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Abstract. The emergence of collective cooperation within competitive
environments is well-documented in biology, economics, and social sys-
tems. Traditional evolutionary game models primarily investigate the
evolution of strategies within fixed games, neglecting the simultaneous
coevolution of strategies and the environment. Here, we introduce a game
selection model where both the strategies employed by agents and the
games themselves evolve dynamically through evolutionary processes.
Our results demonstrate that these coevolutionary dynamics foster novel
collective phenomena, including changed cooperative interactions. When
applied to structured populations, the network’s architecture, and agent
properties such as risk-aversion and bounded rationality significantly in-
fluences outcomes. By exploring the interplay between these factors, our
model provides novel insights into the persistent social dilemmas observ-
able in real-world systems.

Keywords: Evolutionary Game Theory · Persistent Inequality · Social
Networks · Multiple Equilibria · Agent-Based Modeling

1 Introduction

Wealth inequality has declined on a global scale over the past two centuries,
but persistent and often worsening disparities remain a significant challenge. In
1800, around 80% of the global population was living below the international
poverty line, whereas by 2022 that figure had fallen to approximately 8.5% [1].
This remarkable progress, documented by the World Bank, is tempered by per-
sistent doubts about whether the international poverty line fully captures the
reality of poverty and by the observed slowdown in poverty reduction over the
last decade [2]. The COVID-19 pandemic, which adversely affected economies
worldwide, has underscored the fragility of these gains [3].

Many researchers have sought to explain why low-income groups sometimes be-
come trapped in cycles of poverty despite overall economic growth. They distin-
guish between "friction-driven" and "scarcity-driven" poverty traps. While the
former requires multiple market failures (e.g., lack of credit and indivisibilities in
production); the latter can exist without external frictions due deprivation lead-
ing to strong behavioural changes (e.g.low savings, underinvestment in human
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capital, and myopic decision-making) [4]. In the "poor but neoclassical" view,
such adaptations are rational under the given constrains but as a consequence
lead to a low-level equilibrium trap that individuals or communities struggle
to escape from [5]. Contrary to this is the notion of classical macroeconomic
theories like the Solow model of a single, universal equilibrium to which indi-
viduals and societies ultimately converge [6, 7]. However, both perspectives face
mixed evidence, with there being little evidence for the existence of strong traps
[8], and simultaneously large and persistence difference in wealth accumulation
across individuals and societies [9, 10]. Identifying isolated causal mechanisms
across heterogeneous populations is methodologically and ethically challenging.
In response, modeling studies have become an attractive approach to probe how
various micro-level factors can create and sustain wealth inequalities [11].

Risk aversion has been widely discussed as a catalyst for low-risk, low-reward
behaviors, which may inhibit innovation and drive persistent wealth stratifica-
tion [12]. Agents who are sensitive to risk in uncertain environments often prefer
modest but reliable payoffs, a habit that can limit their capacity to accumulate
resources in the long run. These mechanism are also studied from a modeling
approach [13]. Bounded rationality introduces another layer to this dynamic [14].
Real-world decision-makers operate with finite computational abilities and in-
complete information, often relying on heuristics rather than optimizing [15].
Furthermore we can see that the introduction of risk and uncertainty in the
absence of comprehensive insurance can result in severe changes of the wealth
distribution [16]. This condition can exacerbate poverty traps when agents fail
to adopt better strategies even when they are locally observable.

Social capital, expressed through the structure of the network and the com-
munity’s norms, represents a key dimension in explaining inequality [17, 18].
Network connectivity allows for the exchange of knowledge, the adoption of
profitable strategies, and the accumulation of social influence. Agents with more
connections, or a higher network degree, can more easily access beneficial infor-
mation and resources. In contrast, individuals who remain socially isolated have
fewer opportunities to learn or innovate. For example, upward social mobility
is greatly affected by the number of high SES connections [19]. These networks
can co-evolve as agents establish or sever links based on shared characteristics or
observed success, often reinforcing patterns of inequality. The notion that net-
work degree functions as social capital suggests that the “rich-get-richer” effect
may operate not only financially but also socially.

