
Physics Informed Neural Networks for
Non-Stationary Material Science Problems

Pawe l Maczuga[0000−0002−5111−6981] , Tomasz S lużalec[0000−0001−6217−4274],
 Lukasz Sztangret[0000−0003−4872−406X], Danuta Szeliga[0000−0002−2915−8317],
Marcin Loś[0000−0002−8426−6345] and Maciej Paszyński[0000−0001−7766−6052]

AGH University of Krakow, Poland
{pmaczuga,sluzalec,szt,szeliga,los,paszynsk}@agh.edu.pl

Abstract. Linear elasticity and Navier-Stokes equations are fundamen-
tal tools in material science, enabling the modeling of solid deformations
and fluid flows under various conditions. These equations are widely used
to simulate stresses, strains, and fluid interactions in processes like 3D
printing, welding, casting, and extrusion. Physics-Informed Neural Net-
works (PINNs), introduced in 2019, have gained significant attention for
solving complex physical problems, including fluid mechanics, wave prop-
agation, and inverse problems. Despite their growing popularity, PINNs
face challenges in training efficiency and accuracy. This paper investi-
gates the applicability of modern PINN methodologies to material science
problems involving Navier-Stokes and linear elasticity equations. For lin-
ear elasticity, a randomized selection of collocation points is employed to
enhance training. For Navier-Stokes equations, hard constraints on ini-
tial and boundary conditions are implemented to avoid multi-objective
optimization. These approaches aim to address training difficulties and
improve PINN performance in simulating material science phenomena.

Keywords: Physics Informed Neural Networks, Transient linear elas-
ticity, Navier-Stokes, Random selection of collocation points, Hard con-
straints

1 Introduction

Linear elasticity [21] and Navier-Stokes equations [35] are foundational in simu-
lating various physical phenomena in material science. They are used to model
the behavior of fluids and solids, respectively, and help researchers and engi-
neers understand and design materials under different conditions. Linear elas-
ticity equations describe the deformation of solid materials under applied loads.
These equations are widely used in material science to model mechanical behav-
ior. They are used to predict the distribution of stresses and strains within a
solid material under mechanical load, to understand material strength, durabil-
ity, and failure mechanisms. They are employed to simulate residual stresses and
distortions that arise during manufacturing processes like welding or 3D print-
ing. The Navier-Stokes equations describe the motion of fluids and are essential

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

2 Pawe l Maczuga et.al.

for studying fluid flow behavior. In material science, they are used to model how
fluids flow through porous materials such as rocks, membranes, or composite
materials. They can be combined with elasticity equations to simulate how a
fluid interacts with a deformable solid boundary. They can also be employed to
simulate fluid behavior in material science processes like casting, extrusion, and
additive manufacturing, to optimize manufacturing processes, improve material
properties, and reduce defects.

The family of Physics Informed Neural Network (PINN) solvers have been
introduced by prof. George Karniadakis in 2019 [30]. The method gained expo-
nential growth in the number of papers and citations, with several new papers
and some modifications of the method introduced every year [39,13,29]. The
method, however, has some difficulties of the training process, some of them
discussed in [37,32]. PINNs have been successfully applied to solve a wide range
of problems, from fluid mechanics [3,20], in particular Navier-Stokes equations
[16,34,36], wave propagation [31,19,7], phase-filled modeling [9], biomechanics
[2,15], quantum mechanics [12], electrical engineering [23], problems with point
singularities [11], uncertainty qualification [38], dynamic systems [33,1], or in-
verse problems [4,22,18], among many others.

In this paper, we focus on the investigation of the applicability of the modern
PINN methodology for modeling the Navier-Stokes and linear elasticity material
science problems. In the linear elasticity method, we employ the randomized
selection of the PINN colocation points to improve the training procedure. In
the Navier-Stokes formulation, we employ the initial and boundary conditions
using the hard constraints, avoiding a multi-objective optimization problem.

Our library is a simple alternative for other available PINN libraries, includ-
ing the DeepXDE [17] and IDRLnet [28]. The first one is a very large library
including ODEs and PDEs on complex geometries, with different initial and
boundary conditions, enabling solving and forward and inverse problems. The
DeepXDE supports TensorFlow, PyTorch, JAX, and PaddlePaddle. The second
one allows for solving the wave equation, Allan-Cahn equations, Volterra inte-
grodifferential equations, and variational minimization problems. The IDRLnet
library uses pytorch, numpy, and Matplotlib.

2 Linear elasticity

We start from the following time-dependent linear elasticity equations:
ρ∂2uuu

∂t2 = ∇ · σσσ + F on Ω × [0, T]

uuu(x, 0) = u0 for x ∈ Ω

σσσ · n̂̂n̂n = 0 on ∂ Ω

(1)

where uuu is a displacement vector, σij = cijklϵlk =
∑

kl cijkl
1
2 (∂jui + ∂iuj) is

the stres tensor, ϵlk = 1
2

(
∂uk

∂xl
+ ∂ul

∂xk

)
is the strain tensor, ccc is a matrix describing

the material properties. We assume that the computational domain is the cuboid
Ω = [0, 1] × [0, 1] × [0, 5], namely x ∈ [0, 1], y ∈ [0, 1] and t ∈ [0, 5].

