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Abstract. Fitting Gaussian Mixture Models (GMMs) to one-dimensional
data is a fundamental task in machine learning, traditionally addressed
using the Expectation-Maximization (EM) algorithm. However, EM lacks
inherent mechanisms to enforce separation between mixture components,
a critical requirement in domains like medical research where distinct
subgroups must be identified. Recently, the Distribution Optimization
(DO) framework addressed this limitation by reformulating GMM esti-
mation as a chi-squared goodness-of-fit minimization problem with an
overlap penalty to enhance separation. However, its reliance on equi-
width binning and genetic algorithms can limit accuracy and scalability.
In this paper, we refine the DO framework in two key ways: (1) replacing
equiwidth binning with Mann–Wald’s equiprobable cells to improve esti-
mation accuracy, and (2) adopting advanced Differential Evolution (DE)
for more robust optimization of the high-dimensional parameter space.
Through extensive experiments on synthetic and real-world datasets, we
demonstrate that our refined approach significantly enhances accuracy,
stability, and scalability compared to the original DO method.

Keywords: Gaussian Mixture Model · Minimum Chi-squared Estima-
tion · Expectation Maximization · Differential Evolution · Distribution
Optimization

1 Introduction

Gaussian Mixture Models are a cornerstone of modern statistical modeling, of-
fering a powerful framework for capturing complex, multimodal distributions.
By representing a probability density as a weighted sum of Gaussian compo-
nents, GMMs have become essential across a wide array of disciplines, includ-
ing machine learning, signal processing, bioinformatics, and medicine. In med-
ical research, GMMs are well-suited for uncovering latent structures in single-
dimensional data, with applications such as clustering patient scores, analyzing
pain levels in rheumatoid arthritis [10], assessing diabetes risk [12], and evaluat-
ing olfactory function in clinical settings [11]. This suitability stems from their
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theoretical foundation: many biological indicators arise from the cumulative ef-
fect of multiple underlying processes, aligning with the justification for normal
distributions based on the central limit theorems.

Despite their widespread use, estimating GMM parameters accurately re-
mains challenging, especially when overlap between components must be con-
trolled or when reliable initial guesses are difficult to obtain. The classical ap-
proach is based on maximum likelihood estimation (MLE) and typically realized
via the Expectation-Maximization algorithm. While EM offers computational
efficiency and theoretical guarantees of convergence to a local optimum [24], it
lacks built-in mechanisms for enforcing separation between mixture components,
potentially complicating model interpretation in clinical applications where dis-
tinct, well-defined clusters are desired [7].

To overcome these limitations, alternative methods based on minimum chi-
squared estimation (MCSE) have emerged. Notably, Lerch et al. [7] introduced
the Distribution Optimization (DO) framework, which reimagines GMM pa-
rameter estimation as a constrained optimization problem. By minimizing a chi-
squared goodness-of-fit statistic and incorporating an explicit penalty for compo-
nent overlap, DO provides an intuitive mechanism to enforce mode separation, an
advantage particularly relevant to medical applications where distinct subgroups
must be identified. Yet, the original DO formulation has shortcomings: it employs
equiwidth binning (Keating’s formula), which can misalign with the data dis-
tribution and introduce bias, especially when components are well-separated or
exhibit unequal variances, and it relies on genetic algorithms (GAs), which may
lack the robustness required for higher-dimensional optimization landscapes.

This paper refines and extends the DO framework by addressing these critical
challenges through two key innovations:

1. We replace equiwidth binning with Mann–Wald’s equiprobable binning [16],
which aligns bin boundaries with the underlying data distribution. This ap-
proach reduces bias and enhances estimation accuracy across diverse scenar-
ios, from well-separated to overlapping components.

2. We substitute the original GA with advanced Differential Evolution (DE)
variants, such as SHADE, L-SHADE, and iL-SHADE [20], [21], [2], known
for their superior performance in continuous optimization. These adaptive al-
gorithms improve convergence and scalability, particularly as the complexity
of the mixture model grows.

