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 Lukasz Sztangret[0000−0003−4872−406X], Danuta Szeliga[0000−0002−2915−8317],
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Abstract. Linear elasticity and Navier-Stokes equations are fundamen-
tal tools in material science, enabling the modeling of solid deformations
and fluid flows under various conditions. These equations are widely used
to simulate stresses, strains, and fluid interactions in processes like 3D
printing, welding, casting, and extrusion. Physics-Informed Neural Net-
works (PINNs), introduced in 2019, have gained significant attention for
solving complex physical problems, including fluid mechanics, wave prop-
agation, and inverse problems. Despite their growing popularity, PINNs
face challenges in training efficiency and accuracy. This paper investi-
gates the applicability of modern PINN methodologies to material science
problems involving Navier-Stokes and linear elasticity equations. For lin-
ear elasticity, a randomized selection of collocation points is employed to
enhance training. For Navier-Stokes equations, hard constraints on ini-
tial and boundary conditions are implemented to avoid multi-objective
optimization. These approaches aim to address training difficulties and
improve PINN performance in simulating material science phenomena.

Keywords: Physics Informed Neural Networks, Transient linear elas-
ticity, Navier-Stokes, Random selection of collocation points, Hard con-
straints

1 Introduction

Linear elasticity [21] and Navier-Stokes equations [35] are foundational in simu-
lating various physical phenomena in material science. They are used to model
the behavior of fluids and solids, respectively, and help researchers and engi-
neers understand and design materials under different conditions. Linear elas-
ticity equations describe the deformation of solid materials under applied loads.
These equations are widely used in material science to model mechanical behav-
ior. They are used to predict the distribution of stresses and strains within a
solid material under mechanical load, to understand material strength, durabil-
ity, and failure mechanisms. They are employed to simulate residual stresses and
distortions that arise during manufacturing processes like welding or 3D print-
ing. The Navier-Stokes equations describe the motion of fluids and are essential
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for studying fluid flow behavior. In material science, they are used to model how
fluids flow through porous materials such as rocks, membranes, or composite
materials. They can be combined with elasticity equations to simulate how a
fluid interacts with a deformable solid boundary. They can also be employed to
simulate fluid behavior in material science processes like casting, extrusion, and
additive manufacturing, to optimize manufacturing processes, improve material
properties, and reduce defects.

The family of Physics Informed Neural Network (PINN) solvers have been
introduced by prof. George Karniadakis in 2019 [30]. The method gained expo-
nential growth in the number of papers and citations, with several new papers
and some modifications of the method introduced every year [39,13,29]. The
method, however, has some difficulties of the training process, some of them
discussed in [37,32]. PINNs have been successfully applied to solve a wide range
of problems, from fluid mechanics [3,20], in particular Navier-Stokes equations
[16,34,36], wave propagation [31,19,7], phase-filled modeling [9], biomechanics
[2,15], quantum mechanics [12], electrical engineering [23], problems with point
singularities [11], uncertainty qualification [38], dynamic systems [33,1], or in-
verse problems [4,22,18], among many others.

In this paper, we focus on the investigation of the applicability of the modern
PINN methodology for modeling the Navier-Stokes and linear elasticity material
science problems. In the linear elasticity method, we employ the randomized
selection of the PINN colocation points to improve the training procedure. In
the Navier-Stokes formulation, we employ the initial and boundary conditions
using the hard constraints, avoiding a multi-objective optimization problem.

Our library is a simple alternative for other available PINN libraries, includ-
ing the DeepXDE [17] and IDRLnet [28]. The first one is a very large library
including ODEs and PDEs on complex geometries, with different initial and
boundary conditions, enabling solving and forward and inverse problems. The
DeepXDE supports TensorFlow, PyTorch, JAX, and PaddlePaddle. The second
one allows for solving the wave equation, Allan-Cahn equations, Volterra inte-
grodifferential equations, and variational minimization problems. The IDRLnet
library uses pytorch, numpy, and Matplotlib.