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

PINN for non-stationary material science problemss 3

For our simulation, we employ the 2D version of the problem: We seek the dis-
placement vector field Ω×[0, T] ∋ (x, y; t) → u(x, y; t) = (u1(x, y; t), u2(x, y; t)) ∈
R2, where for i, j ∈ {0, 1} we have

[
σ11 σ12

σ21 σ22

]
=

λ(
∂ux

∂x +
∂uy

∂y

)
0

0 λ
(

∂ux

∂x +
∂uy

∂y

)+

2µ

 ∂ux

∂x
1
2

(
∂ux

∂y +
∂uy

∂x

)
1
2

(
∂ux

∂y +
∂uy

∂x

)
∂uy

∂y

 (2)

and the two-dimensional linear elasticity equations read{
ρ∂2ux

∂t2 = ∂σ11

∂x + ∂σ12

∂y + f1

ρ
∂2uy

∂t2 = ∂σ21

∂x + ∂σ22

∂y + f2
(3)

where we have assumed the forcing acting on the right-top corner

f1(x, y, t) = − t2(1 − t)2r(x1, x2), f2(x, y, t) = −t2(1 − t)2r(x1, x2),

r(x, y) = 10 exp
(
−10

[
(x1 − 1)2 + (x2 − 1)2

])
.

(4)

We introduce the following boundary conditions{
uuu(x1, x2, 0) = u0 = 0

σσσ · n̂̂n̂n = 0
(5)

The Lame coefficients in our model problem are defined as λ = µ = 1.

3 Physics Informed Neural Networks for linear elasticity

For the solution of the linear elasticity problem by using the Physics Informed
Neural Networks, we assume 4 layers of the neural network with 200 neurons
in each layer. The input to the neural network is (x, y, t), and the output from

the neural network is a vector (ux, uy,
∂ux

∂x , ∂ux

∂y , ∂ux

∂t ,
∂uy

∂x ,
∂uy

∂y ,
∂uy

∂t ,). The initial
configuration is set as a hard constraint, that is, it is enforced in the network
architecture. The initial condition is simple: uuu(x1, x2, 0) = u0 = 0 So we have:{

ux = uxoriginal
· t

uy = uyoriginal
· t

(6)

We can see that for t = 0, u will always be 0, and for t > 0, u will also be
> 0, so it can be normally influenced by the neural network parameters. The
loss function is divided into two parts, LOSSPDE and LOSSboundary. LOSSPDE

consists of 8 parts. The most important are the first two, the residuals of the
system of equations (3) squared. The remaining 6 are derivatives of ux and uy

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

4 Pawe l Maczuga et.al.

with respect to all inputs minus the corresponding output of the network. It is
possible to compute the second derivative in the residual directly, in which case
the network would only have 2 outputs. However, we found that having extra
outputs with first derivatives greatly improves PINN’s convergence.

For training, we used the Adam optimizer [14] with the learning rate of 0.005.
We run the training on 40 × 40 points grid with equally distributed collocation
points for 60 time steps and 20 000 epochs. In order to train the neural network,
we need to create a loss function such that minimizing it will push PINN towards
the solution of the equation (3). The loss is divided into two parts: PDE residual
loss of equation (3), and the boundary loss for the boundary conditions. Initial
conditions are set using the hard constraints as mentioned earlier. The PDE
residual loss is further divided into eight parts, where the first two are the most
important and the rest is introduced as a way to improve the convergence.

LOSSPDE =

8∑
i=1

LOSSPDEi
(7)

LOSSPDE1
=

(
µ
∂ PINN5

∂t
− ∂σ11

∂x1
− ∂σ12

∂x2
+ f1

)2

,

LOSSPDE2
=

(
µ
∂ PINN8

∂t
− ∂σ11

∂x1
− ∂σ12

∂x2
+ f2

)2

,

LOSSPDE3
=

(
∂ PINN1

∂x
− PINN3

)2

, LOSSPDE4
=

(
∂ PINN1

∂y
− PINN4

)2

,

LOSSPDE5
=

(
∂ PINN1

∂t
− PINN5

)2

, LOSSPDE6
=

(
∂ PINN2

∂x
− PINN6

)2

,

LOSSPDE7
=

(
∂ PINN2

∂y
− PINN7

)2

, LOSSPDE8
=

(
∂ PINN2

∂t
− PINN8

)2

.

