset, respectively. The maximum number of infill points is used as the
stopping criterion.

Neural network (NN) is a machine learning model inspired by the human
brain [4]. It consists of layers of interconnected nodes (neurons), where each node
processes the input data using an activation function and passes the output to
the next layer. The sigmoid linear unit is used as the activation function in this
work. The number of layers and nodes isset aat thethe start aisis not changed
during the iterations. Since the number of infill points is much larger than the
initial DOE, NN is designed to overfit initially, ensuring enough flexibility at
the start. As the training data increases, the model improves and the overfitting
decreases.

The NN model is parameterized using weights and biases, which determine
the strength of connections between nodes. These parameters are obtained by
minimizing the mean squared error between the predicted and true values. In
this work, the ADAM optimizer [7] is used for NN training with a learning
rate of 10−2. The optimization process is terminated when the NRMSE of the
NN model for the training data is less than 10−4. This ensures that the NN
interpolates through the data without significant overfitting. Since only a few
points are added in each iteration, the NN is not retrained from scratch. Instead,
training resumes from the last iteration but with the updated dataset. PyTorch
is used to build and train the NN model.

Another important aspect of the framework is the search infill criterion, which
selects the next sample point by balancing exploration and exploitation. In this
work, four different infill criteria are explored for global surrogate modeling. All
of these criteria are described in the subsequent sections.

2.2 Space-filling sequential sampling

In this work, the fully sequential space-filling (FSSF) [16] sampling technique
is used within different methods, so it is introduced first. FSSF is a recently
proposed two-phase sampling method. In the first phase, a large set of points
(known as the candidate set) is generated using a space-filling technique, such
as the Sobol’ sequence. In the second phase, the desired sampling plan is created
by sequentially selecting points from the candidate set using a distance criterion.

The pseudo-code for FSSF is outlined in Algorithm 1 as a class with three
functions. The initialization function handles the first phase by defining variables
and generating the candidate set C. It takes Nmax (total required points) and n
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Algorithm 1 Fully sequential space-filling sampling class [16]

1: procedure Initialization(Nmax, n)
2: M ← 1000n+ 2Nmax

3: Generate candidate set C of size M using Sobol’ sequence
4: Initialize D of size M
5: for i = 1, . . . ,M do
6: Di ← distance of xi from the closest design space boundary
7: end for
8: end procedure
9: procedure UpdateSampling(xnew)
10: for j = 1, . . . ,M do
11: Dj ← min(Dj , d(xj ,xnew)) ▷ update distance criterion based on xnew

12: end for
13: end procedure
14: procedure GenerateSamples(N)
15: for i = 1, . . . , N do
16: xi ← find the point having maximum value in D
17: UpdateSampling(xi)
18: end for
19: return {x1, . . . ,xN}
20: end procedure

(problem dimension) as inputs. The size of candidate set (M) is computed, and
then Sobol’ sequence is used to generate M points. Then, the distance criterion
is computed for each point in the set.

The other two functions handle the second phase of FSSF. The update sam-
pling function takes a newly added sample point xnew as input and adjusts the
distance criterion for each point in C. This ensures that points near xnew will
have a lower criterion value and are less likely to be selected in later iterations.
This function is called whenever a point is added to the DOE.

The generate samples function takesN , the number of points to be generated,
as input and uses an iterative process to generate them. The first step in the
loop is to identify the next point xi in the sequence , and then call the update
sampling function with xi as input. This function is used to create the initial
DOE and then iteratively add new points without disrupting the space-filling
properties.

2.3 Exploration-based global neural network modeling

The exploration-based global NN modeling uses an infill criterion that performs
pure exploration. The objective of this infill criterion is to add points in the unex-
plored regions. This can be achieved by using space-filling sampling techniques.
In this work, the FSSF method [16] is used which is shown to have better space-
filling properties than Sobol’ sequences, Sec. 2.2 describes the FSSF method in
detail.
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Algorithm 2 Exploration-based global NN modeling (adapted from [2])

1: set the value of n,Ninit, Q
2: initialization(Ninit +Q,n) ▷ initialize FSSF, c.f. Algorithm 1
3: X← generateSamples(Ninit) ▷ initial DOE generated using FSSF
4: y = f(X) ▷ compute output for X
5: q = 0 ▷ initialize number of infills
6: while q ≤ Q do ▷ Q is total infill budget
7: ŷ(x)← fit a NN model to (X,y) dataset
8: Compute the NRMSE of the ŷ model using testing data
9: xnew ← generateSamples(1) ▷ next sample in the sequence S
10: X,y← X ∪ xnew,y ∪ f(xnew) ▷ append dataset
11: q = q + 1 ▷ update number of infills
12: end while
13: return ŷ model

Algorithm 2 presents a pseudo-code for the exploration-based global NN
modeling. The problem dimension n, the initial DOE size Ninit, and the max-
imum number of infill points Q are defined at start. The initialization function
from Algorithm 1 is then executed with Ninit + Q and n as inputs. The initial
DOE X is constructed using the FSSF method by running the generate samples
function from Algorithm 1. The underlying system is then evaluated to obtain
y. The variable q is also initialized to zero, which denotes the number of infill
points added to the dataset.