2 Linear elasticity

We start from the following time-dependent linear elasticity equations:
ρ∂2uuu

∂t2 = ∇ · σσσ + F on Ω × [0, T ]

uuu(x, 0) = u0 for x ∈ Ω

σσσ · n̂̂n̂n = 0 on ∂ Ω

(1)

where uuu is a displacement vector, σij = cijklϵlk =
∑

kl cijkl
1
2 (∂jui + ∂iuj) is

the stres tensor, ϵlk = 1
2

(
∂uk

∂xl
+ ∂ul

∂xk

)
is the strain tensor, ccc is a matrix describing

the material properties. We assume that the computational domain is the cuboid
Ω = [0, 1] × [0, 1] × [0, 5], namely x ∈ [0, 1], y ∈ [0, 1] and t ∈ [0, 5].

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24


PINN for non-stationary material science problemss 3

For our simulation, we employ the 2D version of the problem: We seek the dis-
placement vector field Ω×[0, T ] ∋ (x, y; t) → u(x, y; t) = (u1(x, y; t), u2(x, y; t)) ∈
R2, where for i, j ∈ {0, 1} we have

[
σ11 σ12

σ21 σ22

]
=

λ(
∂ux

∂x +
∂uy

∂y

)
0

0 λ
(

∂ux

∂x +
∂uy

∂y

)+

2µ

 ∂ux

∂x
1
2

(
∂ux

∂y +
∂uy

∂x

)
1
2

(
∂ux

∂y +
∂uy

∂x

)
∂uy

∂y

 (2)

and the two-dimensional linear elasticity equations read{
ρ∂2ux

∂t2 = ∂σ11

∂x + ∂σ12

∂y + f1

ρ
∂2uy

∂t2 = ∂σ21

∂x + ∂σ22

∂y + f2
(3)

where we have assumed the forcing acting on the right-top corner

f1(x, y, t) = − t2(1 − t)2r(x1, x2), f2(x, y, t) = −t2(1 − t)2r(x1, x2),

r(x, y) = 10 exp
(
−10

[
(x1 − 1)2 + (x2 − 1)2

])
.

(4)

We introduce the following boundary conditions{
uuu(x1, x2, 0) = u0 = 0

σσσ · n̂̂n̂n = 0
(5)

The Lame coefficients in our model problem are defined as λ = µ = 1.

3 Physics Informed Neural Networks for linear elasticity

For the solution of the linear elasticity problem by using the Physics Informed
Neural Networks, we assume 4 layers of the neural network with 200 neurons
in each layer. The input to the neural network is (x, y, t), and the output from

the neural network is a vector (ux, uy,
∂ux

∂x , ∂ux

∂y , ∂ux

∂t ,
∂uy

∂x ,
∂uy

∂y ,
∂uy

∂t , ). The initial
configuration is set as a hard constraint, that is, it is enforced in the network
architecture. The initial condition is simple: uuu(x1, x2, 0) = u0 = 0 So we have:{

ux = uxoriginal
· t

uy = uyoriginal
· t

(6)

We can see that for t = 0, u will always be 0, and for t > 0, u will also be
> 0, so it can be normally influenced by the neural network parameters. The
loss function is divided into two parts, LOSSPDE and LOSSboundary. LOSSPDE

consists of 8 parts. The most important are the first two, the residuals of the
system of equations (3) squared. The remaining 6 are derivatives of ux and uy
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with respect to all inputs minus the corresponding output of the network. It is
possible to compute the second derivative in the residual directly, in which case
the network would only have 2 outputs. However, we found that having extra
outputs with first derivatives greatly improves PINN’s convergence.

For training, we used the Adam optimizer [14] with the learning rate of 0.005.
We run the training on 40 × 40 points grid with equally distributed collocation
points for 60 time steps and 20 000 epochs. In order to train the neural network,
we need to create a loss function such that minimizing it will push PINN towards
the solution of the equation (3). The loss is divided into two parts: PDE residual
loss of equation (3), and the boundary loss for the boundary conditions. Initial
conditions are set using the hard constraints as mentioned earlier. The PDE
residual loss is further divided into eight parts, where the first two are the most
important and the rest is introduced as a way to improve the convergence.