(8)

where[
σ11 σ12

σ21 σ22

]
=[

λ · (PINN3 + PINN7) + 2µ · PINN3 µ · (PINN4 + PINN6)
µ · (PINN4 + PINN6) λ · (PINN3 + PINN7) + 2µ · PINN7

] (9)

and f is the forcing term defined by defined by (4). Note that PINN3 - PINN8

are trained to be just derivatives of PINN1 and PINN2 with respect to all inputs.
However, splitting it in this way proved to greatly improve the convergence. The
loss responsible for enforcing boundary conditions is defined as follows:

LOSSboundary = LOSSboundarydown
+ LOSSboundaryup

+ LOSSboundaryleft
+ LOSSboundaryright

(10)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

PINN for non-stationary material science problemss 5

LOSSboundarydown
= −σ12 − σ22, LOSSboundaryup

= σ12 + σ22,

LOSSboundaryleft
= −σ11 − σ21, LOSSboundaryright

= σ11 + σ21.
(11)

4 Numerical results for linear elasticity

We have run the linear elasticity simulation for a time interval [0, 5] over a
cube-shaped domain [0, 1]2. Notice that in the Physics Informed Neural Network
simulations there are no time steps; the computational problem is solved over
the space-time cuboid. In the initial configuration, the square-shaped body has
fixed zero displacement. We hit the elastic body at the right top corner with the
force defined by (4). The convergence of the training is presented in Figure 1. For
the linear elasticity computations, we minimize two loss functions. The first loss
function is the residual of the PDE (called the Loss PDE on the second panel
in Figure 1). The second loss function is related with the minimization of the
boundary condition (5) (called the Loss boundary on the third panel in Figure
1). We do not know how to enforce this kind of tensorial boundary condition as
the hard constraint of the neural network. Thus, we minimize the sum of the
two losses, as it is presented in the first panel in Figure 1.

The snapshots from the simulation are presented in Figure 2. We have multi-
plied the displacements by a factor of 10 for a better visualization of the results.
However, with the central point fixed in the body, it is possible that small dis-
placements around the central point will be visualized as moving to the other
side of the central point. This, however, does not happen in reality; it is just a
drawback of our visualization method.

Fig. 1: The convergence of the training of the total loss function for the transient
linear-elasticity problem. The total loss, the residual loss, and the boundary
condition loss.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

6 Pawe l Maczuga et.al.

Fig. 2: Snapshots from the linear elasticity simulations. The body has fixed zero
displacements in the central point.

5 Navier-Stokes equations

Let us focus on the non-stationary cavity flow problem described with the Navier-
Stokes equation for the incompressible fluid; see Figure 3. The Dirichlet boundary
condition drives the cavity flow for the velocity ux = 1, uy = 0 on the top
boundary. On the remaining parts of the boundary, the velocity is equal to 0,
and the ϵ thick transition zone in the left and right top corners ensures the
possibility of a weak formulation. This problem exhibits pressure singularities at
the two corners.

Fig. 3: Non-stationary cavity flow problem. Boundary conditions and pressure
singularities.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

PINN for non-stationary material science problemss 7

Let Ω = (0, 1)2 be the open boundary and I = [0, T] ⊂ R be the time
interval. The problem reads: Find velocity u and pressure field p such that:

∂tu + (u · ∇)u−∆u + ∇p = 0 in Ω × I,

∇ · u = 0 in Ω × I,

u = h in Γ × I,

u(0) = 0 in Ω,

(12)

where

h(x, y) =



0 x ∈ (0, 1), y = 0

0 x ∈ {0, 1}, y ∈ (0, 1 − ϵ)

1 x ∈ (0, 1), y = 1(
1 − (1 − y)

ϵ

)
x ∈ {0, 1}, y ∈ (1 − ϵ, 1)

(13)

By incorporating a shift

uD =



(

1 − (1 − y)

ϵ

)2

x ∈ (0, 1), y ∈ (1 − ϵ, 1)

0 x ∈ (0, 1), y ∈ (0, 1 − ϵ)

, 0

 (14)

this problem transforms into
∂tu + (u · ∇)u−∆u + ∇p = f in Ω × I,

∇ · u = 0 in Ω × I,

u = 0 in Γ × I,

u(0) = 0 in Ω,

(15)

where f =

(
0, 2

ϵ

(
1 − (1−y)

ϵ

)3
)

. Here u = (u1, u2) represents the velocity vector

field, and p represents the scalar pressure field. The Γ denotes the boundary
of the spatial domain Ω, and f is a given source resulting from the shift of the
Dirichlet boundary conditions.

System (15) can be rewritten as

w1(x1, x2, t) =
∂u1(x1, x2, t)

∂x1
, w2(x1, x2, t) =

∂u1(x1, x2, t)

∂x2
,

z1(x1, x2, t) =
∂u2(x1, x2, t)

∂x1
, z2(x1, x2, t) =

∂u2(x1, x2, t)

∂x2
,

−∂w1(x1, x2, t)

∂t
− ∂w1(x1, x2, t)

∂x1
− ∂w2(x1, x2, t)

∂x2
+

∂p(x1, x2, t)

∂x1
= f1(x1, x2, t),

−∂z1(x1, x2, t)

∂t
− ∂z1(x1, x2, t)

∂x1
− ∂z2(x1, x2, t)

∂x2
+

∂p(x1, x2, t)

∂x2
= f2(x1, x2, t),

∂u1(x1, x2, t)

∂x1
+

∂u2(x1, x2, t)

∂x2
= 0.