Next, the iterative phase begins, in which the first step is to create a ŷ NN
model using the dataset (X,y). Then, the NRMSE of the ŷ model is computed
using the test dataset. The next infill point xnew is obtained by running the
generate samples function with N = 1 as input. This new sample and its corre-
sponding output are added to the dataset, and q is incremented by 1. This loop
continues until the stopping criterion of maximum number of infill points is met.

2.4 Exploitation-based global neural network modeling

The exploitation-based global NN modeling aims to add infill points where the
surrogate model’s behavior is uncertain. Algorithm 3 provides a pseudo-code for
this method, which is similar to Algorithm 2, but with a few differences. Firstly,
the initial DOE can be generated using any sampling technique, but the FSSF
method is used here to ensure consistency across all the methods. Secondly, the
infill criterion is based on finding the point with the highest uncertainty in the
NN prediction.

In this work, the deep ensembles (DE) [9] method is used to estimate the
uncertainty due to its simplicity and ease of implementation. The DE approach
consists of training an ensemble of NN models on the same dataset. The starting
point for the NN training is randomly determined, which results in different pre-
dictions for a given input. The final prediction ŷ(x) and the uncertainty ŝ(x) is
the mean and standard deviation of all predictions, respectively. The DE method
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Algorithm 3 Exploitation-based global NN modeling (adapted from [2])

1: set the value of n,Ninit, Q
2: initialization(Ninit +Q,n) ▷ initialize FSSF, c.f. Algorithm 1
3: X← generateSamples(Ninit) ▷ initial DOE generated using FSSF
4: y = f(X) ▷ compute output for X
5: q = 0 ▷ initialize number of infills
6: while q ≤ Q do ▷ Q is total infill budget
7: ŷ(x), ŝ(x)← fit NN models to (X,y) dataset using DE method
8: Compute the NRMSE of the ŷ model using testing data
9: xnew ← argmax ŝ(x)
10: X,y← X ∪ xnew,y ∪ f(xnew) ▷ append dataset
11: q = q + 1 ▷ update number of infills
12: end while
13: return ŷ model

is proposed for quantifying both aleatoric and epistemic uncertainty. However,
it is assumed that the function to be modeled is deterministic, and hence, there
is no aleatoric uncertainty. This assumption simplifies the DE method to a stan-
dard ensembles approach. The ensemble consists of five NN models, refer [9] for
more details. In this work, differential evolution [18] is used to maximize the
uncertainty. The remaining steps are similar to those in Algorithm 2.

2.5 Mixed adaptive sampling algorithm

The mixed adaptive sampling algorithm (MASA) [1] uses an infill criterion that
performs exploration and exploitation using a single criterion. The pseudo-code
for MASA is similar to Algorithm 3, with the only difference being the infill
criterion. Mathematically, the infill point is obtained as

xnew = argmax
x

ŝ(x)/smax + d(x,X)/dmax. (2)

The exploitation part, ŝ(x)/smax, accounts for the uncertainty in the NN pre-
diction, while the exploration part, d(x,X)/dmax, ensures new point is added in
the unexplored regions. The ŝ(x) denotes the uncertainty in the NN prediction
which is computed using the DE approach discussed in section 2.4. The d(x,X)
denotes the euclidean distance of x to the closest point in the dataset X. The
smax and dmax are used to normalize the ŝ(x) and d(x,X), respectively. In this
work, smax is obtained by maximizing the ŝ(x), and dmax corresponds to the
euclidean distance between the farthest points in the dataset X. In this work,
differential evolution [18] is used to numerically solve (2).