Through rigorous experiments on synthetic and real-world datasets, we demon-
strate that these refinements, equiprobable binning and DE-based optimization,
significantly enhance the robustness, accuracy, and scalability of chi-squared-
based GMM estimation.

2 Gaussian Mixture Model

The Gaussian Mixture Model is a parametric statistical model that represents
a probability distribution as a weighted sum of multiple Gaussian components
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[18]. In the one-dimensional case with M components, the probability density
function is given by:
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represents the i-th Gaussian component with mean µi and

variance σ2
i , and αi is the corresponding mixing coefficient. The complete pa-

rameter set λ is defined as:

λ = {α1, . . . , αM , σ1, . . . , σM , µ1, . . . , µM} ∈ R3M ,

subject to the constraints:

αi ≥ 0,

M∑
i=1

αi = 1, σi > 0.

For notational convenience, we denote the parameters associated with the i-th
component as:

λi = (αi, σi, µi) ∈ R3.

2.1 Parameter estimation

Typically, the parameters of a GMM are estimated through maximum likelihood
estimation, which is commonly carried out using the Expectation-Maximization
algorithm. This work builds upon and extends the chi-squared minimization
framework for GMM parameter estimation introduced by Lerch et al. [7]. We
first summarize their core approach.

Lerch et al. [7] redefined the task of parameter estimation in GMMs as an
optimization problem, leveraging minimum chi-squared. Their approach was mo-
tivated by the need to directly address the challenge of mode separation within
the GMM, a limitation often overlooked in conventional methods. The core of
their method is an objective function that integrates two key metrics: the discrep-
ancy between theoretical and empirical distributions quantified by χ2 statistic,
and a measure of overlap error between components. Conceptually, this can be
viewed as a constrained optimization problem that penalizes mixtures exhibiting
excessive overlap. In doing so, Lerch et al. introduce two important innovations.
First, they minimize χ2 instead of maximizing likelihood. Second, they incorpo-
rate an explicit overlap penalty to improve mode separation. While this penalty
could theoretically be applied to a likelihood-based objective, the choice of χ2

stands out for its computational simplicity. Specifically, χ2 can be calculated
efficiently using binned data, eliminating the need to evaluate likelihood func-
tion for every data point individually. As a result, the χ2-based method offers a
practical advantage, especially when working with large datasets.
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To define the objective function we shall introduce some auxiliary notions.
Let us denote the (one-dimensional) dataset on which the model is trained as X
and

RX = MX −mX , MX = max(X), mX = min(X), n = #X.

The χ2 statistic assessing the goodness of fit is defined in the following way

χ2(λ) =

K∑
j=1

(
#(X ∩ kj)− P (x ∈ kj |λ) · n

)2
P (x ∈ kj |λ) · n

, (1)

where kj denotes the j-th bin (further details are provided in the next section)
and K is the total number of bins. The second component of the objective

ϵoverlap(λ) = max
m=1,...,M

n∑
i=1

min

(
maxj=1,...,M ; j ̸=m (αj · p(xi|λj))

αm · p(xi|λm)
, 1

)
(2)

approximates the area overlapped between neighboring mixture components.
The final objective function is calculated as

f(λ) =

{
+∞ if ϵoverlap(λ) > τoverlap,

χ2(λ) otherwise.
(3)

For a particular dataset, the value of the overlap threshold τoverlap can be chosen
in such a way that components are properly separated. To make the optimization
problem tractable, Lerch et al. [7] further constrain the search domain to the
following subset of a hypercube in R3M :

D =
{
λ ∈ R3M : αi ∈ [0, 1], σi ∈ [0.001 ·RX , 0.1 ·RX ], µi ∈ [mX ,MX ],

M∑
i=1

αi = 1
} (4)