(16)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

8 Pawe l Maczuga et.al.

We define the following residual functions

RES6a(uθ) =
∂u1

∂x2
− w2, RES6b(uθ) =

∂u2

∂x1
− z1, RES6c(uθ) =

∂u2

∂x2
− z2,

RES6d(uθ) =
∂w1

∂t
− ∂w1

∂x1
− ∂w2

∂x2
+

∂p

∂x1
− f1,

RES6e(uθ) =
∂z1
∂t

− ∂z1
∂x1

− ∂z2
∂x2

+
∂p

∂x2
− f2,

RES6f (u‘θ) =
∂u1(x1, x2)

∂x1
+

∂u2(x1, x2)

∂x2
, RES6g(uθ) =

∂u1

∂x1
− w1.

(17)
and the following total loss

RES(uθ) = RES6a(uθ) + RES6b(uθ) + RES6c(uθ) + RES6d(uθ) +

RES6e(uθ) + RES6f (uθ) + RES6g(uθ). (18)

The Dirichlet boundary condition is obtained by multiplication of the output
from the neural network by a summation of the four functions presented in Figure
4 multiplied by the g function (definition of the Dirichlet b.c.). For the pressure
approximation, we multiply the output from the neural network by the single
value of the solution at the central point, see Figure 4.

Fig. 4: The functions employed to enforce zero Dirichlet b.c., to enforce the
boundary condition at the top of the domain, and the enforce zero pressure
condition at the center of the domain.

6 Numerical results for transient Navier-Stokes

We have run the Navier-Stokes problem for the interval [0, 1] over the cube-
shaped cavity of dimensions [0, 1]2. In the initial configuration, the velocity and
the pressure inside the cavity are zero. The flow is driven by the boundary
condition at the top edge of the computational domain, where the ”river” flows
from the left to the right. The convergence of the training is presented in Figure

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

PINN for non-stationary material science problemss 9

Fig. 5: The convergence of the training of the total loss function for the transient
Navier-Stokes problem.

5. The boundary conditions are enforced by the hard constraint on the neural
network, so there is no other loss function to minimize there.

The snapshots from the simulation are presented in Figure 6.

We compare our PINN code with IGA-FEM code [41]. For the IGA-FEM we
remove the non-linear term u · ∇u since it requires special linearization treat-
ment. For the finite element method formulation, following [10], we consider the
singular perturbation of non-stationary Navier-Stokes problem



∂tvϵ −∆vϵ + ∇pϵ = f in Ω × I,

ϵAϕϵ + ∇ · vϵ = 0 in Ω × I,

ϵ∂tpϵ = ϕϵ − χ∇·vϵ in Ω × I,

vϵ = 0 in Γ × I,

vϵ(0) = v0 in Ω,

pϵ(0) = p0 in Ω,

(19)

where A is an unbounded operator A : D(A) ⊂ L2
0(Ω) −→ L2

0(Ω) and ϕϵ ∈
D(A). Here, ϵ is the perturbation parameter and χ ∈ [0, 1] is a user-defined
parameter. We consider the alternating directions method presented in [10] with
the Peaceman-Rachford scheme applied to the velocity update. We employ the
residual minimization method with B-spline basis functions for discretization.
The resulting IGA-FEM (isogeometric finite element) method is summarized in
[40]. Figure 6 presents the visual comparison of results using 80 × 80 mesh for
the time moment t = 0.5. The execution time for the IGA-FEM code, depending
on the B-spline basis function used for discretization (see Table 1 in [40]), varies
from 300 seconds (5 minutes) to 2100 seconds (35 minutes), using 1024 time
steps. The training time for our PINN code is around 15 minutes on A100 card
from Google Colab.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

10 Pawe l Maczuga et.al.

Fig. 6: The velocity component in the x direction, the velocity component in the
y direction, and the pressure distribution p. Top panel: PINN solution extracted
from the neural network solution at the time moment t = 0.5. Bottom panel:
IGA-FEM solution.

7 Summary of the code

The code for both simulations: linear elasticity and Navier-Stokes are indepen-
dent Jupyter Notebooks run in a Google Colab environment:

https://colab.research.google.com/drive/

1CxCbbMfS1C2y-Q1w mWA6YR1706N6M-C

https://colab.research.google.com/drive/

1lzq7qhlnIi5 Mz7b0PE0Fq f958ANZlr

The code has the following structure. The code is tuned with neural net-
work parameters such as LAYERS = 4, NEURONS PER LAYER = 200, training pa-
rameters such as LEARNING RATE = 0.005, and EPOCHS = 20 000, as well as
X POINTS = 100 and Y POINTS = 100 defining the grid of training points. We
also define the plotting parameters X PLOT = 100 and Y PLOT = 100 the accu-
racy of the graphics. There are two parts of the code that require modification
when implementing new simulation. The first one is the residual loss function.
For example, the loss function for the Navier-Stokes equations, is defined as

de f p d e l o s s (s e l f , pinn : PINN) :
x , y , t = s e l f . environment . g e t i n t e r i o r p o i n t s ()
ux , uy , p , duxdx , duxdy , duydx , duydy = pinn (x , y , t)
duxdt = df (ux , t) ; d2uxdx = df (duxdx , x)
d2uxdy = df (duxdy , y) ; dpdx = df (p , x)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