LOSSPDE =

8∑
i=1

LOSSPDEi
(7)

LOSSPDE1
=

(
µ
∂ PINN5

∂t
− ∂σ11

∂x1
− ∂σ12

∂x2
+ f1

)2

,

LOSSPDE2
=

(
µ
∂ PINN8

∂t
− ∂σ11

∂x1
− ∂σ12

∂x2
+ f2

)2

,

LOSSPDE3
=

(
∂ PINN1

∂x
− PINN3

)2

, LOSSPDE4
=

(
∂ PINN1

∂y
− PINN4

)2

,

LOSSPDE5
=

(
∂ PINN1

∂t
− PINN5

)2

, LOSSPDE6
=

(
∂ PINN2

∂x
− PINN6

)2

,

LOSSPDE7
=

(
∂ PINN2

∂y
− PINN7

)2

, LOSSPDE8
=

(
∂ PINN2

∂t
− PINN8

)2

.

(8)

where[
σ11 σ12

σ21 σ22

]
=[

λ · (PINN3 + PINN7) + 2µ · PINN3 µ · (PINN4 + PINN6)
µ · (PINN4 + PINN6) λ · (PINN3 + PINN7) + 2µ · PINN7

] (9)

and f is the forcing term defined by defined by (4). Note that PINN3 - PINN8

are trained to be just derivatives of PINN1 and PINN2 with respect to all inputs.
However, splitting it in this way proved to greatly improve the convergence. The
loss responsible for enforcing boundary conditions is defined as follows:

LOSSboundary = LOSSboundarydown
+ LOSSboundaryup

+ LOSSboundaryleft
+ LOSSboundaryright

(10)
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LOSSboundarydown
= −σ12 − σ22, LOSSboundaryup

= σ12 + σ22,

LOSSboundaryleft
= −σ11 − σ21, LOSSboundaryright

= σ11 + σ21.
(11)

4 Numerical results for linear elasticity

We have run the linear elasticity simulation for a time interval [0, 5] over a
cube-shaped domain [0, 1]2. Notice that in the Physics Informed Neural Network
simulations there are no time steps; the computational problem is solved over
the space-time cuboid. In the initial configuration, the square-shaped body has
fixed zero displacement. We hit the elastic body at the right top corner with the
force defined by (4). The convergence of the training is presented in Figure 1. For
the linear elasticity computations, we minimize two loss functions. The first loss
function is the residual of the PDE (called the Loss PDE on the second panel
in Figure 1). The second loss function is related with the minimization of the
boundary condition (5) (called the Loss boundary on the third panel in Figure
1). We do not know how to enforce this kind of tensorial boundary condition as
the hard constraint of the neural network. Thus, we minimize the sum of the
two losses, as it is presented in the first panel in Figure 1.

The snapshots from the simulation are presented in Figure 2. We have multi-
plied the displacements by a factor of 10 for a better visualization of the results.
However, with the central point fixed in the body, it is possible that small dis-
placements around the central point will be visualized as moving to the other
side of the central point. This, however, does not happen in reality; it is just a
drawback of our visualization method.

Fig. 1: The convergence of the training of the total loss function for the transient
linear-elasticity problem. The total loss, the residual loss, and the boundary
condition loss.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_24

https://dx.doi.org/10.1007/978-3-031-97557-8_24
https://dx.doi.org/10.1007/978-3-031-97557-8_24


6 Pawe l Maczuga et.al.

Fig. 2: Snapshots from the linear elasticity simulations. The body has fixed zero
displacements in the central point.

5 Navier-Stokes equations

Let us focus on the non-stationary cavity flow problem described with the Navier-
Stokes equation for the incompressible fluid; see Figure 3. The Dirichlet boundary
condition drives the cavity flow for the velocity ux = 1, uy = 0 on the top
boundary. On the remaining parts of the boundary, the velocity is equal to 0,
and the ϵ thick transition zone in the left and right top corners ensures the
possibility of a weak formulation. This problem exhibits pressure singularities at
the two corners.

