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Abstract. The problem of �tting reduced data Qm is discussed here.
Reduced data form the ordered sequence of interpolation points qi =
γ(ti) in arbitrary Euclidean space. Here the corresponding unknown
knots T are replaced with T̂ compensated by the so-called exponential
parameterization determined by reduced data Qm and a single parame-
ter λ ∈ [0, 1]. In sequel, a modi�ed complete spline is used to interpolate
Qm with the aid of exponential parameterization. The main theoretical
contribution of this work is to prove a linear convergence order in γ es-
timation by �tting Qm (getting denser) with modi�ed complete spline
based on exponential parameterization for λ ∈ [0, 1). The latter holds
for su�ciently smooth, regular curves sampled more-or-less uniformly.
The asymptotics established here is subsequently veri�ed numerically in
a�rmative as sharp. The respective tests are conducted on 2D and 2D
curves.

Keywords: Spline Interpolation, Fitting Reduced Data, Curve Model-
ing, Convergence Orders and Approximation, Computer Graphics

1 Introduction

Let γ : [0, T ] → En be a smooth regular curve (i.e. γ̇(t) ̸= 0) over t ∈ [0, T ],
for 0 < T < ∞ (see e.g. [5]). The sequence of m+ 1 interpolation points Qm =
{qi}mi=0 in arbitrary Euclidean space En is coined as reduced data. Additionally,
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2 R. Kozera et al.

it is assumed that for qi = γ(ti) we have qi+1 ̸= qi. The interpolation knots T =
{ti}mi=0 (with ti < ti+1) are here not supplied. In order to derive an interpolant

γ̂, �rst the knot estimates T̂ = {t̂i}mi=0 ≈ T should be somehow guessed subject

to γ̂(t̂i) = qi. Upon selecting speci�c interpolation scheme γ̂ : [0, T̂ ] → En and
the substitutes T̂ of T a natural question arises referring to the convergence
order α (if any) while estimating γ with γ̂ in norm in�nity. The latter stipulates
m → ∞ which equivalently assumes Qm as getting dense. The desirable choice
of {t̂i}mi=0 should ensure convergence of γ̂ to γ with possibly a fast order α.

A background information (see e.g. [17]) is now introduced.

De�nition 1. The interpolation knots {ti}mi=0 are called admissible if:

lim
m→∞

δm → 0+, where δm = max
1≤i≤m

{ti − ti−1 : i = 1, 2, . . . ,m}. (1)

Recall now a special subfamily of admissible samplings i.e. the so-called more-
or-less uniform samplings (see [35]):

De�nition 2. The sampling {ti}mi=0 is more-or-less uniform if for some con-
stants 0 < Kl ≤ Ku and su�ciently large m the following holds:

Kl

m
≤ ti − ti−1 ≤ Ku

m
, (2)

for all i = 1, 2, . . . ,m. Note that, condition (2) can be substituted by the inequality
βδm ≤ ti+1 − ti ≤ δm holding for some 0 < β ≤ 1 asymptotically (i.e. for
su�ciently large m).

A good performance of any γ̂ relies on appropriate guesses T̂ of T . At this
point recall a de�nition of exponential parameterization (see [28]):

t̂λ0 = 0 and t̂λi = t̂λi−1 + ∥qi − qi−1∥λ, (3)

for i = 1, 2, . . . ,m and λ ∈ [0, 1]. If λ = 0, a uniform distribution of knots
t̂0i = i eventuates. The opposite case of λ = 1 is called a cumulative chord
parameterization which yields t̂1i = t̂1i−1 + ∥qi − qi−1∥ (see [28] or [29]). Visibly
the latter accounts for the geometrical dispersion of Qm which is not re�ected
for λ = 0 in (3). Thus, it is expected that the latter should have an impact on
α(λ). Indeed, recall �rst:

De�nition 3. Consider a family {fδm , δm > 0} of functions fδm : I → E.
We say that fδm is of order O(δαm) (denoted as fδm = O(δαm)), if there is a
constant K > 0 such that, for some δ̄ > 0 the inequality |fδm(t)| < Kδαm holds
for all δm ∈ (0, δ̄), uniformly over I. For the family of vector-value functions
Fδm : I → En by Fδm = O(δαm) it is understood that ∥Fδm∥ = O(δαm).

De�nition 4. For a given scheme γ̂ interpolating Qm with some knots' esti-
mates T̂ ≈ T (and some chosen mapping ϕ : I → Î) the asymptotics γ− γ̂ ◦ϕ =
O(δαm) is sharp over I within the prescribed families of curves J and samplings
K, if there exist γ ∈ J and T ∈ K such that for some t∗ ∈ I and some K > 0
we have ∥γ(t∗)− (γ̂ ◦ ϕ)(t∗)∥ = Kδαm +O(δθm), where θ > α.