Thus, the final problem is to find λ∗ ∈ D such that

f(λ∗) = min
λ∈D

f(λ). (5)

To solve this problem, Lerch et al. [7] propose the DO algorithm. It is a ge-
netic algorithm (GA) that employs the uniform mutation, the simple arithmetic
crossover and the tournament selection. The weights and the standard deviations
of the initial population are sampled from the uniform distribution, the means
are sampled from the following normal distribution

µi ∼ N
(
mX + i · RX

M + 1
,
RX

5M

)
, i = 1, . . . ,M. (6)
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3 Minimum Chi-Squared Estimation

Minimum chi-squared estimation is a classical technique for parameter estima-
tion based on minimizing Pearson’s chi-squared test statistic:

χ2 =

K∑
i=1

(Oi − Ei)
2

Ei
. (7)

Although it is applied less frequently than MLE, many statisticians have high-
lighted its theoretical and practical merits. In particular, Berkson [1] argued that
MCSE represents a fundamental principle of statistical estimation.

A key issue in applying MCSE to continuous distributions is the necessity of
discretizing data into bins, given that the chi-squared test is inherently designed
for categorical data. This binning process can introduce bias and variability
unless the bins are carefully selected. To address this, Mann and Wald [16]
proposed using equiprobable bins and derived a formula for selecting the optimal
number of such bins:

K = 4

(
2n2

c(α)2

) 1
5

, (8)

where c(α) is the (1−α) quantile of the standard normal distribution (commonly
α = 0.05). Subsequent studies [3,17] later proved that equiprobable binning
yields an unbiased chi-squared test, whereas bins with unequal probabilities do
not. Intuitively, equal-probability boundaries avoid having bins with extremely
low counts, thus reducing the distortion in the chi-squared statistic. This ap-
proach, often referred to as the Mann and Wald formula, remains widely used
in both minimum chi-squared estimation [6] and goodness-of-fit testing [9].

By contrast, Lerch et al. [7] used equiwidth bins rather than equiprobable
bins. They selected the total number of bins, K, using a variant of Keating’s
formula [5], which first computes

σ̂ = min
(
s,

IQR

1.349

)
, (9)

where IQR is the interquartile range, s is the sample standard deviation. Then
K is set by

K =
[RX n

1
3

3.49 σ̂

]
. (10)

Although these binning strategies might appear superficially similar, they can
produce substantial differences in MCSE outcomes.

Figure 1 illustrates how these differing binning choices lead to noticeably
different fitted GMMs. Specifically, using equiwidth bins, as in Lerch et al. [7],
tends to shift the estimated mean values relative to those obtained via Mann
and Wald’s equiprobable bins.

Lerch’s [7] equiwidth strategy is particularly problematic when some com-
ponents of the distribution are well-separated or overlapping. In well-separated
scenarios, bins can end up near-empty in regions between modes. Such bins with
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Fig. 1. Fitted GMMs under two different binning strategies, each run 10 times with
different random seeds. The orange lines represent solutions using equal-width bins
with Keating’s formula, while green lines show solutions using equal-probability bins
with the Mann-Wald method. The consistent pattern across multiple runs demonstrates
that Keating’s method systematically shifts the estimated mean values compared to
the equal-probability approach.

expected counts near zero destabilize the chi-squared statistic, as χ2 become
more sensitive to small fluctuations when Ei is small. Conversely, if two over-
lapping components (especially those with small variance) end up in the same
bin, MCSE struggles to resolve these components and yields parameter estimates
with high variance. Furthermore, because equiwidth bin edges do not adapt to
the observed data distribution, they frequently occur in low-probability regions.
This placement systematically biases parameter estimates, pulling component
means toward less accurate values, a phenomenon clearly illustrated in Figure 1.
In contrast, the equiprobable binning strategy proposed by Mann and Wald
naturally aligns bin boundaries with high-density regions of the data, leading to
more robust and accurate parameter estimates.