PINN for non-stationary material science problemss 11

duydt = df (uy , t) ; d2uydx = df (duydx , x)
d2uydy = df (duydy , y) ; dpdy = df (p , y)

l o s s 1 = duxdt =d2uxdx = d2uxdy + dpdx
l o s s 2 = duydt =d2uydx = d2uydy + dpdy
l o s s 3 = duxdx + duydy
loss duxdx = duxdx = df (ux , x)
lo s s duxdy = duxdy = df (ux , y)
lo s s duydx = duydx = df (uy , x)
lo s s duydy = duydy = df (uy , y)

re turn l o s s 1 . pow (2) . mean () + \
l o s s 2 . pow (2) . mean () + \
l o s s 3 . pow (2) . mean () + \
l o s s duxdx . pow (2) . mean () + \
l o s s duxdy . pow (2) . mean () + \
l o s s duydx . pow (2) . mean () + \
l o s s duydy . pow (2) . mean ()

The second modification defines the boundary conditions. They are defined
by using the hard constraints. We force ux equal to zero on the entire boundary
except the top boundary where it is equal to 1, uy equal to zero on the entire
boundary, and pressure p equal to zero at the middle point. The hard constraints
in PINNs look as follows:

def f o r c e up s t r eam (x , y) :
return torch . exp (=1000*(y=1)**2)

def z e ro a t m idd l e (x , y) :
return =torch . exp (=1000*(y=0.5)**2) \

* torch . exp (=1000*(x=0.5)**2) + 1 .0

def u x c o n s t r a i n t (l o g i t s , x , y) :
return l o g i t s * z e r o d i r i c h l e t (x , y) \
+ force up s t r eam (x , y)

def u y c o n s t r a i n t (l o g i t s , x , y) :
return l o g i t s * z e r o d i r i c h l e t (x , y)

def p c o n s t r a i n t (l o g i t s , x , y) :
return l o g i t s * z e ro a t m idd l e (x , y)

Conclusions This paper explored the application of modern Physics-Informed
Neural Networks (PINNs) to material science problems governed by linear elas-
ticity and Navier-Stokes transient problems. For training of the linear elasticity
non-stationary problem, we introduced randomized collocation point selection.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

12 Pawe l Maczuga et.al.

For training of the Navier-Stokes time-dependent problem, we introduced the
hard constraints for the initial and boundary conditions. The results demon-
strated the potential of these methodologies to improve the performance and
applicability of PINNs in modeling complex material science processes.

Main advantages of the PINN method compared to the classic simulations
are the following. (1) Simplicity of the method. (2) Generic nature of neural
networks - the approach is very similar for different problems and in many cases
requires only a change in the loss function. There is no need to transform the
equation to weak formulation and worry about choosing the right test and basis
functions. (3) It can solve non-linear problems and inverse problems. (4) It can
easily integrate measured data into training in addition to physics knowledge.
(5) A single neural network can be trained for different sets of parameters.

However, there are certain disadvantages of PINNs. The solution is less ac-
curate than the classical methods (like FEM); in more challenging problems to
achieve proper convergence, certain ”tricks” are required (like hard-constraint
used in this paper). On top of that, there are issues related to all neural net-
works: choosing the right architecture and training parameters and difficulty in
predicting what solution might help in certain problems. Overall, the topic of
PINNs is definitely worth exploring, especially since the method is still relatively
young. Neural networks are, after all, widely used in many various applications
and perform extremely well. The main problem with PINNs, that is the accuracy
of the solution, is improving fast, and it can even outperform classical simulators
soon.

The future work following this paper may include: (1) Training generic PINN
for different equation parameters. For example, linear elasticity equation has
two so-called Lame coefficients (λ and µ), treated as constants in this work.
It is possible to have them as additional input to the network. (2) Coupled
multi-physics simulations including both elasticity and Navier-Stokes, or other
challenging applications in material science. (3) Extension of the method to other
classical problems solved by finite element method [5,6]. (4) Replacing PINNs
by the Variational PINNs and including adaptive algorithms [24,27,26,25,8] for
the test space.