From now on we omit the superscript λ in t̂λi = t̂i (see (3)).
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2 Previous Results versus this Work Contribution

It is proved [26] that γ̂3 (i.e. a Lagrange piecewise-cubic) based on (3) and Qm
results in α(1) = 4 (for (1)) and in α(λ) = 1 for λ ∈ [0, 1) (with (2)). This yields
a left-hand side discontinuity of α(λ) at λ = 1 (see e.g. [20]). In fact we have:

Theorem 1. Let γ be a regular C4([0, T ]) curve in En sampled more-or-less
uniformly (2). Assume that {t̂λi }mi=0 are de�ned according to (3). Then there

exists a piecewise-cubic C∞ mapping ψ : [0, T ] → [0, T̂ ], such that over [0, T ]:

(γ̂3 ◦ ψ)(t)− γ(t) = O(δm), for λ ∈ [0, 1)
(γ̂3 ◦ ψ)(t)− γ(t) = O(δ4m), for λ = 1. (4)

Here the mapping ψ = ψ3 is de�ned as a piecewise-cubic Lagrange polynomial
satisfying the conditions ψ3(ti) = t̂i (for i = 0, 1, . . . ,m) to comply with the
interpolation constraints qi = γ̂(t̂i) = γ̂(ψ(ti)).

Noticeably, the continuous interpolant γ̂3 is generically non-smooth at junc-
tion points {qk}3kk=1, i.e. where two consecutive local piecewise-cubics are glued
together.

One option is to consider any C1 interpolation scheme based on extra provi-
sion of the unknown velocities {vi}mi=0 at Qm. A possible remedy is proposed in
[18] and [24], where a modi�ed Hermite C1 �tting scheme γ̂H is introduced and
analyzed in conjunction with (3). In particular, the asymptotics established for
γH based on (3) coincides with (4) from Th. 1.

The solution guaranteeing C2 smoothness at Qm resorts to various hybrids
of C2 cubic spline interpolants γ̂S3 (see [4]) based on Qm and (3).

First of them called a complete cubic spline γ̂C3 (see [4]) requires an initial
v0 = γ′(0) and terminal vn = γ′(T ) velocities, generically not accompanying
reduced data Qm. This special case is discussed in [10] (though limited exclu-
sively to λ = 1), where quartic order α(1) = 4 for trajectory estimation by γ̂C3
is established.

A possible alternative of C2 class �tting scheme based merely on Qm and
(3) (with no reference to v0 and vm) is e.g. given in [25]. The latter introduces
a modi�ed complete spline γ̂MC

3 , where both initial and terminal velocities are
estimated by the derivatives of the �rst and the last components of the Lagrange
piecewise-cubic γ̂3 (for which γ̂′3,0(0) ≈ v0 and γ̂′3,m−3(T ) ≈ vm)). More details

concerning the construction of γ̂MC
3 are given next in Section 3.

The main contribution of this paper is to establish a linear convergence or-
der in γ estimation with a modi�ed complete spline γ̂MC

3 based on exponential
parameterization (3), for λ ∈ [0, 1) - see Th. 2. The latter holds for any regular
curve γ ∈ C4 sampled more-or-less uniformly (2) on dense reduced data Qm.
Here the analysis assumes m → ∞ assuring a good approximation property in
γ̂ ≈ γ for m getting large. Numerical tests are also performed on 2D and 3D
regular curves to con�rm the asymptotics together with its sharpness determined
by (13) and (14).

Related work on �tting sparse or dense reduced data with optimal knots
selection criterion based on using C2 class splines (see Section 3) can also be
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found e.g. in [21], [22], [23] or [27]. Other curve interpolation schemes combined
with various parameterizations (with some speci�c applications given) are also
studied e.g. in [2], [6], [7], [11], [12], [14], [31], [38] or [39].

3 Spline Construction

The construction of a modi�ed complete spline interpolant γ̂MC
3 based on re-

duced data Qm (see also [4]) and exponential parameterization (3) falls into the
following steps (a similar procedure renders γMC

3 for non-reduced data (T , Qm)):

1. Calculate the estimates {t̂i}mi=0 of the missing knots {ti}mi=0 according to the
exponential parameterization (3) (with λ ∈ [0, 1]).

2. The so-called general C2 piecewise-cubic spline γ̂S3 interpolant (a sum-track
of cubics {γ̂S3,i}

m−1
i=0 - see [4]) ful�lls the following condition (over each sub-

segment Îi = [t̂i, t̂i+1]):

γ̂S3,i(t̂i) = qi, γ̂S3,i(t̂i+1) = qi+1,

γ̂S
′

3,i(t̂i) = vi, γ̂S
′

3,i(t̂i+1) = vi+1, (5)

where v0, · · · ,vm represent the unknown slopes (i.e. velocities) vi ∈ IRn. The
internal velocities {v1,v2, . . . ,vm−1} must satisfy C2 class m−1 constraints
imposed on γ̂S3 at junction points {q1, . . . , qm−1} i.e. by enforcing:

γ̂S
′′

3,i−1(t̂i) = γ̂S
′′

3,i (t̂i). (6)

They can be uniquely computed (see [4] or (9) and Section 4) provided both
v0 and vm are somehow known (or a priori given).