Computational models have further explored how simple local interaction dy-
namics can spontaneously generate persistent inequality, even absent explicit re-
inforcing mechanisms. For instance, the seminal Sugarscape model demonstrated
that minimal behavioral rules alone can lead to substantial wealth disparities,
despite agents sharing initially homogeneous conditions [20, 21]. Network effects
like preferential attachment and homophily further exacerbate these inequalities,
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allowing certain groups to accumulate disproportionate advantages in resources
and information access [22]. Parallel to this, evolutionary game theory has inves-
tigated how cooperation can emerge and stabilize within competitive environ-
ments [23]. Axelrod’s pioneering simulations of the iterated Prisoner’s Dilemma
showed that repeated interactions enable reciprocity and foster persistent co-
operative behaviors, even among self-interested agents [24]. Subsequent studies
demonstrated that network structures and spatial clustering further promote
cooperation by allowing cooperators to preferentially interact, thus protecting
against exploitation by defectors [25, 26, 27]. These mechanisms highlight the
significance of agent interaction structure in driving social outcomes, motivating
our exploration of the role of social learning (game selection) on inequality.

In this paper, we develop a minimalistic agent-based model to examine how risk
aversion, bounded rationality, and social capital can jointly lead to persistent
inequality. By abstracting away many real-world complexities, the study aims
to identify the core mechanisms of stratification that may persist in diverse con-
texts. We specifically avoided direct self-reinforcing mechanisms to define traps,
or compounding returns to investment. The approach draws on concepts from
evolutionary game theory and network science to capture how agents adapt both
their strategies and type interactions they engage in (e.g. games played). The
experimental design resembles Sadekar et al. work on the emergence of cooper-
ative environments[28]. However, among other important distinctions, we focus
on the resulting emergence of inequality and overall welfare. The results provide
a theoretical account of how uneven wealth distributions may arise even when
initial conditions are relatively homogeneous.

Our findings show that local decisions, strategy adaptation, and rewiring of social
connections can compound even small initial differences into significant wealth
disparities. Boundedly rational agents, who weigh risks conservatively, often set-
tle on suboptimal behaviors, and those with slightly higher connectivity (social
capital) gain preferential access to information (games), magnifying their wealth
advantage over time. This outcome is consistent with real-world observations
that social isolation hinders poverty alleviation and suggests that inequality can
emerge and persist through minimal assumptions alone, without needing elab-
orate institutional or macroeconomic drivers. By illuminating how microlevel
biases in learning and networking reinforce each other, this study underscores
that small interventions or policy changes at the local level, such as reducing
network fragmentation, could prove critical to preventing the entrenchment of
persistent poverty.
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2 Methods

To systematically investigate how minimal micro-level mechanisms generate and
sustain inequality, we employ an agent-based evolutionary game-theoretic frame-
work. This approach enables explicit modeling of individual heterogeneity, adap-
tive behavior, and dynamic interactions within structured populations. The
model comprises four core components: heterogeneous agents characterized by
distinct behavioral parameters, payoff matrices defining economic interactions,
strategy selection driven by bounded rationality, and evolving network dynamics
shaped by wealth-based homophily. Each component is selected to isolate fun-
damental drivers of inequality, abstracting complex real-world interactions into
tractable, theoretically grounded processes. The following subsections formally
detail each model component and its corresponding assumptions.

2.1 Individual Payoff Matrices

We use a general two-player, two-strategy symmetric game as our fundamental
unit of analysis, due to its conceptual simplicity and analytical tractability. This
formulation allows us to abstract essential strategic interactions into a general-
izable framework, making it possible to clearly classify games based on payoff
structures and systematically explore how different strategic conditions shape
inequality dynamics. Formally, the payoff matrix for one agent (Alice) playing
against another agent (Bob) is defined as follows:(

R S
T P

)
(1)−→

(
R− P S − P
T − P 0

)
(2)−→

(
1 S−P

R−P
T−P
R−P 0

)
(3)−→

(
1 U
V 0

)
. (1)

Here, R is the payoff for Alice if both players choose action 1, S is the payoff
for Alice if she chooses action 1 and Bob chooses action 2, and so on. Note
that adding a constant to all payoffs does not change the strategic structure of
the game. Similarly, subtracting P from each payoff does not alter the game’s
structure, which happens in step (1). By relabeling the strategies, we can assume
that R > P . The payoffs lack a natural unit of measure, allowing us to rescale
them by any positive number. In (2) we make a convenient choice is to rescale
by R−P . Lastly we define U = S−P

