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Abstract. While emergent communication in artificial agents has been
widely studied, interactions between previously separated populations
remain underexplored, despite their real-world relevance. Our aim is to
build a model of two pre-learned populations that meet and attempt
to communicate. We develop an agent-based language evolution model,
where agents are designed to resemble human internal development as
closely as possible. These agents participate in ’language games’—atomic,
scripted communication scenarios. When merging two pre-learned pop-
ulations, we observe a significantly higher rate of successful communica-
tion compared to training all agents together from the beginning. This
effect persists even after extended simulation of the merged population.
Our findings suggest that merging pre-learned populations can enhance
communication efficiency, offering practical insights for designing collab-
orative AI systems.
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1 Introduction

Human language evolves on various timescales and through diverse mechanisms,
often too gradually to be observed within a single generation or even through
historical records. This makes capturing the evolution of communication a chal-
lenging task. A significant breakthrough in studying language dynamics has been
made possible with advances in computational methods, enabling empirical-
like linguistic simulations. Various approaches in computational linguistics have
yielded insights into these processes [1]. In this study, we examine differences
between language evolution in a single, uniform population and communication
developed by two distinct groups with pre-existing internal lexicons. We demon-
strate that the latter scenario fosters more efficient communication.

Section 2 begins with an overview of agent-based modeling, followed by a
review of computational studies examining the impact of social structures on
language development. Section 3 details our model, while Section 4 presents
the results obtained in the experiment. In Section 5, we analyze these findings,
leading to the conclusions in Section 6. Finally, Section 7 outlines directions for
future research.
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2 Related works

Performing experiments in silico became feasible with the rise of high-performance
computing, allowing for the simulation of communication down to the level of
individual utterances. Unlike mathematical formulations based on mean-field ap-
proximations, agent-based modeling enables the inspection of individual agents,
making it a powerful tool for studying language development. This study adopts
the language games paradigm, an approach pioneered by Steels in the well-known
“talking heads” experiment [15, 14], which has significantly shaped computational
research on language evolution.

The “talking heads” experiment was originally designed to address the sym-
bol grounding problem [14, 2]. Its success led to a wave of research employing
agent-based models to investigate linguistic dynamics. Spike et al. [13] provide
an extensive, though not exhaustive, survey of such models, analyzing the min-
imal agent capabilities required for communication consensus. While such foun-
dational models have theoretical and philosophical significance, their ability to
explain large-scale linguistic phenomena is limited. Increasing agent complexity
is necessary for studying population-wide linguistic behavior.

A crucial question in agent-based modeling is its alignment with real-world
language emergence. While such cases are rare, empirical observations exist.
Richie et al. [11] study homesigners—individuals who invent lexicons to com-
municate within deaf families—and compare their lexicon development to the
slower progress observed in Nicaraguan Sign Language. Their computational
model supports claims that social structure plays a crucial role in language evo-
lution. In small home environments, interaction is centralized around a single
deaf individual, whereas Nicaraguan Sign Language users engage in broader,
diffused communication networks, mirroring findings from computational mod-
els.

Agent-based models have been instrumental in exploring the impact of social
topology on language development. Labov’s Harlem study [7] empirically demon-
strated how social structure influences lexical evolution, inspiring computational
models such as those by Fagyal et al. [4]. Their results corroborate Labov’s find-
ings, showing that communication frequency strongly affects linguistic consen-
sus. Effective information processing within a group requires both leaders and
loners—agents with high and low communication frequencies, respectively.

Further research investigates how network topology affects language evolu-
tion. Zubek [20] models interacting agent populations using language games, test-
ing information flow efficiency under various social network configurations. Fully
connected networks are optimal for information transfer, but star-like struc-
tures with designated leaders demonstrate greater adaptability to environmen-
tal change and higher overall communicative success. Gong et al. [5] identify key
factors shaping linguistic development, including average vertex degree, short-
cut connections between clusters, and network centrality. Their findings indicate
that higher centrality reduces the number of linguistic categories required for
communication.
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Population Random pairing Communication Learning

Fig. 1: Steps of simulation repeated in every epoch.