3. Assuming temporarily the provision of all velocities {vi}mi=0, each cubic γ̂S3,i
over t̂ ∈ [t̂i, t̂i+1] reads as:

γ̂S3,i(t̂) = c1,i + c2,i(t̂− t̂i) + c3,i(t̂− t̂i)
2 + c4,i(t̂− t̂i)

3, (7)

where its respective coe�cients (with ∆t̂i = t̂i+1 − t̂i) are equal to:

c1,i = qi, c2,i = vi,

c3,i =

qi+1−qi
∆t̂i

− vi

∆t̂i
− c4,i∆t̂i, c4,i =

vi + vi+1 − 2 qi+1−qi
∆t̂i

(∆t̂i)2
. (8)

If also vi = γ′(ti) are given then formulas (7) and (8) yield a well-known C1

class Hermite spline. However, the required velocities {v0,v1, . . . ,vm} are
not usually supplemented to Qm. A scheme for computing the correspond-
ing missing internal velocities {v1,v1, . . . ,vm−1} is recalled next (see [4]).
Extending the latter a method of estimating {v0,vm} is given in [18] - see
below for more details.
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4. Formulas (7) and (8) render γ̂S
′′

3,i (t̂i) = 2c3,i and γ̂S
′′

3,i−1(t̂i) = 2c3,i−1 +

6c4,i−1(t̂i − t̂i−1) which combined with (6) leads to the linear system (for
i = 1, 2 . . .m− 1):

vi−1∆t̂i + 2vi(∆t̂i−1 +∆t̂i) + vi+1∆t̂i−1 = bi, (9)

where

bi = 3

(
∆t̂i

qi − qi−1

∆t̂i−1

+∆t̂i−1
qi+1 − qi

∆t̂i

)
. (10)

Assuming that the end-slopes v0 and vm are somehow given the tridiagonal
system (9) solves uniquely in {vi}m−1

i=1 - see [4]. The latter yields a C2 spline
γ̂S3 (which �ts reduced data Qm) de�ned as a track-sum of {γ̂S3,i}

m−1
i=0 intro-

duced in (7). If extra conditions hold, i.e. γ′(t0) = v0 and γ′(T ) = vm then
γ̂S3 is called a complete cubic spline (denoted here as γ̂CS3 ).

5. Since Qm are usually deprived from both initial and terminal velocities
{γ′(t0) = v0, γ

′(T ) = vm} a good estimate {va0 ,vam} is therefore required.
Of course, any choice of {va0 ,vam} renders a unique explicit formula for mod-
i�cation of γ̂CS3 . This however is insu�cient for our consideration. Indeed to
preserve a good approximation property of γ̂, still a good estimate of these
two velocities is required so that (13) and (14) hold. In doing so, we apply
Lagrange cubic γ̂L3,0 : [0, t̂3] → En (and γ̂L3,m−3 : [t̂m−3, T̂ ] → En), satisfying
γ̂L3,0(t̂i) = qi (and γ̂L3,m−3(t̂m−3+i) = qm−3+i), with i = 0, 1, 2, 3 - here the

same λ ∈ [0, 1] is applied in the derivation of γ̂L3,0, γ̂
L
3,m−3. With such ve-

locities the resulting complete spline γ̂C3 is called a modi�ed complete spline
(denoted as γ̂MC

3 ) for which va0 = γ̂L
′

3,0(0) and vam = γ̂L
′

3,m−3(T̂ ).
6. However, to verify the asymptotics from (13) and (14) a candidate for a map-

ping ψ : [0, T ] → [0, T̂ ] is still required. In doing so, consider a C2 complete
spline ψ = ψC3 : [0, T ] → [0, T̂ ] satisfying the knots' interpolation constraints
ψC3 (ti) = t̂i, where {t̂i}mi=0 are de�ned according to (3) (in principle this

procedure extends to any T̂ ). In addition, the initial and terminal velocities
of s0 = ψC

′

3 (0) and sm = ψC
′

3 (T ) are set similarly to the construction from
above. The internal velocities {si}m−1

i=1 (de�ned by si = ψ̇C3 (ti)) satisfy the
analogous constraints to those from (9) and (10) (for i = 1, 2, . . .m− 1):

si−1∆ti + 2(∆ti−1 +∆ti)si + si+1∆ti−1 = ai, (11)

where

ai = 3

(
∆ti

t̂i − t̂i−1

∆ti−1
+∆ti−1

t̂i+1 − t̂i
∆ti

)
. (12)