R−P and V = T−P
R−P . This representation allows

us to analyze games by plotting them in two dimensions, as shown in the figure
below.
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Fig. 1. Games classification - The U -V space of cooperation-defection games. Each
agent is assigned one point in the U -V space. In this paper, we have constrained the
space to U > 0 V > 0 space

Note that there exist qualitative differences between the games depending
on the possible orderings of U and V relative to 0 and 1. There are 12 possible
orderings, corresponding to 12 different types of games, some of which are labeled
in the figure. We limit ourself to the reduction to U and V as defined above.

2.2 Agent Attributes

The stochastic evolutionary game model is populated by heterogeneous agents,
each with unique characteristics that influence their decision-making processes
and economic outcomes. These agent-specific attributes form the foundation for
the emergent inequality patterns observed in the simulation.

Each agent ai in the model is characterized by a set of key attributes that
evolve throughout the simulation. These attributes capture both accumulated
resources and intrinsic behavioral tendencies:
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Wi Wealth: The cumulative payoff accumulated over all previous
time steps. Represents economic resources and serves as the pri-
mary measure of inequality. Compounds over time and influences
both strategic decisions and network formation.

WR
i Recent Wealth: The discounted sum of payoffs accumulated over

the most recent five time steps. Reflects short-term performance
and adaptability, providing a responsive measure of current eco-
nomic trajectory.

ηi Risk Aversion: A fixed parameter indicating willingness to en-
gage in risky decisions. Higher values correspond to higher risk
aversion, leading to selection of strategies with lower potential re-
turns despite uncertainty. Remains constant throughout the sim-
ulation.

λi Bounded Rationality: A fixed cognitive limitation parameter
influencing decision-making precision. Higher values lead to more
optimal strategy selection, while lower values result in more ran-
dom choices. Captures heterogeneity in agents’ ability to evaluate
strategic opportunities.

The dynamic attributes—Wealth and Recent Wealth—are updated after each
interaction based on the payoffs received. The Recent Wealth is calculated using
a discounted sum of recent payoffs to reflect the greater relevance of more recent
outcomes:

WR
i,t =

4∑
j=0

(1− δd)
jPi,t−j , (2)

where δd represents a constant discounting factor (set to 0.05 in our simula-
tions), and Pi,t is the payoff received by agent i at time t. For the initial time
steps where t < 5, the recent wealth equals the total wealth: WR

i,t = Wi,t. The
total Wealth is simply the accumulated payoff over time. The risk aversion η
changes the curvature in the isoelastic utility function:

U(π) =


π1−η − 1

1− η
, η ̸= 1,

ln(π), η = 1,

where π represents consumption and η is the constant relative risk aversion pa-
rameter.

The fixed Risk Aversion (η) and (bounded ) rationality (λ) — influences how
agents select strategies and respond to opportunities. These parameters create
heterogeneity in decision-making processes, allowing the model to explore how
cognitive and behavioral differences contribute to economic stratification even
in the absence of explicit institutional advantages or disadvantages. By incor-
porating these diverse agent attributes, the model captures essential aspects of
economic inequality dynamics: the path-dependence of wealth accumulation, the
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role of risk preferences in economic outcomes, and the impact of decision-making
limitations on long-term prosperity.

At t = 0, all agents are initialized with zero wealth (Wi = 0) and zero recent
wealth (WR

i = 0). The fixed personality traits are sampled from standard prob-
ability distributions:

ηi ∼ N (1, 0.5), λi ∼ Log-N (0, 1). (3)

The inverse risk aversion parameter ηi follows a normal distribution with
mean 1 and standard deviation 0.5, creating a population where most agents
have moderate risk preferences but with meaningful variation. Higher values of
ηi indicate greater willingness to pursue high-risk, high-reward strategies. The
bounded rationality parameter λi follows a lognormal distribution with location
parameter 0 and scale parameter 1, resulting in a right-skewed distribution where
most agents have relatively low cognitive precision while a small number have
significantly higher decision-making capabilities. This distribution reflects em-
pirical observations of skill heterogeneity in human populations [29, 30]. These
fixed traits generate persistent heterogeneity in the agent population, as they
remain constant throughout the simulation, influencing strategic choices and
consequently wealth accumulation patterns over time.