Fig. 3: Non-stationary cavity flow problem. Boundary conditions and pressure
singularities.
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Let Ω = (0, 1)2 be the open boundary and I = [0, T ] ⊂ R be the time
interval. The problem reads: Find velocity u and pressure field p such that:

∂tu + (u · ∇)u−∆u + ∇p = 0 in Ω × I,

∇ · u = 0 in Ω × I,

u = h in Γ × I,

u(0) = 0 in Ω,

(12)

where

h(x, y) =



0 x ∈ (0, 1), y = 0

0 x ∈ {0, 1}, y ∈ (0, 1 − ϵ)

1 x ∈ (0, 1), y = 1(
1 − (1 − y)

ϵ

)
x ∈ {0, 1}, y ∈ (1 − ϵ, 1)

(13)

By incorporating a shift

uD =



(

1 − (1 − y)

ϵ

)2

x ∈ (0, 1), y ∈ (1 − ϵ, 1)

0 x ∈ (0, 1), y ∈ (0, 1 − ϵ)

, 0

 (14)

this problem transforms into
∂tu + (u · ∇)u−∆u + ∇p = f in Ω × I,

∇ · u = 0 in Ω × I,

u = 0 in Γ × I,

u(0) = 0 in Ω,

(15)

where f =

(
0, 2

ϵ

(
1 − (1−y)

ϵ

)3
)

. Here u = (u1, u2) represents the velocity vector

field, and p represents the scalar pressure field. The Γ denotes the boundary
of the spatial domain Ω, and f is a given source resulting from the shift of the
Dirichlet boundary conditions.

System (15) can be rewritten as

w1(x1, x2, t) =
∂u1(x1, x2, t)

∂x1
, w2(x1, x2, t) =

∂u1(x1, x2, t)

∂x2
,

z1(x1, x2, t) =
∂u2(x1, x2, t)

∂x1
, z2(x1, x2, t) =

∂u2(x1, x2, t)

∂x2
,

−∂w1(x1, x2, t)

∂t
− ∂w1(x1, x2, t)

∂x1
− ∂w2(x1, x2, t)

∂x2
+

∂p(x1, x2, t)

∂x1
= f1(x1, x2, t),

−∂z1(x1, x2, t)

∂t
− ∂z1(x1, x2, t)

∂x1
− ∂z2(x1, x2, t)

∂x2
+

∂p(x1, x2, t)

∂x2
= f2(x1, x2, t),

∂u1(x1, x2, t)

∂x1
+

∂u2(x1, x2, t)

∂x2
= 0.

(16)
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We define the following residual functions

RES6a(uθ) =
∂u1

∂x2
− w2, RES6b(uθ) =

∂u2

∂x1
− z1, RES6c(uθ) =

∂u2

∂x2
− z2,

RES6d(uθ) =
∂w1

∂t
− ∂w1

∂x1
− ∂w2

∂x2
+

∂p

∂x1
− f1,

RES6e(uθ) =
∂z1
∂t

− ∂z1
∂x1

− ∂z2
∂x2

+
∂p

∂x2
− f2,

RES6f (u‘θ) =
∂u1(x1, x2)

∂x1
+

∂u2(x1, x2)

∂x2
, RES6g(uθ) =

∂u1

∂x1
− w1.

(17)
and the following total loss

RES(uθ) = RES6a(uθ) + RES6b(uθ) + RES6c(uθ) + RES6d(uθ) +

RES6e(uθ) + RES6f (uθ) + RES6g(uθ). (18)

The Dirichlet boundary condition is obtained by multiplication of the output
from the neural network by a summation of the four functions presented in Figure
4 multiplied by the g function (definition of the Dirichlet b.c.). For the pressure
approximation, we multiply the output from the neural network by the single
value of the solution at the central point, see Figure 4.

Fig. 4: The functions employed to enforce zero Dirichlet b.c., to enforce the
boundary condition at the top of the domain, and the enforce zero pressure
condition at the center of the domain.