To generate both estimate of s0 and sm, de�ne two Lagrange cubics ψ3,0 :

[0, t3] → [0, t̂3] and ψ3,m−3 : [tm−3, T ] → [t̂m−3, T̂ ] satisfying interpolation
conditions ψ3,0(ti) = t̂i and ψ3,m−3(tm−3+i) = t̂m−3+i (with i = 0, 1, 2, 3 and
the same λ ∈ [0, 1] as for the construction of γ̂C3 ), respectively. In sequel,
one approximates here s0 = ψC

′

3 (0) with ψ′
3,0(0) and sm = ψC

′

3 (T ) with

ψ′
3,m−3(T ). Such spline ψC3 is also called a modi�ed complete spline and is

analogously denoted here by ψMC
3 .
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This completes a construction of a modi�ed C2 complete spline γ̂MC
3 (and

of ψ̂MC
3 )γ̂MC

3 (and of ψ̂MC
3 ) based on reduced data Qm and exponential param-

eterization (3). Noticeably, with m increasing the terminal velocities for γ̂MC
3

and ψ̂MC
3 must be re-estimated for each m in accordance with the procedure

speci�ed above.
Note that if [ψMC

i (ti) = t̂i, ψ
MC
i (ti+1) = t̂i+1] ⊊ ψMC

3,i ([ti, ti+1]) then one has

to extend the domain of γ̂MC
3,i from [t̂i, t̂i+1] to R to enable calculation γ̂MC

3,i ◦ψMC
3,i .

Such γ̂MC
3,i is denoted by γ̌MC

3,i which obviously satis�es γ̌MC
3,i |[t̂i,t̂i+1]

= γ̂MC
3,i .

In fact the asymptotics established in Th. 2 applies to the �extended version�
γ̌MC
3,i ◦ ψMC

3,i of γ̂MC
3,i ◦ ψMC

3,i over each Ii.

4 Main Result

We establish now the main contribution of this work. The following holds:

Theorem 2. Let γ be a regular C4([0, T ]) curve in En sampled more-or-less-
uniformly (3). Let va0 = γ̂L

′

3 (0) and vam = γ̂L
′

3 (T̂ ), where γ̂L3 de�nes a piecewise-
cubic Lagrange based on Qm and (3) with λ ∈ [0, 1]. Assume also that γ̂MC

3 :
[0, T̂ ] → En de�ne a modi�ed complete spline based on Qm, (v

a
0, v

a
m) and (3).

Then there is a piecewise-C∞ mapping ψ = ψMC
3 : [0, T ] → [0, T̂ ] such that over

[0, T ] we either have for all λ ∈ [0, 1):

γ̌MC
3 ◦ ψ − γ = O(δm) (13)

or for λ = 1:

γ̌MC
3 ◦ ψ − γ = O(δ4m). (14)

Proof. Taking into account that velocities v0, vm, s0 and sm are estimated (see
Section 3) both (9) (with (10)) and (11) (with (12)) represent two quadratic
tridiagonal linear systems of m − 2 equations (each in m − 2 unknowns) which
are strictly row diagonally dominant. Thus each system has exactly one solution
which can be found e.g. by Gauss elimination without pivoting. The following
inequalities hold (see [4], Chap. 4, Problem 7):

max
0≤i≤m

∥vi∥ ≤ max{∥v0∥, max
1≤j≤m−1

∥bj∥
∆t̂j−1 +∆t̂j

, ∥vm∥} (15)

and

max
0≤i≤m

|si| ≤ max{|s0|, max
1≤j≤m−1

|aj |
∆tj−1 +∆tj

, |sm|}. (16)

The proof of Th. 2 is performed here only for λ ∈ [0, 1) in (3). The case of λ = 1
exceeds the scope of this paper. By [26] (one assumes here γ ∈ C4 sampled more-
or-less uniformly along (2)), each pair of initial and terminal velocities satis�es
(for k = 0,m):

vk = O(δ1−λm ) and sk = O(δλ−1
m ),
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thus yielding the following asymptotics (for k = 0,m):

∥vk∥ = O(δ1−λm ) and |sk| = O(δλ−1
m ). (17)

In order to determine the asymptotics from the right-hand side of (15) (and of
(16)) the remaining middle terms are now examined. Substituting (10) into (15)
(and (12) into (16)) renders two expressions (for j = 1, . . . ,m− 1):