2.3 Payoff Matrix and Updates

Each agent participates in a two-strategy asymmetric game, where their payoff
matrix is given by:

Mi =

[
1 Ui

Vi 0

]
. (4)

Agents interact by playing against a randomly selected opponent, adjusting
their payoffs dynamically based on their dependence parameter δ ∈ [0, 1]. The
dependence parameter determines the degree to which an agent’s payoffs are
influenced by their opponent’s payoffs:

– δ = 0: The agent retains its original payoffs (fully independent play).
– δ = 1: The agent fully adopts the average payoffs between itself and its

opponent (fully dependent play).

For an agent i interacting with opponent j, the adjusted payoffs are computed
as:

U ′
i = (1− δ)Ui + δ

(Ui + Uj)

2
, (5)

V ′
i = (1− δ)Vi + δ

(Vi + Vj)

2
. (6)
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Symmetrically, the opponent updates their payoffs. After updating their pay-
off matrices, agents independently select strategies based on their respective
payoffs. The resulting payoffs are determined by their own updated matrices,
rather than a shared game structure, preserving individual strategic diversity.
This formulation ensures that when δ is low, agents retain distinct payoffs, lead-
ing to heterogeneous strategic behaviors. As δ increases, their payoff structures
converge, promoting more homogeneous interactions while still allowing for dy-
namic adaptation over repeated games.

2.4 Strategy and Game Selection

Strategies are selected using the Logit Quantal Response Equilibrium (LQRE),
an equilibrium concept that accounts for bounded rationality and decision-
making errors by agents [31]. Unlike the classical Nash equilibrium, which as-
sumes perfectly rational agents, the LQRE allows for stochastic behavior where
the probability of choosing a particular strategy increases with its expected pay-
off but remains sensitive to payoff differences. Specifically, agents follow a logistic
choice rule to probabilistically select strategies, given their individual rationality
parameter λi. The probability of agent i selecting a strategy sl is given by:

Pi(sl) =
eλiπi(sl)∑
k e

λiπi(sk)
, (7)

where πi(sj) denotes the expected payoff to agent i from playing strategy sj .
A higher rationality parameter λi indicates more precise optimization and thus
less randomness in strategy choice.

In the specific context of two-strategy interactions, the probability that agent
1 selects strategy S1 (P 1

S1
) in interaction with another agent who selects strategy

S1 with probability P 2
S1

is explicitly represented as:

P 1
S1

=
eλ1(P

2
S1

π1
11+(1−P 2

S1
)π1

12)

eλ1(P 2
S1

π1
11+(1−P 2

S1
)π1

12) + eλ1(P 2
S1

π1
21+(1−P 2

S1
)π1

22)
, (8)

where π1
11, π1

12, π1
21, and π1

22 represent the payoffs to agent 1 corresponding to
the strategy pairs (S1, S1), (S1, S2), (S2, S1), and (S2, S2) respectively. Together
with the other agent this defines a system of two coupled equations with two
unknowns that we solve numerically for each agent up to a certain error tolerance.

Additionally, agents need to make choices w.r.t. what games to play in the
future. Taking into account the wealth difference between players δWij as well
λi and ηi. The utility function U(ηi, δWij) is the isoelastic Utility function.
Specifically, the probability that agent i selects to interact with agent j in a
future game is modeled using a softmax choice rule, closely resembling the QRE:

Pi→j =
exp (λi · U(ηi, δWij))∑
k exp (λi · U(ηi, δWik))

, (9)
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This selection rule enables agents to strategically evaluate and probabilis-
tically select opponents based on wealth-driven incentives, risk attitudes, and
cognitive limitations, contributing to the dynamic evolution of the system’s eco-
nomic interactions.