While prior studies focus on language evolution leading to eventual consen-
sus, less attention has been given to how internal population diversity shapes
linguistic equilibrium. Josserand et al. [6] employ Bayesian models to study the
spread of sociolinguistic variants, demonstrating that even a small subset of
biased agents can significantly influence the system’s development and final lin-
guistic landscape.

Existing research predominantly examines single populations reaching con-
sensus from scratch. In contrast, real-world scenarios often involve the interaction
of groups with pre-established lexicons [11]. In this study, we construct an agent-
based computational model comparing two cases: one where a single population
develops language from the ground up and another where two distinct popu-
lations interact. Our results suggest that merging populations leads to greater
communicative success than learning from scratch.

3 Methods

The core objective of our model is to simulate the lexical dynamics of a popula-
tion of agents engaged in simple linguistic interactions. This process is iterative,
with each iteration referred to as an epoch. In every epoch, agents are paired uni-
formly at random1, engage in scripted communication, and adjust their internal
states based on the interaction outcome. Figure 1 illustrates this general process.
The remainder of this section details the model’s components, beginning with
the internal architecture of agents, followed by communication mechanisms, and
concluding with the parameter values and structures used in the experiments,
distinguishing between control and research trials.

3.1 Agent Architecture

Embodied agents form the fundamental units of our model. Their capabilities
are divided into three components [15]:

– Body
– Categorization system

1 Or almost random, as explained in Subsection 3.3.
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– Lexicon

The body is the only publicly accessible component, facilitating communication.
The categorization system and lexicon remain private to each agent.

Agents possess several specific abilities:

– Perceiving objects
– Perceiving (hearing) words
– Uttering words
– Pointing to objects
– Inferring pointing targets

While embodiment enables communication, further exploration of bodily aspects
lies beyond this study’s scope.

The core capability of agents is categorization, requiring an evolving internal
category structure. Since categorization is dynamic, no predefined categories ex-
ist; they emerge through agent interactions. This is implemented using a modified
SUSTAIN algorithm [9], which models human categorization. Agents categorize
objects represented as d-dimensional vectors v ∈ Rd, where features correspond
to real-valued attributes.

A category abstracts similar objects. For instance, a blue pen and a green
pen may form the pen category, while a yellow pencil belongs to pencils. Higher-
level categories, such as writing utilities, may also emerge. The model accounts
for prototypical examples, as observed in human cognition [12].

Each category consists of a set of prototype-object pairs, with weights de-
noting importance:

C =
{
(p0, w0), (p1, w1), . . . , (pk, wk)

}
,

where pi ∈ Rd are prototypes, and wi ∈ R+ are their corresponding weights.
Categorization of an object x = (x0, x1, . . . , xd) ∈ Rd is determined by comput-
ing the activation function for each category:

hC(x) =

k∑
j=0

wk exp

(
−1

2

d∑
i=0

(xi − pj,i)
2

)
.

The category with the highest activation is selected. However, modifications to
categorization occur based on language game outcomes (Subsection 3.2), not cat-
egorization alone. Each category also maintains a communicative success score,
representing the ratio of successful interactions.

To introduce system-wide dynamics, we define a degeneration rate δ. After
each epoch, prototype weights decay:

w(t+ 1) = w(t)(1− δ).

This mechanism weakens outdated categories unless actively maintained, pre-
venting static structures and ensuring continual adaptation.
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Categories

Lexicon"Star"

Fig. 2: Speaker perceiving an object and producing an utterance during a guess-
ing game. Dashed lines denote internal agent processes.

Since categories are internal constructs, a lexicon is required to link them
with words. Each category may be associated with multiple words, with selection
favoring previously successful terms. The lexicon is a many-to-many mapping
between categories and words, with weights determining preference. Words are
atomic and drawn from a global pool; no two agents independently invent the
same word. Weights evolve dynamically, with lexicon links removed when weights
fall below ε = 10−7.

3.2 Language Games

Linguistic interactions are modeled using language games, commonly employed
in similar simulations [16]. Specifically, we utilize the discrimination game and
guessing game. Both require a small object set, termed the environment, con-
taining five elements. Each object has three features drawn from a normal dis-
tribution:2 One element is designated as the topic. Both games conclude with
either SUCCESS or FAILURE, affecting agent adaptation.