6 Numerical results for transient Navier-Stokes

We have run the Navier-Stokes problem for the interval [0, 1] over the cube-
shaped cavity of dimensions [0, 1]2. In the initial configuration, the velocity and
the pressure inside the cavity are zero. The flow is driven by the boundary
condition at the top edge of the computational domain, where the ”river” flows
from the left to the right. The convergence of the training is presented in Figure
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Fig. 5: The convergence of the training of the total loss function for the transient
Navier-Stokes problem.

5. The boundary conditions are enforced by the hard constraint on the neural
network, so there is no other loss function to minimize there.

The snapshots from the simulation are presented in Figure 6.

We compare our PINN code with IGA-FEM code [41]. For the IGA-FEM we
remove the non-linear term u · ∇u since it requires special linearization treat-
ment. For the finite element method formulation, following [10], we consider the
singular perturbation of non-stationary Navier-Stokes problem



∂tvϵ −∆vϵ + ∇pϵ = f in Ω × I,

ϵAϕϵ + ∇ · vϵ = 0 in Ω × I,

ϵ∂tpϵ = ϕϵ − χ∇·vϵ in Ω × I,

vϵ = 0 in Γ × I,

vϵ(0) = v0 in Ω,

pϵ(0) = p0 in Ω,

(19)

where A is an unbounded operator A : D(A) ⊂ L2
0(Ω) −→ L2

0(Ω) and ϕϵ ∈
D(A). Here, ϵ is the perturbation parameter and χ ∈ [0, 1] is a user-defined
parameter. We consider the alternating directions method presented in [10] with
the Peaceman-Rachford scheme applied to the velocity update. We employ the
residual minimization method with B-spline basis functions for discretization.
The resulting IGA-FEM (isogeometric finite element) method is summarized in
[40]. Figure 6 presents the visual comparison of results using 80 × 80 mesh for
the time moment t = 0.5. The execution time for the IGA-FEM code, depending
on the B-spline basis function used for discretization (see Table 1 in [40]), varies
from 300 seconds (5 minutes) to 2100 seconds (35 minutes), using 1024 time
steps. The training time for our PINN code is around 15 minutes on A100 card
from Google Colab.
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Fig. 6: The velocity component in the x direction, the velocity component in the
y direction, and the pressure distribution p. Top panel: PINN solution extracted
from the neural network solution at the time moment t = 0.5. Bottom panel:
IGA-FEM solution.

7 Summary of the code

The code for both simulations: linear elasticity and Navier-Stokes are indepen-
dent Jupyter Notebooks run in a Google Colab environment:

https://colab.research.google.com/drive/

1CxCbbMfS1C2y-Q1w mWA6YR1706N6M-C

https://colab.research.google.com/drive/

1lzq7qhlnIi5 Mz7b0PE0Fq f958ANZlr

The code has the following structure. The code is tuned with neural net-
work parameters such as LAYERS = 4, NEURONS PER LAYER = 200, training pa-
rameters such as LEARNING RATE = 0.005, and EPOCHS = 20 000, as well as
X POINTS = 100 and Y POINTS = 100 defining the grid of training points. We
also define the plotting parameters X PLOT = 100 and Y PLOT = 100 the accu-
racy of the graphics. There are two parts of the code that require modification
when implementing new simulation. The first one is the residual loss function.
For example, the loss function for the Navier-Stokes equations, is defined as

de f p d e l o s s ( s e l f , pinn : PINN ) :
x , y , t = s e l f . environment . g e t i n t e r i o r p o i n t s ( )
ux , uy , p , duxdx , duxdy , duydx , duydy = pinn (x , y , t )
duxdt = df (ux , t ) ; d2uxdx = df ( duxdx , x )
d2uxdy = df ( duxdy , y ) ; dpdx = df (p , x )
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duydt = df (uy , t ) ; d2uydx = df ( duydx , x )
d2uydy = df ( duydy , y ) ; dpdy = df (p , y )