Iv = 3

∥∥∥∥∥∥
∆t̂j

qj−qj−1

∆t̂j−1
+∆t̂j−1

qj+1−qj
∆t̂j

∆t̂j−1 +∆t̂j

∥∥∥∥∥∥ , Is = 3

∣∣∣∣∣∣
∆tj

t̂j−t̂j−1

∆tj−1
+∆tj−1

t̂j+1−t̂j
∆tj

∆tj−1 +∆tj

∣∣∣∣∣∣
(18)

which asymptotics needs further analysis. In doing so, recall that the curve γ as
a regular curve can be parameterized by arc-length parameterization (see e.g.
[5] or [15]) yielding ∥γ̇∥ = 1. Hence upon di�erentiating both sides ∥γ̇(t)∥2 =
⟨γ̇(t)|γ̇(t)⟩ = 1 the orthogonality condition ⟨γ̇(t)|γ̈(t)⟩ = 0 follows. Consequently
Taylor expansion applied to γ renders the following (as ∥w∥2 = ⟨w|w⟩):

t̂j+1 − t̂j = ∥γ(tj+1)− γ(tj)∥λ

= (tj+1 − tj)
λ)∥γ̇(tj) +

(tj+1 − tj)

2
γ̈(tj) +O((tj+1 − tj)

2)∥λ

= (tj+1 − tj)
λ)

(
∥γ̇(tj) +

(tj+1 − tj)

2
γ̈(tj) +O((tj+1 − tj)

2)∥2
)λ

2

= (tj+1 − tj)
λ[1 +O((tj+1 − tj)

2]
λ
2 . (19)

Again Taylor expansion of f(y) = (1 + y)
λ
2 yields f(y) = 1 + λ

2 (1 + ξ)
λ
2 −1y for

some ξ ∈ [0, y] or ξ ∈ [0, y]. Thus for such ξ (if y is bounded) the expression λ
2 (1+

ξ)
λ
2 −1 = O(1) and therefore f(y) = 1+O(y). Substituting for y = O((tj+1−tj)2)

in the latter together with (19) results in:

t̂j+1−t̂j = (tj+1−tj)λ(1+O((tj+1−tj)2) = (tj+1−tj)λ+O((tj+1−tj)2+λ). (20)

Combining the latter with Taylor expansion of γ leads to: (qj+1 − qj)/∆t̂j

=
γ(tj+1)− γ(tj)

t̂j+1 − t̂j
=

γ(tj+1)− γ(tj)

∥γ(tj+1)− γ(tj)∥λ

=
(tj+1 − tj)[γ̇(tj)+

(tj+1−tj)
2 γ̈(tj)+O((tj+1 − tj)

2)]

(tj+1 − tj)λ[1 +O((tj+1 − tj)2)]

= (tj+1 − tj)
1−λ[γ̇(tj) +

(tj+1 − tj)

2
γ̈(tj) +O((tj+1 − tj)

2)][1 +O((tj+1 − tj)
2)]

= (tj+1 − tj)
1−λ(O(1) +O((tj+1 − tj)

2) +O((tj+1 − tj)
4)

= O(δ1−λm ) +O(δ3−λm ) = O(δ1−λm ). (21)

Analogously one arrives at

qj − qj−1

∆t̂j−1

= O(δ1−λm ). (22)
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Coupling ∆t̂j−k/(∆t̂j−1 +∆t̂j) = O(1) (for k = 0, 1) with (21) and (22) renders
the asymptotics of the �rst formula from (18) as Iv = O(δ1−λm ). The latter
together with (15) and (17) yields (for all i = 0, 1, 2, . . . ,m):

∥vi∥ = O(δ1−λm ). (23)

Similarly, by (20) the following holds (by more-or-less uniformity of T ):

t̂j+1 − t̂j
∆tj

= (tj+1 − tj)
λ−1(1 +O((tj+1 − tj)

2) = O(δλ−1
m ). (24)

Analogously one obtains (again by more-or-less uniformity of T ):

t̂j − t̂j−1

∆tj−1
= (tj − tj−1)

λ−1(1 +O((tj − tj−1)
2) = O(δλ−1

m ). (25)

As previously, coupling ∆tj−k/(∆tj−1+∆tj) = O(1) (for k = 0, 1) together with
(24) and (25) guarantees the second formula in (18) as Is = O(δλ−1

m ). Hence by
(16) and (17) the following holds (for all i = 0, 1, 2, . . . ,m):

|si| = O(δλ−1
m ). (26)

We are ready now to determine the asymptotics of the expression f(t) = (γ̌MC
3 ◦

ψMC
3 )(t)− γ(t) over [0, T ], which permits to establish the order in γ estimation

by γ̌MC
3 ◦ψMC

3 . Evidently, in doing so, it su�ces to examine the latter over each
sub-segment Ii = [ti, ti+1] i.e. for each fi(t) = (γ̌MC