The discrimination game ensures that an agent can uniquely categorize the
topic within its environment. The process is as follows:

1. The agent perceives a random environment.
2. The agent assigns categories to objects.
3. If the topic shares a category with another object, the game results in

FAILURE.
4. If the topic has a unique category, the game results in SUCCESS.

The guessing game involves two agents: a speaker and a hearer. Intuitively,
the speaker perceives the topic, categorizes it, and utters a word, while the
hearer attempts to identify the corresponding object. Communication proceeds
as follows:

1. Participants are presented with a random, shared environment.
2. Speaker performs discrimination game.
3. If the discrimination game’s result is FAILURE:

– If the topic’s category communicative success is greater than 0.95, the
topic is added as a new prototype to this category in the speaker’s inter-
nal memory. Otherwise, a new category centered on the topic is created.

2 Means = (66.97, 18.65, 38.36), standard deviations = (20.73, 35.11, 39.77)[20].
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– Weights of all prototype in the speaker’s categories structure are de-
creased.

– The guessing game ends with FAILURE.
4. If there is no word associated with the topic’s category, the speaker invents

one and immediately associates it with the category.
5. Speaker utters the word with the strongest association with the topic’s cat-

egory.
6. Hearer hears the spoken word.
7. If the hearer does not know the word:

– Hearer performs the discrimination game. In case of FAILURE, if the
topic’s category communicative success is greater than 0.95, the topic
is added as a new prototype to this category in the hearer’s internal
memory. Otherwise, a new category centered on the topic is created.

– Topic’s category is associated with the spoken word.
– Weights of all prototypes in the hearer’s categories structure are de-

creased.
– The guessing game ends with FAILURE.

8. Hearer chooses the category with the strongest association with the spoken
word.

9. Hearer points to the object, which suits the chosen category best.
10. If the hearer does not point to the topic meant by the speaker:

– Speaker decreases the strength of association between the chosen cate-
gory and spoken word.

– Hearer decreases the strength of association between the chosen category
and spoken word.

– If the topic’s category communicative success is greater than 0.95, the
topic is added as a new prototype to this category in the hearer’s internal
memory. Otherwise, a new category centered on the topic is created.

– Weights of all prototypes in the hearer’s categories structure are de-
creased.

– The guessing game ends with FAILURE.
11. The guessing game ends with SUCCESS.

Prototype weight reduction following an unsuccessful guessing game mirrors
the degeneration process, but instead of the degeneration rate δ, we apply a
distinct parameter, the forgetting rate ϕ, according to the equation:

w(t+ 1) = w(t)(1− ϕ).

This ensures that less effective prototypes gradually lose influence, facilitating
adaptation to new linguistic patterns. The key difference is that degeneration fol-
lows every language game, whereas forgetting is applied only after failed games,
serving as a penalty for incorrect classification.
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BorderPopulation Population
A B

Fig. 3: Diagram of the merged populations, highlighting the border area.

3.3 Experimental Procedure

We detail the experimental procedure below. The control sample is generated
using the method described at the beginning of Section 3, simulating 1,000,000
epochs with 200 agents.

The research trials consist of two stages. The first stage aims to develop
basic categorization abilities and small lexicons in agents. Two separate popula-
tions of 100 agents each are simulated for 200,000 steps. This duration, chosen
heuristically, ensures sufficient communicative success while maintaining agent
flexibility to adapt to changes in population and environment.

The second stage combines the two populations into a single set of 200 agents,
simulating an additional 1,000,000 epochs. The pairing rules are modified: 20
agents from each population are designated as border agents, with a probability
β = 0.8 of interacting with border agents from the other population. One could
think of them as interpreters or translators — individuals who engage with mem-
bers of the other population, acquire their linguistic conventions, and transmit
this knowledge back to their own group. Non-border agents interact only within
their original populations. A schematic of this setup is shown in Figure 3.