2.5 Network Topology and Evolution

Homophily—the tendency for agents to associate with others who are similar
to themselves—is a fundamental mechanism in social and economic networks.
In wealth-driven settings, agents with similar wealth are more likely to inter-
act, forming clusters that reflect their economic similarity. A formalization of
such behavior must capture two essential aspects: first, the increased likelihood
of forming connections when agents’ wealth levels are similar; and second, the
possibility of breaking connections when wealth disparities become significant.
Agents interact on a network that updates adaptively based on wealth-driven
homophily. The probability of forming a new link follows:

Pcon =
1

1 + (1− β ·max(|Wi −Wk|, ϵ))−α , (10)

where α and β modulate the strength of homophily. Here, |Wi − Wk| rep-
resents the wealth difference between agents i and k, and ϵ is a small constant
that ensures the expression is well-defined even when the wealth difference is
very small. The parameter β scales the impact of the wealth difference, while
α controls how sharply the connection probability decreases as this difference
increases. Connections may be severed based on the inverse of Pcon.

2.6 Simulation Process

At the start of each simulation, agents are placed onto an initial network topology
generated using either a Random Regular, Watts-Strogatz, or Holme-Kim algo-
rithm. In our simulations, results did not differ meaningfully across these topolo-
gies, suggesting robustness of the observed inequality patterns to the choice of
initial network structure, as we demonstrate convergence to the same equilib-
rium network topology. Agents are initialized with zero wealth, and their fixed
behavioral parameters (bounded rationality λi and inverse risk aversion ηi) are
randomly drawn from the distributions described above. Optionally, entries of
the payoff matrices may be normalized by the sum of all payoffs to facilitate
comparison across games. Each simulation then proceeds for 100 discrete time
steps. Within each time step, every agent sequentially executes the actions sum-
marized in Table 1. Payoffs obtained during interactions are exclusively allocated
to the focal agent, ensuring that the wealth effects are not dominated by network
dynamics.

Throughout the simulation, we specifically track two main outcomes: eco-
nomic inequality—measured by agents’ wealth distributions—and the learning
rate, capturing how rapidly agents adapt their strategy and game choices in
response to past experiences.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_21

https://dx.doi.org/10.1007/978-3-031-97557-8_21
https://dx.doi.org/10.1007/978-3-031-97557-8_21


10 I. Mengesha and D. Roy

1. Opponent Selection An agent selects an opponent randomly from its
current network neighborhood.

2. Payoff Adjustment The agent adjusts its payoffs towards the oppo-
nent’s payoffs based on the dependence parame-
ter δ.

3. Strategy Selection The agent probabilistically selects a strategy
using the Logit Quantal Response Equilibrium
(LQRE), influenced by bounded rationality λi.

4. Play Game Agents play the selected game, receive payoffs,
and update their Wealth Wi and Recent Wealth
WR

i .
5. Choose Game Agents choose future games based on past per-

formance, wealth differences, and individual risk
aversion ηi.

6. Network Update Network connections form or dissolve according
to wealth-driven homophily rules.

Table 1. Detailed simulation steps in the evolutionary game model.

3 Results

In the standard experimental runs, we recover basic stylized facts about broader
income distributions. We first investigate the complementary cumulative distri-
bution of income to compare with empirical data [16]. The results qualitatively
depend on whether the payoff matrices are normalized by the sum of their en-
tries. If not normalized, the income distribution follows a classical power-law
that slightly flattens over time and eventually saturates due to finite size effects.
Similarly, in the normalized case, however, the income distribution approximates
a heavy-tailed form, with visual resemblance to a power-law, although the abso-
lute range is limited (recent wealth spans only a few discrete levels), preventing
definitive tail characterization. This indicates the existence of multiple equilib-
ria with varying productivity. Our inequality measures using the Gini coefficient
confirm this, landing at 0.12 and 0.41 (normalized) respectively. We interpret the
non-normalized case as reflecting technological innovation that increases base-
line productivity. With normalization, there are no overall payoff advantages
between games; instead, games differ primarily in their ease of coordination to-
ward beneficial outcomes.
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Fig. 2. The complementary cumulative distribution of income over a fixed time interval
mimics a classical power-law for standard games and a log-normal shape for normalized
games.