4 Differential Evolution

Differential Evolution (DE) is a population-based stochastic optimization al-
gorithm for continuous search spaces introduced by Storn and Price [19]. DE
evolves a population of candidate solutions through successive generations by
applying mutation, crossover, and selection operators. In the widely adopted
DE/rand/1 scheme, a mutant vector is created by:

vi = xr1 + F (xr2 − xr3) , (11)

where r1, r2, r3 are distinct random indices different from i, and F ∈ (0, 2] is the
scale factor controlling the mutation step size. A trial vector is then generated
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through binomial crossover:

ui,j =

{
vi,j , if rand(0, 1) ≤ CR or j = jrand,

xi,j , otherwise,
(12)

where CR ∈ [0, 1] is the crossover rate and jrand ensures at least one component
from the mutant vector is inherited. In the selection step, the trial vector replaces
the target vector if it yields a better objective function value. Standard parameter
settings such as a population size of 100, F = 0.5, and CR = 0.5 often serve as
a baseline.

4.1 SHADE variants

To improve DE’s robustness, several adaptive strategies have been proposed that
dynamically adjust control parameters based on search performance. SHADE [20]
implements success-history based parameter adaptation. It maintains a historical
memory (of a fixed size) which stores promising F and CR parameter settings.
After each generation, SHADE identifies the F and CR values that successfully
produced offspring superior to their parents. These successful parameters are
aggregated, using a weighted mean that gives greater importance to those yield-
ing larger fitness improvements. This aggregated result then updates one entry
in the historical memory. When generating new candidate solutions, SHADE
draws upon values stored in this memory to guide the selection of F and CR for
the next generation. This data-driven approach, learning from recent success-
ful parameters, provides more reliable and adaptive control compared to static
settings. L-SHADE [21] extends SHADE by incorporating linear population size
reduction, starting with a large population for exploration and gradually re-
ducing it to focus the search. iL-SHADE [2] further refines L-SHADE through
several modifications aimed at enhancing convergence speed and solution quality.
It incorporates mechanisms to promote higher CR values and employs a refined
parameter memory update rule. Additionally, iL-SHADE restricts high F and
low CR values during the initial search phase. A key feature is the linear adapta-
tion of the control parameter p for the current-to-pbest/1 mutation, adjusting
it based on the search progression. These combined enhancements contribute to
iL-SHADE’s standing as a state-of-the-art DE variant [23].

4.2 Motivation

In the IEEE CEC 2006 and 2010 competitions on constrained real-parameter
optimization [8] [15], the majority of submitted algorithms were based on DE,
and DE-variants ultimately claimed top positions in both events. The consistent
success of DE in these competitions can be attributed to its robust mutation
and recombination strategies, which balance exploration and exploitation effec-
tively, even under complex constraints. Beyond constrained optimization, DE-
based methods have exhibited state-of-the-art performance in single-objective
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box-constrained problems, as demonstrated in large-scale benchmarking stud-
ies such as those conducted on the BBOB function suite [23]. Algorithms like
SHADE, L-SHADE, and il-SHADE have repeatedly shown competitive perfor-
mance across a variety of problem classes, underscoring the versatility and ef-
fectiveness of the DE framework. These advances make DE and its variants
well-suited for tackling constrained optimization problems, including those un-
der death-penalty constraints.

In addition to DE-based methods, we also performed preliminary studies
using CMA-ES [4], a covariance-matrix-adaptation evolution strategy widely
recognized for its effectiveness in continuous optimization. However, our initial
experiments revealed that CMA-ES struggled to handle the constraint effec-
tively, yielding inferior performance compared to DE variants. Given the poor
performance in our pilot tests we excluded CMA-ES from further analyses.