The research procedure was repeated independently 20 times to allow for
result averaging. Key learning parameters were held constant: ϕ = 0.0005 and
δ = 0.0000625. These values, chosen heuristically, balance communicative suc-
cess, computational complexity, and population flexibility. Increasing ϕ and δ
tends to destabilize lexicons, lowering the model’s overall success, while de-
creasing them makes populations resistant to new variants introduced by border
agents. Investigating these effects in large populations is challenging due to the
substantial computational resources required by the simulation.

After each epoch, we compute several metrics:

– Communicative Success (CS): The ratio of successful guessing games to total
interactions.

– Average Number of Categories (AVGC): The mean number of categories
retained by agents.

– Category Operations: Total numbers of created (C), modified (M), and deleted
(D) categories. Modifications refer to changes in category prototypes.
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4 Results

In this section, we present the experimental results, comparing the development
of the research sample (first and second stages) with the control sample. Each
plot is derived by pointwise averaging data from 20 independent trials, followed
by a moving average with a block size of 10,000. We begin with a comparison of
the first 200k steps for both samples.

The control sample consists of 200 agents communicating uniformly. Figure 4
compares three populations: A, B, and control. Figure 4a shows communicative
success, with the control sample stabilizing at 0.25, while the research sample
achieves 0.32 due to its smaller, independent populations. This aligns with find-
ings in [20].

Figure 4b reveals linear growth in the average number of categories per agent
across all populations. Figure 4c shows minimal deletions and stable modifica-
tions (∼ 0.2) after 15k epochs. The total number of created categories remains
constant, except for initial generations where agents compensate for the lack of
categories. Notably, the slowing of category creation does not trigger deletions.

After 200k steps, populations A and B are connected via border agents.
Figure 5 presents post-merge results, with epoch 0 marking the merge.

Communicative success in the research sample drops to 0.3 post-merge (Fig-
ure 5a), consistent with border agents. The control sample shows no change.
Figure 5b shows the research sample stabilizing at 11k categories per agent by
300k epochs, while the control sample reaches 12k by 575k epochs.

Figure 5c shows higher category creation in the research sample post-merge
(4 to 4.5). Modifications increase as category growth stabilizes, with deletions
starting concurrently. The research sample exhibits two peaks in deletions, while
the control sample stabilizes quickly. Figure 5d shows border agents with fewer
creations and delayed deletions.

Finally, Figure 6 presents heatmaps of word usage. Figure 6c shows the con-
trol sample, with early words reused successfully. Figure 6a depicts post-merge
word usage, with new signs dominating early words. Figure 6b shows border
agents following population trends, with successful interactions around genera-
tion 500k.

5 Discussion

In this section, we analyze the findings of our model, beginning with an inter-
pretation and explanation of the results. We then take a broader perspective on
language evolution models, relating our observations to real-world situations.

Let us begin by focusing on the behavior of communicative success. It drops
immediately after the merge. This decrease is likely caused by the onset of trans-
population interactions, while the groups do not share any words. However, the
metric does not recover 3. Thus, we conjecture that the drop in the research

3 We performed many more simulation steps to confirm this.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_19

https://dx.doi.org/10.1007/978-3-031-97557-8_19
https://dx.doi.org/10.1007/978-3-031-97557-8_19


Emergent Communication in Merging Artificial Agent Populations 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  20000  40000  60000  80000  100000  120000  140000  160000  180000  200000

C
S

Epoch

Population A Population B Control

(a) Communicative success across research and control samples.
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(b) Average number of categories per agent in research and control
populations.
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Fig. 4: Comparison of communicative success, agent categories, and category
operations between the control sample and research sample populations.
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Fig. 5: Communicative success and category dynamics in the second stage for
control, research, and border agents.
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(a) Word usage in merged popula-
tions.

(b) Word usage in the border of
merged populations.

(c) Word usage in control sample.

Fig. 6: Heatmaps showing word usage (Y-axis) across generations (X-axis). Col-
ors indicate interaction results: green (success), red (failure), yellow (mixed).

sample is an artifact resulting from model scaling issues [20]. CS at the border
does not change over time. It is not significantly smaller, so it cannot affect the
measure for the entire population. Nevertheless, the final population achieves
better results than the control sample, even though it contains the same number
of agents. The loss of CS from scaling is much smaller than in the case of agents
learning together from the very beginning.