This brings us to learning, as illustrated in Figure 3, where we observe a
single equilibrium in the absence of normalization and multiple equilibria with
normalization. Notice that in the normalized case, the real difference lies in
the concentration level of payoffs, making it easier for players to coordinate
toward them. These preferred states generally correspond to the corners of the
UV state space. Also note that, due to compromises between payoff matrices,
interacting with individuals playing a symmetric but different game effectively
reduces one’s payoff. This contributes to the overall lower wealth observed under
normalization.

Fig. 3. Movement in the UV state space. Generally, attractors correspond to higher
payoffs. In the non-normalized case, the upper right corner is the attractor state, pre-
ferred due to high payoffs for both players. In the normalized case, high singular values
for both U and V are preferred as payoff concentrates value in one cell.
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Lastly, we run experiments on system-level learning by varying the population-
level rationality and risk-aversion parameters. We achieve this by adding a fixed
constant to empirically justified distributions of these parameters. We approx-
imate the learning speed of the system by measuring the rate at which the
number of unique games decreases within the population. As individuals con-
verge toward equilibria, more individuals share similar games. We confirm that
increased risk aversion decreases the learning speed, an effect stronger than the
sensitivity observed with rationality. Interestingly, as rationality increases, adop-
tion speed peaks before reaching maximum rationality values. We attribute this
to the fact that when all players closely approach the Nash equilibrium, the nor-
malized games become less differentiated. This mitigates coordination difficulty
in a more rational population, thereby reducing payoff differences and slowing
game adoption speed.

Fig. 4. While keeping the overall shapes of rationality and risk-aversion distributions
fixed, we shift the distributions by adding a constant. This results in different system-
level learning behaviors, approximated by the speed at which the system converges to
the desired games.

4 Discussion

Our results indicate that the system can settle into multiple stable equilibria,
leading to enduring wealth stratification. Even with identical initial conditions
and rules, some agent communities gravitate toward high-payoff cooperative
regimes, while others remain in low-payoff conventions. This finding reinforces
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the concept of poverty traps: stable low-level equilibria from which escape is dif-
ficult [4]. In line with the "poor but rational" perspective, we observe that purely
adaptive behaviors under constraints (without external market failures) can lock
populations into low-level wealth equilibria [5]. This suggests that persistent in-
equality arises endogenously through path-dependent dynamics, supporting the-
ories that allow multiple long-run equilibria rather than a single universal out-
come [7]. Thus, small differences can yield substantially divergent trajectories,
explaining persistent wealth disparities amidst overall economic growth [9, 8].

Normalization of payoffs, removing inherent technological advantages, under-
scores the importance of coordination among agents. Without exogenous inno-
vation, agents prosper only through effective collective action, whereas misco-
ordination traps groups in suboptimal outcomes. Such dynamics mirror institu-
tional traps described in growth theory, where societies fail to organize collective
action necessary for development [4]. Practically, our findings emphasize social
cohesion and norm alignment as critical to avoiding coordination failures, espe-
cially in innovation-poor contexts.

The interplay between rationality and risk aversion strongly influences equilib-
rium convergence. Highly rational, risk-averse agents swiftly settle into safe yet
suboptimal equilibria, while moderate bounded rationality or reduced risk aver-
sion facilitates exploration and potential discovery of superior outcomes. This
outcome aligns with bounded rationality and risk-sensitive decision-making the-
ories, where heuristic-driven choices and aversion to novel strategies prevent
optimal outcomes [32, 15, 16]. Hence, neither extreme rationality nor excessive
caution guarantees optimal collective outcomes—strategic exploration signifi-
cantly improves long-term performance.

4.1 Limitations and Future Research

Our minimalist approach isolates essential inequality mechanisms but excludes
many real-world complexities, potentially understating certain inequality drivers
(e.g., inherited advantages or market institutions). Explicitly excluding com-
pounding mechanisms such as capital investment returns further limits the real-
ism [12]. Future work could also examine whether the emergent network struc-
tures exhibit real-world properties such as degree heterogeneity, clustering, or
small-world topology. Additional extensions might include exploring network-
based interventions, incorporating realistic agent behaviors (e.g., memory-driven
learning), and validating models against empirical data. Such efforts would
bridge theoretical findings with real-world implications, enhancing both the ro-
bustness and applicability of these insights.
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