5 Experimental Procedure

To comprehensively evaluate binning methods and optimization algorithms for
fitting one-dimensional GMMs we chose to work with synthetically generated
datasets. Synthetic data allow us to control the underlying distribution and
assess fitted models against the ground truth. We measure performance with
the Jensen-Shannon Divergence (JSD), because it is independent from the op-
timization objectives of the methods compared (χ2 for MCSE, likelihood for
EM). JSD’s symmetry, finiteness, and information-theoretic interpretation make
it well-suited for comparing continuous distributions.

Moreover, because established benchmarks for one-dimensional GMMs are
scarce, we opted to produce test datasets with diverse parameter configurations.
Our generation procedure is based on an iterative rejection sampling strategy
to ensure that each chosen parameter set lies within the feasible domain of our
optimization problem (Eq. (4)). Specifically, we generate candidate mixtures by
sampling (i) the mixture weights (enforcing a minimum weight to avoid degen-
erate components), (ii) the component means within a specified range, and (iii)
the corresponding standard deviations within the bounds stipulated by our do-
main constraints. For each candidate, we then sample data by drawing random
samples from the resulting mixture distribution. A dataset is accepted only if
it meets the criteria that all component weights, means, and standard devia-
tions remain valid and that the mixture components exhibit an overlap in a
specified interval (which can be adjusted). This generation process guarantees
that the ground truth distributions are feasible solutions – a crucial aspect that
ensures both MCSE-based methods and EM can theoretically achieve the opti-
mal solution, addressing a limitation in previous comparative studies [13] where
the feasibility of the underlying distribution was often overlooked, potentially
biasing results in favor of one method over the other.

By generating synthetic datasets, we can further investigate how varying the
number of mixture components influences each method’s robustness. To this end,
we construct 100 datasets for each component count between 2 and 10, result-
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ing in a total of 900 datasets. For each dataset, we run each method 10 times
with different random seeds to assess initialization effects. The performance of
each run is then quantified by computing the Jensen–Shannon Divergence be-
tween the fitted model and the ground truth. We aggregate these results by
comparing methods through rank-based analyses and by reporting the average
Jensen–Shannon Divergence across all runs. Specifically, we benchmark the orig-
inal Distribution Optimization approach (denoted as GA with Keating) against
three alternatives: a Genetic Algorithm variant with Mann–Wald binning, an
iL-SHADE algorithm with Mann–Wald binning, and the classical Expectation
Maximization technique. This experimental design ensures a thorough assess-
ment of how each method’s stability and accuracy respond to changes in both
the number of mixture components and the random seed.

Furthermore, our experimental design enables a detailed analysis of the in-
dividual contributions of binning strategies and optimization algorithms to the
overall performance. By comparing the original GA with Keating and the GA
with Mann–Wald binning, we can isolate and quantify the impact of the bin-
ning strategy, as both methods employ the same optimization algorithm. Any
performance differences between these two methods can thus be attributed to
the choice of binning. Similarly, the comparison between GA with Mann–Wald
and iL-SHADE with Mann–Wald allows us to evaluate the effect of employing
a more sophisticated optimization algorithm, iL-SHADE, while maintaining the
same binning approach. In addition, by incorporating the classical EM algorithm
into our benchmarking suite, we can assess the performance of the Distribution
Optimization approach relative to a well-established standard in the field. Pre-
vious studies comparing the DO approach with EM have often relied on a much
smaller number of datasets, which may not fully capture their behavior across
diverse scenarios.

Finally, we compare optimization algorithms1 (GA, DE, SHADE, L-SHADE,
iL-SHADE) under fixed Mann-Wald binning. Each algorithm runs 10 times per
dataset with different seeds, recording the best objective value f (Eq. (3)) after
10,000 evaluations – a standard budget sufficient for convergence across algo-
rithms in our setting. We evaluate consistency, effectiveness, and robustness to
the number of components, which scales the solution space dimensionality.