3,i ◦ψMC
3,i )(t)−γ(t). From now

on, to abbreviate the notation shorter symbols γ̌3,i = γ̌MC
3,i and ψ3,i = ψMC

3,i are
used. Since fi(ti+k) = 0 (for k = 0, 1) by Hadamard's Lemma [33] and chain
rule one arrives at (for t ∈ Ii):

fi(t) = (t−ti)(t−ti+1)O(f̈i) = (t−t1)(t−ti+1)O
(
γ̌′′3,iψ̇

2
3,i + γ̌′3,iψ̈3,i − γ̈

)
. (27)

Newton Interpolation formula [4] leads to:

ψ̇3,i(t) = ψ3,i[ti, ti] + 2ψ3,i[ti, ti, ti+1](t− ti)
+ψ3,i[ti, ti, ti+1, ti+1](2(t− ti)(t− ti+1) + (t− ti)

2). (28)

Upon combining (2), (24), (25) with (26) one obtains:

ψ3,i[ti, ti] = si = O(δλ−1
m ),

ψ3,i[ti, ti, ti+1](t− ti) = (ψ3,i[ti, ti+1]− si)
t− ti

ti+1 − ti
= (O(δλ−1

m ) +O(δλ−1
m ))O(1)

= O(δλ−1
m ),

ψ3,i[ti, ti, ti+1, ti+1] =
si+1−ψi,3[ti, ti+1]

(ti+1−ti)2
−ψ3,i[ti,ti, ti+1](ti+1−ti)

(ti+1−ti)2
=O(δλ−3

m ). (29)

Substituting now (29) into (28) renders:

ψ̇3,i(t) = O(δλ−1
m ) and ψ̇2

3,i(t) = O(δ2λ−2
m ). (30)
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A simple inspection combined with (29) leads to:

ψ̈3,i(t) = 2ψ3,i[ti, ti, ti+1] + 2ψ3,i[ti, ti, ti+1, ti+1](2(t− ti) + (t− ti+1))
= O(δλ−2

m ) +O(δλ−2
m ) = O(δλ−2

m ). (31)

In the next step, the asymptotics γ̌′3,i and γ̌′′3,i is investigated. In doing so,
Newton interpolation formula [4] applied to γ̌3,i yields:

γ̌′3,i(t̂) = γ̌3,i[t̂i, t̂i] + 2γ̌3,i[t̂i, t̂i, t̂i+1](t̂− t̂i)

+γ̌3,i[t̂i, t̂i, t̂i+1, t̂i+1](2(t̂− t̂i)(t̂− t̂i+1) + (t̂− t̂i)
2). (32)

Coupling together (20), (21) and (23) renders:

γ̌3,i[t̂i, t̂i] = vi = O(δ1−λm ),

γ̌3,i[t̂i, t̂i, t̂i+1](t̂− t̂i) =
γ̌3,i[t̂i, t̂i+1]− vi

t̂i+1 − t̂i
(t̂− t̂i)

=
O(δ1−2λ

m )

1 +O((ti+1 − ti)2)
(t̂− t̂i) = O(δ1−λm ). (33)

To justify the last step in (33), note that Mean Value Th. with (30) (for all

t ∈ Ii) yield t̂− t̂i =
ψ3,i(t)−ψ3,i(ti)

t−ti (t− ti) = ψ̇3,i(ξ)(t− ti) = O(δλ−1
m ) ·O(δm) =

O(δλm). Additionally, Taylor expansion applied to f(x) = (1 + x2)−1 renders
(1 +O(δ2m))−1 = 1 +O(δ2m). A similar argument as used in (33) (see also (29))
assures the following (for t ∈ Ii):

γ̌3,i[t̂i, t̂i, t̂i+1, t̂i+1](2(t̂−t̂i)(t̂−t̂i+1)+(t̂−t̂i)2)=O(δ1−3λ
m )O(δ2λm )=O(δ1−λm ). (34)

Consequently, both (33) with (34) result in the asymptotics:

γ̌′3,i(t̂) = O(δ1−λm ) and γ̌′′3,i(t̂) = O(δ1−2λ
m ). (35)

Finally, substituting (30), (31) and (35) into (27) renders the following asymp-
totics (over each Ii and λ ∈ [0, 1)):

fi(t) = O(δ2m)
(
O(δm

1−2λ)O(δ2λ−2m )+O(δ1−λm )O(δλ−2m )+O(1)
)

= O(δm) +O(δ2m) = O(δm). (36)

This completes the proof of (13) in Th. 2. The case of λ = 1 rendering a
quartic convergence order (14) is here omitted. Note that in (36) the term
(t − ti)(t − ti+1)γ̈(t) = O(δ2m) forms the intrinsic quadratic barrier annihilat-
ing any improvement of the asymptotics in O(γ̌′′3,iψ̇

2
3,i+ γ̌′3,iψ̈3,i) beyond O(δ2m).