2.6 Separate adaptive sampling algorithm

The proposed separate adaptive sampling (SAS) algorithm performs exploitation
and exploration using two different criteria, unlike MASA which uses a single
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Algorithm 4 Separate adaptive sampling algorithm (this work)

1: set the value of n,Ninit, Q
2: initialization(Ninit +Q,n) ▷ initialize FSSF, c.f. Algorithm 1
3: X← generateSamples(Ninit) ▷ initial DOE generated using FSSF
4: y = f(X) ▷ compute output for X
5: while q ≤ Q do ▷ Q is total infill budget
6: ŷ(x), ŝ(x)← fit NN models to (X,y) dataset using DE method
7: Compute the NRMSE of the ŷ model using testing data
8: xexploit ← argmax σ̂(x) ▷ exploitation
9: X,y← X ∪ xexploit,y ∪ f(xexploit)
10: updateSampling(xexploit) ▷ update FSSF about exploitation point
11: xexplore ← generateSamples(1) ▷ exploration
12: X,y← X ∪ xexplore,y ∪ f(xexplore)
13: q = q + 2 ▷ update number of infills
14: end while
15: return ŷ model

criterion. Algorithm 4 provides a pseudo-code for SAS which is similar to the
previous algorithms. The xexploit is obtained by maximizing the uncertainty in
the NN prediction, similar to the exploitation-based method in Sec. 2.4. Before
generating the exploration point, the update sampling function from Algorithm 1
is run with xexploit as the input. This ensures that exploration point is not added
around the exploitation points. Then, the xexplore is generated by running the
generate samples function withN = 1 as the input. The variable q is incremented
by 2 to account for both infill points. All other steps are similar to the previously
discussed algorithms.

3 Numerical Experiments

This section presents three test cases used to demonstrate and compare the
results of the global NN modeling algorithms described in Sec. 2. Each method
is run 10 times to account for the randomness in NN training. The initial DOE is
same across all methods to ensure a consistent starting point. The convergence
history for all 10 runs is shown as a convergence band. The center-line represents
the median, while the upper and lower limits represent 10th and 90th percentile,
respectively. For all the problems, testing dataset consists of 50 LHS [12] points.

3.1 Ishigami function

This section presents the Ishigami function and discusses the results of applying
different global modeling methods. The Ishigami function [6] is written as:

f(x) = sin(x1) + a sin2(x2) + bx4
3 sin(x1), (3)

where a = 7, b = 0.1, and xi ∈ [−π, π], ∀ i = 1, 2, 3. The initial DOE consists
of 25 samples generated using the FSSF method, and the maximum number of
infill points is set to 100. The NN model has three layers, each with 20 neurons.
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Fig. 2: Convergence history of the NRMSE for the Ishigami function.
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Fig. 3: Final NRMSE of the NN model for the Ishigami function.
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Fig. 4: Training time of the NN model for the Ishigami function.
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Figure 2 shows the convergence history of the NRMSE as the number of sam-
ples increase. The exploration-based method and SAS have slightly better con-
vergence rate, while MASA has the slowest convergence. However, all the meth-
ods perform comparably. Figure 3 compares the final NRMSE of the NN model
obtained by each method. The exploration-based method has the best median
NRMSE value but exhibits a large variation. On the other hand, SAS achieves a
comparable median NRMSE value with least variation. The exploitation-based
method and MASA do not perform as well for this problem. This indicates that
pure exploration might be enough for this problem. Figure 4 shows the NN
model training time as the number of samples increases. The exploration-based
method has the shortest training time since it uses only one NN model, while
the other methods use five. All methods scale much better than kriging, which
scales cubically with the number of samples [17]. This makes global surrogate
modeling with NN attractive for large datasets.

3.2 Borehole function

The borehole function [13] models the flow of water through a borehole and is
written as:

f(x) =
2πTu(Hu −Hl)

ln (r/rw) ·
(
1 + 2LTu

ln (r/rw)r2wKw
+ Tu

Tl

) , (4)

where x =
[
rw r Tu Hu Tl Hl L Kw

]T
. The upper and lower bound

for the variables are provided in Table 1. The function f represents the water
flow rate in m3/yr. The initial DOE consists of 25 samples and the maximum
number of infill points is set to 100. The NN model consists of two layers, each
having 20 neurons.

Figure 5 shows the evolution of NRMSE as the number of samples are in-
creased. For this test case, SAS outperforms all the other methods, especially
after 100 function evaluations. The exploitation-based method and MASA per-
form comparably to SAS up to 100 evaluations, but their convergence rate slows

Table 1: Bounds for the variables of the borehole function

Variable Lower bound Upper bound

rw (m) 0.05 0.15
r (m) 100 50000
Tu (m2/yr) 63070 115600
Hu (m) 990 1110
Tl (m

2/yr) 63.1 116
Hl (m) 700 820
L (m) 1120 1680
Kw (m/yr) 9855 12045
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Fig. 7: Training time of the NN model for the borehole function.
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down beyond that point. The exploration-based method has the slowest rate of
convergence among all methods. This suggests that performing pure exploration
is not enough for this test case.