5.1 Real-World Datasets

To complement our synthetic experiments and evaluate the generalizability of the
algorithms, we analyze three real-world datasets. These datasets were previously
used to benchmark Gaussian Mixture Model implementations in R packages [14].
In the absence of ground truth distributions, we perform visual and qualitative
assessments of the fitted GMMs.

1 All implementation details are available in the accompanying GitHub repository at
https://github.com/agh-a2s/distribution-optimization.
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1. Truck Driving: Sourced from the AdaptGauss R package [22], this dataset
captures the time taken by trucks to reach seaports. We model it with a
three-component GMM.

2. Iris ICA: This dataset comprises the first independent component obtained
via Independent Component Analysis (ICA) applied to Fisher’s Iris dataset.
The one-dimensional projection corresponds to the three Iris species, justi-
fying a three-component GMM to model the species-specific distributions.

3. Chromatogram Time: Available in the opGMMassessment R package [14],
this dataset contains chromatograms of five distinct lysophosphatidic acids.
A five-component GMM is fitted to represent the separate peaks associated
with each acid.

In our real-world study, we narrow our focus to two algorithms: the origi-
nal DO approach, which uses a GA with Keating binning, and our enhanced
version, which employs Mann-Wald binning and the iL-SHADE. This deliberate
restriction allows us to directly evaluate the practical impact of our proposed
modifications. By comparing these two methods, we can assess their effects on
convergence stability and the variability of fitted mixture models, determining
whether the improvements seen in synthetic experiments translate to real-world
scenarios.

6 Results

Figure 2 evaluates the performance of four methods for GMM estimation: GA
with Keating (original Distribution Optimization algorithm), GA with Mann-
Wald, iL-SHADE with Mann-Wald, and EM across synthetic datasets with mix-
ture components ranging from 2 to 10. The left panel displays the average rank
based on JSD, where a lower rank indicates better performance, while the right
panel shows the average JSD value, with lower values reflecting closer fits to
the ground truth. For datasets with fewer components (2–4), methods using
Mann-Wald binning (GA with Mann-Wald and iL-SHADE with Mann-Wald)
achieve JSD values and ranks comparable to EM. However, as the number of
components increases beyond 4, EM consistently outperforms the evolutionary
methods, securing the lowest rank (near 1) and JSD values (0.01). This trend
highlights EM’s superior efficacy in optimizing complex mixtures. Among the
evolutionary methods, iL-SHADE with Mann-Wald maintains the best perfor-
mance, with JSD values rising modestly to approximately 0.02 by 10 compo-
nents. In contrast, GA with Mann-Wald and GA with Keating show declining
performance, with JSD values climbing to 0.06 and 0.08 respectively, as com-
plexity grows. The transition from Keating to Mann-Wald binning with the GA
delivers a consistent improvement, reducing JSD values by a nearly constant
margin across all component counts. More striking, however, is the optimization
algorithm’s influence on performance scalability. While GA with Mann-Wald
exhibits a rapid increase in JSD values with growing mixture complexity, iL-
SHADE with Mann-Wald demonstrates a much slower growth rate, indicating
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that iL-SHADE’s adaptive differential evolution enhances search efficiency in
higher-dimensional spaces compared to genetic algorithms, enabling better han-
dling of increasingly complex mixture models.

Fig. 2. The top left panel reports the average rank (based on JSD), while the top right
panel presents the corresponding average JSD value. Both metrics are aggregated over
100 synthetic datasets per component count, with 10 runs per dataset. The plot in the
second row presents distributions of JSD values.

Figure 3 compares five optimization algorithms – DE, GA, SHADE, LSHADE,
and iL-SHADE – using the final objective function value (Eq. 3) under fixed
Mann-Wald binning. The left panel shows the average rank (lower is better),
and the right panel presents the average function value (lower indicates bet-
ter solutions) across component counts from 2 to 10. iL-SHADE consistently
achieves the lowest rank and function values, demonstrating robust and effective
optimization. LSHADE follows closely, maintaining strong performance, while
SHADE and GA rank progressively higher (worse) and yield poorer function
values, especially as the number of components increases. These findings un-
derscore iL-SHADE’s superior ability to handle multidimensional optimization
problems.