References

1. DPM: A novel training method for physics-informed neural networks in extrapola-
tion. The Thirty-Fifth AAAI Conference on Artificial Intelligence 35. https://
doi.org/10.1609/aaai.v35i9.16992, https://ojs.aaai.org/index.php/AAAI/

article/view/16992
2. Alber, M., Tepole, A.B., Cannon, W.R., De, S., Dura-Bernal, S., Garikipati, K.,

Karniadakis, G., Lytton, W.W., Perdikaris, P., Petzold, L., Kuhl, E.: Integrating
machine learning and multiscale modeling-perspectives, challenges, and opportu-
nities in the biologica biomedical, and behavioral sciences. NPJ Digital Medicine
2 (2019). https://doi.org/10.1038/s41746-019-0193-y

3. Cai, S., Mao, Z., Wang, Z., Yin, M., Karniadakis, G.E.: Physics-informed neural
networks (PINNs) for fluid mechanics: A review. Acta Mechanica Sinica 37(12),
1727–1738 (2021)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://doi.org/10.1609/aaai.v35i9.16992
https://doi.org/10.1609/aaai.v35i9.16992
https://doi.org/10.1609/aaai.v35i9.16992
https://doi.org/10.1609/aaai.v35i9.16992
https://ojs.aaai.org/index.php/AAAI/article/view/16992
https://ojs.aaai.org/index.php/AAAI/article/view/16992
https://doi.org/10.1038/s41746-019-0193-y
https://doi.org/10.1038/s41746-019-0193-y
https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

PINN for non-stationary material science problemss 13

4. Chen, Y., Lu, L., Karniadakis, G.E., Dal Negro, L.: Physics-informed neural net-
works for inverse problems in nano-optics and metamaterials. Optics express 28(8),
11618–11633 (2020)

5. Demkowicz, L.: Computing with hp-adaptive finite elements, vol. 1. Wiley (2006)
6. Demkowicz, L., Kurtz, J., Pardo, D., Paszynski, M., Rachowicz, W., Zdunek, A.:

Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three
Dimensional Elliptic and Maxwell Problems with Applications (1st ed.). Chapman
and Hall/CRC (2007)

7. Geneva, N., Zabaras, N.: Modeling the dynamics of PDE systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics 403
(2020). https://doi.org/10.1016/j.jcp.2019.109056

8. Goik, D., Jopek, K., Paszyński, M., Lenharth, A., Nguyen, D., Pin-
gali, K.: Graph grammar based multi-thread multi-frontal direct solver
with galois scheduler. Procedia Computer Science 29, 960–969 (2014).
https://doi.org/https://doi.org/10.1016/j.procs.2014.05.086, https:

//www.sciencedirect.com/science/article/pii/S1877050914002634, 2014
International Conference on Computational Science

9. Goswami, S., Anitescu, C., Chakraborty, S., Rabczuk, T.: Transfer learning en-
hanced physics informed neural network for phase-field modeling of fracture. The-
oretical and applied fracture machanics 106 (2020). https://doi.org/10.1016/
j.tafmec.2019.102447

10. Guermond, J., Minev, P.: A new class of massively parallel direc-
tion splitting for the incompressible navier–stokes equations. Computer
Methods in Applied Mechanics and Engineering 200(23), 2083–2093
(2011). https://doi.org/https://doi.org/10.1016/j.cma.2011.02.007,
https://www.sciencedirect.com/science/article/pii/S0045782511000429

11. Huang, X., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Wang, M., Chu, H., Zhou,
J., Yu, F., Hua, B., Dong, B., Chen, L.: A universal PINNs method for solving
Partial Differential Equations with a point source. Proceedings of the Fourteen
International Joint Conference on Artificial Intelligence (IJCAI-22) pp. 3839–3846
(2022)

12. Jin, H., Mattheakis, M., Protopapas, P.: Physics-informed neural networks for
quantum eigenvalue problems. In: 2022 International Joint Conference on Neural
Networks (IJCNN). pp. 1–8 (2022). https://doi.org/10.1109/IJCNN55064.2022.
9891944

13. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-VPINNs: Variational
physics-informed neural networks with domain decomposition. Com-
puter Methods in Applied Mechanics and Engineering 374, 113547
(2021). https://doi.org/https://doi.org/10.1016/j.cma.2020.113547,
https://www.sciencedirect.com/science/article/pii/S0045782520307325

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014), https://api.semanticscholar.org/CorpusID:6628106

15. Kissas, G., Yang, Y., Hwuang, E., Witschey, W.R., Detre, J.A., Perdikaris, P.:
Machine learning in cardiovascular flows modeling: Predicting arterial blood pres-
sure from non-invasive 4d flow MRI data using physics-informed neural net-
works. Computer Methods in Applied Mechanics and Engineering 358 (2020).
https://doi.org/10.1016/j.cma.2019.112623

16. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance. Journal of Fuild Mechanics
807, 155–166 (2016). https://doi.org/10.1017/jfm.2016.615

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://doi.org/10.1016/j.jcp.2019.109056
https://doi.org/10.1016/j.jcp.2019.109056
https://doi.org/https://doi.org/10.1016/j.procs.2014.05.086
https://doi.org/https://doi.org/10.1016/j.procs.2014.05.086
https://www.sciencedirect.com/science/article/pii/S1877050914002634
https://www.sciencedirect.com/science/article/pii/S1877050914002634
https://doi.org/10.1016/j.tafmec.2019.102447
https://doi.org/10.1016/j.tafmec.2019.102447
https://doi.org/10.1016/j.tafmec.2019.102447
https://doi.org/10.1016/j.tafmec.2019.102447
https://doi.org/https://doi.org/10.1016/j.cma.2011.02.007
https://doi.org/https://doi.org/10.1016/j.cma.2011.02.007
https://www.sciencedirect.com/science/article/pii/S0045782511000429
https://doi.org/10.1109/IJCNN55064.2022.9891944
https://doi.org/10.1109/IJCNN55064.2022.9891944
https://doi.org/10.1109/IJCNN55064.2022.9891944
https://doi.org/10.1109/IJCNN55064.2022.9891944
https://doi.org/https://doi.org/10.1016/j.cma.2020.113547
https://doi.org/https://doi.org/10.1016/j.cma.2020.113547
https://www.sciencedirect.com/science/article/pii/S0045782520307325
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1017/jfm.2016.615
https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