Figure 6 compares the final NRMSE values obtained by each method. SAS
achieves the best final NRMSE as compared to other methods, with the least
variation. The exploration-based method has the highest NRMSE value and the
most variation. Both exploitation-based method and MASA yield comparable
final NRMSE value. This suggests that the distance-based exploration term used
in MASA does not improve the performance for this problem. Figure 7 shows how
NN training time changes as the number of samples increase. The exploration-
based method has the shortest training time since it uses only one NN model,
while the other methods use five NN models. Since two infill points are added
in each iteration, the training time for SAS is slightly longer.

3.3 Airfoil drag coefficient modeling

The airfoil modeling problem involves predicting the drag coefficient (Cd) of a
given airfoil in viscous transonic flow conditions. The variables in the problem
include the shape of the airfoil, the angle of attack (α), and the free-stream
mach number (M∞). The airfoil shape is parameterized using the class-shape
transformation (CST) [8] technique. In this work, 14 CST coefficients are used
to represent the airfoil shape, 7 for the upper surface and 7 for the lower surface.
In total, the problem consists of 16 variables.

The upper and lower bounds for the CST coefficients are determined by
perturbing the CST coefficients for the RAE 2822 airfoil by ±30%. The α ∈
[1.5, 4.5] and M∞ ∈ [0.6, 0.8], while the Reynolds number (Re∞) is fixed at 6
million. Figure 8 illustrates these variables and their respective bounds. The flow
around the airfoil is computed using ADflow [11], an open-source finite volume
solver. The computational grid uses an o-mesh generated using pyHyp [15]. The
initial DOE consists of 50 samples generated using the FSSF method and the
maximum number of infill points is set to 100. The NN model consists of two
hidden layers with 20 neurons in each layer.

Fig. 8: Schematic describing the design space of the airfoil modeling problem.
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Fig. 11: Training time of the NN model for the airfoil modeling problem.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_25

https://dx.doi.org/10.1007/978-3-031-97557-8_25
https://dx.doi.org/10.1007/978-3-031-97557-8_25


14 Koratikere et al.

Figure 9 shows the evolution of NRMSE as the number of samples increase.
The exploitation-based method, MASA, and SAS perform comparably, with sim-
ilar convergence rates. However, the exploration-based method fails to reduce the
NRMSE after 100 function evaluations. Since the Cd is highly nonlinear in the
transonic regime, the pure exploration-based strategy does not perform well.

Figure 10 shows the final NRMSE of the NN model. The SAS, MASA, and
exploitation-based method have comparable median final NRMSE value, with
SAS exhibiting the least variation. While some final NRMSE values from MASA
and the exploitation-based method are better than SAS, both methods show
larger variation. The exploration-based method has the highest final NRMSE
and the largest variation for the reasons described earlier.

Figure 11 shows the NN model training time as the number of samples in-
crease. As in previous test problems, the exploration-based method has the short-
est training time. Additionally, the training time for all the methods remains
nearly constant, even with 16 variables in the problem. This demonstrates the
effectiveness of the NN for the global NN modeling.

4 Conclusion

This work proposes a novel infill criterion for global neural network (NN) mod-
eling. The proposed method, called separate adaptive sampling (SAS), performs
exploration and exploitation using different criterion, and hence, adds two infill
points in each iteration. The first point is obtained by maximizing the uncer-
tainty in the NN prediction, while the second point is obtained from a space-
filling sequential sampling method. Uncertainty in the NN prediction is estimated
using the deep ensembles approach. The study also explores the mixed adaptive
sampling algorithm, which balances exploration and exploitation with a single
criterion, as well as pure exploitation- and pure exploration-based methods.

The algorithms described in this work are demonstrated on three test cases
with varying levels of difficulty. SAS performed the best for the first two test cases
and performed comparably for the third problem. The pure exploration-based
method did not yield good results for highly nonlinear test cases. However, for all
problems, NN training time scales well as the dataset size increased, highlighting
its advantage over the kriging model.

Future work will focus on testing the proposed method on high-dimensional
global modeling problems requiring many infill points. The uncertainty in the
NN prediction can be estimated using other methods to improve the exploitation.
Moreover, a non-uncertainty based criterion can be explored for exploitation, as
SAS decouples exploration and exploitation.
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