Thus the argument used herein prevails only for λ ∈ [0, 1) and as such needs
modi�cation for λ = 1. Alternatively, recall that λ = 1 in (3) is analyzed in [10]
for complete spline γ̂CS3 only, i.e. with v0 and vm a priori given. The adaptation
of the latter to γ̂MC

3 forms an alternative tool to justify (14). □

The next section reports on numerical testing con�rming the asymptotics
together with its sharpness established in Th. 2.
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5 Experiments

In this section, a numerical veri�cation of the asymptotics α(λ) (and its sharp-
ness) from Th. 2 is conducted. Recall that, given �xed λ ∈ [0, 1], by sharpness
(see Def. 4) we understand the existence of at least one curve γ ∈ C4(0, T ]) and
one special family T of more-or-less uniform sampling (2) such that the asymp-

totics O(δ
α(λ)
m ) in di�erence γ̌MC

3 ◦ψMC
3 −γ (over [0, T ]) is not faster than α(λ).

A con�rmation of (13) and (14) indicates again on an unexpected left-hand side
discontinuity in α(λ) at λ = 1.

All tests are performed in Mathematica 12.0 and use to two types of skew-
symmetric more-or-less uniform samplings. The �rst one (for ti ∈ [0, 1]) is de�ned
as follows:

ti =


i
m + 1

2m , for i = 4k + 1;

i
m − 1

2m , for i = 4k + 3;

i
m , for i even;

(37)

with Kl = (1/2) and Ku = (3/2) introduced in (2). The second sampling reads
as:

ti =
i

m
+

(−1)i+1

3m
, (38)

with constants Kl = (1/2) and Ku = (5/3) from (2). For a given m, the error
Em, between γ and reparameterized spline γ̌MC

3 ◦ ψMC
3 is determined by the

formula:

Em = max
t∈[0,1]

∥(γ̌MC
3 ◦ ψMC

3 )(t)− γ(t)∥.

The latter is computed over each sub-interval [ti, ti+1] (for i = 0, · · · ,m− 1) by
using Mathematica function - FindMaximum and then upon taking the maximal
values from all segments' optima. In order to approximate α(λ) we calculate
�rst Em for mmin ≤ m ≤ mmax, where mmin and mmax are su�ciently large
�xed constants. Then a linear regression yielding a function y(x) = ᾱ(λ)x + b
is applied to {(log(m),− log(Em))}mmax

mmin
. Mathematica built-in function Linear-

ModelFit extracts a coe�cient ᾱ(λ) ≈ α(λ). A full justi�cation of this procedure
to approximate α(λ) by ᾱ(λ) is given in [17]. Note also that since both (13) and
(14) have asymptotic character the constants mmin < mmax should be taken
as su�ciently large. On other hand, a potential negative impact of machine
rounding-o� errors stipulates these two constants not to exceed big values. In
practice, the appropriate choices for mmin < mmax are adjusted each time dur-
ing the experimental phase. The tests conducted here employ three types of C∞

regular curves: an epitrochoid γep in E2 (i.e. planar a curve) and two curves a
conical spiral γcs and a quadratic helix γqh both in E3 (i.e. 3D curves). All tested
curves are sampled more-or-less uniformly (3) according to either (37) or (38).

Example 1. Consider a regular planar epitrochoid γep : [0, 1] → E2 ,

γep(t) = (4 cos(t)− 0.15 cos(4πt), 4 sin(t)− 0.15 sin(4πt)) . (39)
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Fig. 1. An epitrochoid γep (39) sampled along (dotted): a) (37) or b) (38) and c) �tted
γ̂MC with (38) & λ = 0 for m = 15.

Fig. 1(a) (or Fig. 1(b)) contains the plots of γep sampled (here m = 15)
according to either (37) (or (38)).

The respective linear regression based estimates ᾱ(λ) ≈ α(λ) (for various
λ ∈ [0, 1]) are computed here for mmin = 60 ≤ m ≤ mmax = 120. The numerical
results contained in Table 1 con�rm the sharpness of (13) and (14) for λ ∈
{0.0, 0.1, 0.3, 0.5, 0.7} and yield marginally faster (though still consistent with
asymptotics from Th. (2)) α(λ) for λ ≈ 1. Note that for λ = 1 we have mmin =
240 ≤ m ≤ mmax = 270.

Table 1. Computed ᾱ(λ) ≈ α(λ) in (13) & (14) for γep from (39) and various λ ∈ [0, 1].

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (37) 1.007 1.013 1.028 1.055 1.116 1.377 4.274
ᾱ(λ) for (38) 1.037 1.036 1.042 1.066 1.143 1.483 4.259
α(λ) in Th. 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0

We pass now to the example with a quadratic helix in E3.

Example 2. Let a quadratic helix γqh : [0, 1] → E3 be de�ned as:

γqh(t) = (1.5 cos(2πt),
2πt

4
sin(2πt), t). (40)

Again Fig. 2(a) (or Fig. 2(b)) illustrates the trajectories of γqh sampled ac-
cording to either (37) or (38), with m = 15.