14 Pawe l Maczuga et.al.

17. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library
for solving differential equations. SIAM Review 63(1), 208–228 (2021). https:

//doi.org/10.1137/19M1274067, https://doi.org/10.1137/19M1274067
18. Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., Johnson, S.G.: Physics-

informed neural networks with hard constraints for inverse design. SIAM Journal
on Scientific Computing 43(6), B1105–B1132 (2021). https://doi.org/10.1137/
21M1397908

19. Maczuga, P., Paszyński, M.: Influence of activation functions on the convergence
of physics-informed neural networks for 1d wave equation. In: Mikyška, J., de Mu-
latier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.
(eds.) Computational Science – ICCS 2023. pp. 74–88. Springer Nature Switzer-
land, Cham (2023)

20. Mao, Z., Jagtap, A.D., Karniadakis, G.E.: Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics and Engineering 360,
112789 (2020)

21. Marsden, J., Hughes, T.J.R.: Mathematical foundations of elasticity. Dover Publi-
cations, Inc. (1983)

22. Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed
neural networks for approximating a class of inverse problems for PDEs. IMA
Journal of Numerical Analysis 42(2), 981–1022 (2022)

23. Nellikkath, R., Chatzivasileiadis, S.: Physics-informed neural networks for min-
imising worst-case violations in dc optimal power flow. In: 2021 IEEE Interna-
tional Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm). pp. 419–424 (2021). https://doi.org/10.1109/
SmartGridComm51999.2021.9632308

24. Paszyńska, A., Paszyński, M., Grabska, E.: Graph transformations for modeling
hp-adaptive finite element method with triangular elements. In: Bubak, M., van
Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) Computational Science – ICCS
2008. pp. 604–613. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

25. Paszyńska, A., Paszyński, M., Jopek, K., Woźniak, M., Goik, D., Gurgul, P.,
AbouEisha, H., Moshkov, M., Calo, V., Lenharth, A., Nguyen, D., Pingali, K.:
Quasi-optimal elimination trees for 2d grids with singularities. Scientific Program-
ming (1), 303024 (2015)

26. Paszyński, M., Grzeszczuk, R., Pardo, D., Demkowicz, L.: Deep learning driven
self-adaptive hp finite element method. In: Paszynski, M., Kranzlmüller, D.,
Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Sci-
ence – ICCS 2021. pp. 114–121. Springer International Publishing, Cham (2021)

27. Paszyński, M., Paszyńska, A.: Graph transformations for modeling parallel hp-
adaptive finite element method. In: Wyrzykowski, R., Dongarra, J., Karczewski,
K., Wasniewski, J. (eds.) Parallel Processing and Applied Mathematics. pp. 1313–
1322. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

28. Peng, W., Zhang, J., Zhou, W., Zhao, X., Yao, W., Chen, X.: Idrlnet: A physics-
informed neural network library (2021), https://arxiv.org/abs/2107.04320

29. Qin, S., Li, M., Xu, T., Dong, S.: Rar-pinn algorithm for the data-driven
vector-soliton solutions and parameter discovery of coupled nonlinear equations.
ArXiv abs/2205.10230 (2022), https://api.semanticscholar.org/CorpusID:
248965018

30. Raissi, M., Perdikaris, P., Karniadakis, G.: Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Computational Physics 378, 686–

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/19M1274067
https://doi.org/10.1137/21M1397908
https://doi.org/10.1137/21M1397908
https://doi.org/10.1137/21M1397908
https://doi.org/10.1137/21M1397908
https://doi.org/10.1109/SmartGridComm51999.2021.9632308
https://doi.org/10.1109/SmartGridComm51999.2021.9632308
https://doi.org/10.1109/SmartGridComm51999.2021.9632308
https://doi.org/10.1109/SmartGridComm51999.2021.9632308
https://arxiv.org/abs/2107.04320
https://api.semanticscholar.org/CorpusID:248965018
https://api.semanticscholar.org/CorpusID:248965018
https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

PINN for non-stationary material science problemss 15

707 (2019). https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045,
https://www.sciencedirect.com/science/article/pii/S0021999118307125

31. Rasht-Behesht, M., Huber, C., Shukla, K., Karniadakis, G.E.: Physics-informed
neural networks (PINNs) for wave propagation and full waveform inversions. Jour-
nal of Geophysical Research: Solid Earth 127(5), e2021JB023120 (2022)