The CS of the research sample oscillated around 0.3 with fewer than 11k
categories per agent. In contrast, the control sample had almost 12k categories
on average, with CS at the level of 0.25. Overall, it appears that the popu-
lation created from the two smaller ones performs better, surpassing the CS
barrier established by the control sample. This suggests that building a popula-
tion from smaller groups leads to easier adaptation and improved overall model
performance. Despite having fewer categories, the research sample demonstrates
better object recognition.

It was recently shown that, in the case of human categorization development,
exposure to foreign cultures does not affect mature categorization networks [10].
We propose that an analogous effect may be present in our model; note that the
weights in our categorization systems are not bounded, and the categories from
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the preliminary stage of the simulation persist with border agents for an extended
period. The average number of categories developed by the border agents is sig-
nificantly greater than the population average. These rich categorization systems
operate with more dynamic vocabularies. Notably, the horizontal lines, starting
from generation 300k in Figure 6a, are longer than those in Figure 6b. Words do
not survive long on the border but are exported to the rest of the population,
where their usage is prolonged; this is consistent with [4]. These agents influence
the main population and create trends. We believe this is the factor enabling the
higher communicative success. The border does not, in fact, consist of leaders in
the sense of [4]; Figure 3 may be slightly misleading in this context. These agents
interact with the rest of the population only 20% of the time. This subpopula-
tion may function as a small, organized subsystem, exporting this well-designed
innovation externally. We might better consider them a collective, more complex
outsider, balancing the system.

6 Conclusion

The results of this study demonstrate that populations formed by merging
smaller groups achieve higher communicative success compared to populations
that learn from scratch. This enhanced performance can be attributed to the
richer categorization systems developed by the border agents, who, despite in-
teracting less frequently with the main population, export valuable innovations.
These agents facilitate more efficient adaptation, resulting in a significant in-
crease in overall model performance. In contrast, populations that evolve from
scratch face greater challenges in reaching similar levels of communicative suc-
cess, highlighting the advantage of merging pre-existing lexicons.

7 Further research

While our study provides insights into language evolution in merged populations,
several open questions remain. Here, we outline key areas for future research that
could deepen our understanding of population interactions and model scalability.

One key difference between the control and research samples is the presence
of additional peaks in category modifications and deletions in the latter. We
believe this is not an inherent phenomenon in the control sample but rather
a consequence of slower transition. While such peaks appear in both samples,
their patterns differ. Investigating this variation could provide deeper insights
into population interactions.

We find it worthwhile to incorporate spatial distribution into the model.
While social network topology partially addresses this, no agent-based model
we are aware of considers gradual environmental shifts based on agent locations.
For instance, the need for specialized snow descriptions in the Arctic Circle com-
pared to the Congo Valley is not well represented in existing models [19]. Social
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topology influences interaction probability alongside spatial factors. Spatial ar-
rangement shapes populations into smaller societies, while uniform environments
foster more sophisticated communication.

Simulating agents in a diverse world is feasible only if communities are large
enough. Otherwise, the model would merely reflect a social topology frame-
work with distinct environments for individual agents. At some scale, resource
constraints hinder computational feasibility [17]. While [17] highlights model
complexity, it underestimates categorization scaling, the most computationally
demanding aspect. As [18] shows, similar tasks cannot be achieved in polyno-
mial time. Efficient categorization remains crucial for advancing agent-based lan-
guage models. Currently, no comprehensive mathematical frameworks exist for
explanatory sociolinguistic models, aside from highly simplified cases [8]. While
real-world language evolution models exist, their reliance on mathematical ap-
paratus often limits explanatory power [3].

Our results show that merging two independent agent populations leads to
higher communicative success, indicating that linguistic convergence benefits
from increased diversity in lexical and categorical structures. This finding un-
derscores the importance of cross-population dynamics in language evolution.
Future research should extend this framework by incorporating spatially dis-
tributed environments, allowing for a more nuanced exploration of regional lin-
guistic variation. Additionally, addressing the computational complexity of our
models will be crucial for scaling simulations and capturing more intricate dy-
namics of category and lexicon formation. Exploring these aspects will deepen
our understanding of emergent communication and its sensitivity to environ-
mental constraints.
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