As previously, a linear regression estimating ᾱ(λ) ≈ α(λ) from Th. 2 is used
here, for m ranging between 100 ≤ m ≤ 160 with various λ ∈ [0, 1].

The coe�cients ᾱ(λ) (see Table 2) computed numerically sharply coincide
with those speci�ed in (13) and (14) (with marginally faster for λ = 0.9).
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a) b) c)

Fig. 2. A quadratic helix γqh (40) sampled along (dotted): a) (37) or b) (38) and c)
�tted γ̂MC with (38) & λ = 0.5 for m = 15.

Table 2. Computed ᾱ(λ) ≈ α(λ) in (13) & (14) for γqh from (40) and various λ ∈ [0, 1].

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (37) 1.001 1.002 1.007 1.016 1.038 1.187 3.916
ᾱ(λ) for (38) 0.001 1.001 0.005 1.017 1.056 1.322 3.908
α(λ) in Th. 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0

Finally, a conical spiral γcs in E3 is tested.

Example 3. Let a conical spiral γcs : [0, 1] → E3 be de�ned as follows:

γcs(t) = (2 sin(0.5πt) cos(2πt), 2 sin(0.5πt) sin(2πt), 2 cos(0.5πt)). (41)

Fig. 3(a) (or Fig. 3(b)) contains the plots of γcs sampled more-or-less uniformly
along either (37) or (38) (here m = 15).

a) b) c)

Fig. 3. A conical spiral γcs (41) sampled along (dotted): a) (37) or b) (38) and c) �tted
γ̂MC with (38) & λ = 0.3 for m = 15.

In order to compute ᾱ(λ) ≈ α(λ) estimating the asymptotics from Th. 2
again a linear regression is used (as explained at the beginning of this section)
for 60 ≤ m ≤ 120 and varying λ ∈ [0, 1]. Table 3 enlists numerically computed
estimates ᾱ(λ) ≈ α(λ) for various λ ∈ [0, 1] and for samplings (37) and (38).
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Evidently these numerical results re-emphasize the sharpness of the asymptotics
determined by (13) and (14), with marginally faster case for λ = 0.9.

Table 3. Computed ᾱ(λ) ≈ α(λ) in (13) & (14) for γcs from (41) and various λ ∈ [0, 1].

λ 0.0 0.1 0.3 0.5 0.7 0.9 1.0

ᾱ(λ) for (37) 0.999 1.002 1.008 1.019 1.051 1.264 3.939
ᾱ(λ) for (38) 0.991 0.992 0.999 1.018 1.078 1.448 3.955
α(λ) in Th. 2 1.0 1.0 1.0 1.0 1.0 1.0 4.0

The experiments from this section con�rm the asymptotics (and its sharp-
ness) established in Th. 2 - see (13) and (14).

6 Conclusion

This work examines the asymptotics in approximating a regular parametric curve
γ in En by a modi�ed complete spline γ̂MC

3 (see Section 3) based on reduced data
Qm (sampled more-or-less uniformly (2)). The unknown interpolation knots T
are compensated by T̂ with the aid of exponential parameterization (3) depend-
ing on a single parameter λ ∈ [0, 1] and Qm dispersion. The main theoretical
contribution (see Th. 2) proves a linear convergence order in γ estimation by γ̂MC

3

for any λ ∈ [0, 1). The numerical tests con�rm the sharpness of both asymptotics
from Th. 2 including the case of λ = 1, where a quartic convergence order in (14)
prevails. Noticeably, though the case of λ ∈ [0, 1) yields merely linear asymp-
totics (much slower than a quartic one for λ = 1) this case still provides one
degree of freedom λ ∈ [0, 1) to model the interpolant, should extra constraints
on �tting Qm are imposed. In particular, one may select the knots within the
family (3) (i.e. with the optimal parameter λopt ∈ [0, 1)) to minimize the �ac-

celeration mean�
∫ T̂
0
∥γ̂′′(t̂)∥2dt̂ (see e.g. [21], [22] and [23]). In contrast, such

�exibility representing additional curve controlling tool is not available anymore
for arbitrary �xed λ including the case of λ = 1. Such degree of freedom can still
be preserved (once λ ∈ [0, 1] is relaxed) at the cost of potentially decelerating
the asymptotics (i.e. to a linear order) in trajectory estimation.

Related work and some applications (in computer graphics and vision, image
processing and engineering) on �tting reduced data with various Ck (with k =
0, 1, 2) interpolation schemes γ̂ based on alternative recipes T̂ to compensate the
unknown knots T can be found e.g. in [1], [3], [8], [9], [10], [13], [16], [18], [19],
[28], [30], [32], [34], [36], [37] or [40].
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