32. Shin, Y., Darbon, J., Karniadakis, G.E.: On the convergence of physics informed
neural networks for linear second-order elliptic and parabolic type pdes. Commu-
nications in Computational Physics (2020), https://api.semanticscholar.org/
CorpusID:225054225

33. Sun, F., Liu, Y., Sun, H.: Physics-informed spline learning for nonlinear dynamics
discovery. Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence (IJCAI-21) pp. 2054–2061 (2021)

34. Sun, L., Gao, H., Pan, S., Wang, J.X.: Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data. Computer Methods
in Applied Mechanics and Engineering 361 (2020). https://doi.org/10.1016/j.
cma.2019.112732

35. Taylor, C., Hughes, T.: Finite Element Programming of the Navier-Stokes Equa-
tions. Fluid mechanics its applications, Pineridge Press (1981), https://books.
google.pl/books?id=wo0eAQAAIAAJ

36. Wandel, N., Weinmann, M., Neidlin, M., Klein, R.: Spline-PINN: Approach-
ing PDEs without data using fast, physics-informed Hermite-spline CNNs. Pro-
ceedings of the AAAI Conference on Artificial Intelligence 36(8), 8529–8538
(2022). https://doi.org/10.1609/aaai.v36i8.20830, https://ojs.aaai.org/

index.php/AAAI/article/view/20830

37. Wang, S., Yu, X., Perdikaris, P.: When and why pinns fail to train: A neural
tangent kernel perspective. Journal of Computational Physics 449, 110768
(2022). https://doi.org/https://doi.org/10.1016/j.jcp.2021.110768,
https://www.sciencedirect.com/science/article/pii/S002199912100663X

38. Yang, Y., Perdikaris, P.: Adversarial uncertainty quantification in physics-informed
neural networks. Journal of Computational Physics 394, 136–152 (2019). https:
//doi.org/10.1016/j.jcp.2019.05.027

39. Yuan, L., Ni, Y.Q., Deng, X.Y., Hao, S.: A-pinn: Auxiliary physics in-
formed neural networks for forward and inverse problems of nonlinear
integro-differential equations. Journal of Computational Physics 462, 111260
(2022). https://doi.org/https://doi.org/10.1016/j.jcp.2022.111260,
https://www.sciencedirect.com/science/article/pii/S0021999122003229

40. Loś, M., Muga, I., Muñoz-Matute, J., Paszyński, M.: Isogeometric resid-
ual minimization (igrm) for non-stationary stokes and navier–stokes
problems. Computers & Mathematics with Applications 95, 200–214
(2021). https://doi.org/https://doi.org/10.1016/j.camwa.2020.11.013,
https://www.sciencedirect.com/science/article/pii/S0898122120304417,
recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite
Element Methods

41. Loś, M., Paszyński, M.: Parallel shared-memory open-source code for sim-
ulations of transient problems using isogeometric analysis, implicit direction
splitting and residual minimization (iga-ads-rm). Advances in Engineering
Software 196, 103723 (2024). https://doi.org/https://doi.org/10.1016/j.

advengsoft.2024.103723, https://www.sciencedirect.com/science/article/

pii/S0965997824001303

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://api.semanticscholar.org/CorpusID:225054225
https://api.semanticscholar.org/CorpusID:225054225
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://doi.org/10.1016/j.cma.2019.112732
https://books.google.pl/books?id=wo0eAQAAIAAJ
https://books.google.pl/books?id=wo0eAQAAIAAJ
https://doi.org/10.1609/aaai.v36i8.20830
https://doi.org/10.1609/aaai.v36i8.20830
https://ojs.aaai.org/index.php/AAAI/article/view/20830
https://ojs.aaai.org/index.php/AAAI/article/view/20830
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/https://doi.org/10.1016/j.jcp.2021.110768
https://www.sciencedirect.com/science/article/pii/S002199912100663X
https://doi.org/10.1016/j.jcp.2019.05.027
https://doi.org/10.1016/j.jcp.2019.05.027
https://doi.org/10.1016/j.jcp.2019.05.027
https://doi.org/10.1016/j.jcp.2019.05.027
https://doi.org/https://doi.org/10.1016/j.jcp.2022.111260
https://doi.org/https://doi.org/10.1016/j.jcp.2022.111260
https://www.sciencedirect.com/science/article/pii/S0021999122003229
https://doi.org/https://doi.org/10.1016/j.camwa.2020.11.013
https://doi.org/https://doi.org/10.1016/j.camwa.2020.11.013
https://www.sciencedirect.com/science/article/pii/S0898122120304417
https://doi.org/https://doi.org/10.1016/j.advengsoft.2024.103723
https://doi.org/https://doi.org/10.1016/j.advengsoft.2024.103723
https://doi.org/https://doi.org/10.1016/j.advengsoft.2024.103723
https://doi.org/https://doi.org/10.1016/j.advengsoft.2024.103723
https://www.sciencedirect.com/science/article/pii/S0965997824001303
https://www.sciencedirect.com/science/article/pii/S0965997824001303
https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24