l o s s 1 = duxdt =d2uxdx = d2uxdy + dpdx
l o s s 2 = duydt =d2uydx = d2uydy + dpdy
l o s s 3 = duxdx + duydy
loss duxdx = duxdx = df (ux , x )
lo s s duxdy = duxdy = df (ux , y )
lo s s duydx = duydx = df (uy , x )
lo s s duydy = duydy = df (uy , y )

re turn l o s s 1 . pow ( 2 ) . mean ( ) + \
l o s s 2 . pow ( 2 ) . mean ( ) + \
l o s s 3 . pow ( 2 ) . mean ( ) + \
l o s s duxdx . pow ( 2 ) . mean ( ) + \
l o s s duxdy . pow ( 2 ) . mean ( ) + \
l o s s duydx . pow ( 2 ) . mean ( ) + \
l o s s duydy . pow ( 2 ) . mean ( )

The second modification defines the boundary conditions. They are defined
by using the hard constraints. We force ux equal to zero on the entire boundary
except the top boundary where it is equal to 1, uy equal to zero on the entire
boundary, and pressure p equal to zero at the middle point. The hard constraints
in PINNs look as follows:

def f o r c e up s t r eam (x , y ) :
return torch . exp (=1000*(y=1)**2)

def z e ro a t m idd l e (x , y ) :
return =torch . exp (=1000*(y=0.5)**2) \

* torch . exp (=1000*(x=0.5)**2) + 1 .0

def u x c o n s t r a i n t ( l o g i t s , x , y ) :
return l o g i t s * z e r o d i r i c h l e t (x , y ) \
+ force up s t r eam (x , y )

def u y c o n s t r a i n t ( l o g i t s , x , y ) :
return l o g i t s * z e r o d i r i c h l e t (x , y )

def p c o n s t r a i n t ( l o g i t s , x , y ) :
return l o g i t s * z e ro a t m idd l e (x , y )

Conclusions This paper explored the application of modern Physics-Informed
Neural Networks (PINNs) to material science problems governed by linear elas-
ticity and Navier-Stokes transient problems. For training of the linear elasticity
non-stationary problem, we introduced randomized collocation point selection.
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For training of the Navier-Stokes time-dependent problem, we introduced the
hard constraints for the initial and boundary conditions. The results demon-
strated the potential of these methodologies to improve the performance and
applicability of PINNs in modeling complex material science processes.

Main advantages of the PINN method compared to the classic simulations
are the following. (1) Simplicity of the method. (2) Generic nature of neural
networks - the approach is very similar for different problems and in many cases
requires only a change in the loss function. There is no need to transform the
equation to weak formulation and worry about choosing the right test and basis
functions. (3) It can solve non-linear problems and inverse problems. (4) It can
easily integrate measured data into training in addition to physics knowledge.
(5) A single neural network can be trained for different sets of parameters.

However, there are certain disadvantages of PINNs. The solution is less ac-
curate than the classical methods (like FEM); in more challenging problems to
achieve proper convergence, certain ”tricks” are required (like hard-constraint
used in this paper). On top of that, there are issues related to all neural net-
works: choosing the right architecture and training parameters and difficulty in
predicting what solution might help in certain problems. Overall, the topic of
PINNs is definitely worth exploring, especially since the method is still relatively
young. Neural networks are, after all, widely used in many various applications
and perform extremely well. The main problem with PINNs, that is the accuracy
of the solution, is improving fast, and it can even outperform classical simulators
soon.

The future work following this paper may include: (1) Training generic PINN
for different equation parameters. For example, linear elasticity equation has
two so-called Lame coefficients (λ and µ), treated as constants in this work.
It is possible to have them as additional input to the network. (2) Coupled
multi-physics simulations including both elasticity and Navier-Stokes, or other
challenging applications in material science. (3) Extension of the method to other
classical problems solved by finite element method [5,6]. (4) Replacing PINNs
by the Variational PINNs and including adaptive algorithms [24,27,26,25,8] for
the test space.
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19. Maczuga, P., Paszyński, M.: Influence of activation functions on the convergence
of physics-informed neural networks for 1d wave equation. In: Mikyška, J., de Mu-
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