6.1 Real-World Datasets

Figure 4 presents three real-world datasets, each overlaid with the Gaussian
Mixture Model fits from the GA using Keating and from iL-SHADE employ-
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Fig. 3. The left panel reports the average rank (based on objective function value),
while the right panel presents the corresponding average objective function value. Both
metrics are aggregated over the same datasets as in Fig.2.

ing Mann-Wald, repeated ten times with distinct random seeds. Several clear
patterns emerge:

– Truck Driving (top). The iL-SHADE solutions demonstrate consistently
lower variability across runs and exhibit a closer alignment with the peaks.
However, both models effectively capture the dataset’s key structural fea-
tures While subtle differences are present, it remains unclear which method
offers a superior fit.

– Iris ICA (middle). Both methods capture the main mode near 1.0, but
GA with Keating often broadens this peak excessively or shifts it (to the
right). Meanwhile, iL-SHADE with Mann-Wald consistently converges on a
sharper peak that more accurately matches the empirical histogram. Across
repeated runs, GA-based fits fluctuate considerably and produce both under-
estimated and over-estimated standard deviations, whereas iL-SHADE re-
mains stable and yields nearly identical fits each time.

– Chromatogram Time (bottom). Here, the data contain five well-separated
peaks. iL-SHADE with Mann-Wald again provides cohesive mixtures with
tightly estimated component means and variances, resulting in visually ro-
bust fits for each distinct mode. In contrast, GA with Keating occasionally
merges or splits peaks unnecessarily and shows a tendency to decrease the
component widths.

Overall, the GA with Keating approach often struggles to estimate the correct
mean locations and realistic standard deviations for the mixture components,
often generating overly narrow or broadened peaks that fail to capture the true
distributions. By comparison, iL-SHADE with Mann-Wald not only yields more
stable solutions over multiple runs but also offers more precise alignment with
the empirical data, indicating stronger convergence properties and more reliable
mixture fits.
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Fig. 4. Three real-world datasets (histograms) alongside the ten GMM fits of two
methods: GA with Keating and iL-SHADE with Mann-Wald.

7 Conclusions

This paper examined strategies for estimating one-dimensional GMMs with a
death-penalty constraint by focusing on two main aspects: the choice of binning
scheme and the selection of optimization algorithm. Our study can be viewed as
both an in-depth investigation and a refinement of the Distribution Optimization
approach [7]. A key contribution of our work is the adoption of a binning method
better suited to chi-squared-based estimation. Whereas Keating’s equiwidth bins
frequently misalign with the data, Mann–Wald’s equiprobable bins adapt natu-
rally to the underlying distribution. This refinement addresses previous difficul-
ties in fitting GMMs by reducing bias. Among the evolutionary algorithms eval-
uated, iL-SHADE consistently outperformed the Genetic Algorithm and other
DE variants, achieving lower objective function and JSD values. Furthermore,
both iL-SHADE and LSHADE exhibit superior scalability, maintaining effective
performance as the number of mixture components increases. While evolutionary
methods were competitive for low-dimensional mixtures (fewer than four com-
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ponents), the EM algorithm achieved notably better fits for complex mixtures,
consistently obtaining lower JSD values. This highlights EM’s strengths partic-
ularly when the number of mixture components grows and the search space be-
comes more challenging. Nevertheless, evolutionary algorithms remain appealing
when constraints or custom objective functions are required, scenarios in which
EM might not be directly applicable or would require major modifications.

Building upon these findings, several avenues for future research emerge.
A primary direction involves extending the proposed methodology to estimate
multidimensional GMMs. Furthermore, the current work relied exclusively on
the death-penalty approach for handling constraints. Future investigations could
benefit from analyzing other constraint handling techniques.
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