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Abstract. In agent-based models (ABMs), traditional statistical infer-
ence faces challenges due to intractable likelihoods and computational
costs. This study evaluates neural posterior estimation (NPE) and neural
ratio estimation (NRE) for parameter inference in ABMs and compares
them with approximate Bayesian computation (ABC). NPE and NRE
are argued to be more efficient than traditional methods such as ABC
and circumvent some of their limitations. The assessment of the methods
focuses on the satisfaction threshold in Schelling’s model of residential
segregation, including regions of high variance and non-equilibrium dy-
namics. As these simulation-based methods still require summary statis-
tics as high-level descriptions of the ABM, we propose a general ap-
proach to construct them based on spatial and/or temporal information
and evaluate how the different summary statistics affect performance.
Both NPE and NRE generally outperform ABC regardless of summary
statistics. Most notably, NRE excels when employing the most detailed
spatio-temporal information, but adding spatial or temporal information
alone is not always beneficial for NPE, NRE and ABC. This holds true
for different training budgets and when estimating multiple parameters.
Hence, the study underscores the importance of spatio-temporal infor-
mation for accurate parameter inference in this ABM, but information
redundancy can degrade performance as well. Therefore, finding optimal
high-level descriptions to capture fundamental emergent patterns in the
model through summary statistics might prove crucial in cases where the
systems are governed by more complex behaviour.

Keywords: simulation-based inference · agent-based modelling · neural
posterior estimation · neural ratio estimation · approximated bayesian
computation

1 Introduction

Traditional statistical methods for parameter inference heavily rely on likelihood
functions. However, in many cases, models reach a level of complexity where the
likelihood becomes impossible to derive exactly or even sample from. In such
cases, simulation-based inference (SBI) methods have emerged as a powerful
tool for parameter inference when it is still possible to generate data from the
model under study. Recently, there has been an intersection of deep learning with
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the field of SBI, resulting in novel neural network-based inference approaches [2].
One modelling paradigm that might benefit from these novel methods is agent-
based modelling. Agent-based models (ABMs) often consist of many (heteroge-
neous) agents with rule-based actions that interact with each other and their
environment. This can result in macro-scale emergent outcomes that are often
not expected when studying agents in isolation [3]. Using mathematical mod-
elling and computational algorithms, one can simulate the behaviour of agents,
their interactions, and consequential actions, all of which influence the overall
dynamics of the system [1]. While a flexible modelling paradigm, due to interde-
pendent and complicated behavioural rules, non-linear dynamics, and inherent
stochasticity, it is often very difficult or impossible to perform likelihood-based
inference on. As these new SBI techniques can identify complex relationships
efficiently, they seem to be very suitable for calibrating ABMs on data [5].

Approximate Bayesian computation (ABC) [16] is a SBI method that tries
to approximate the posterior, the values of the parameters that are most likely
to have generated the observed data, based on the discrepancy between the sim-
ulated (model-generated) data and the observed data. It is common practice
in SBI to use summary statistics which provide a condensed representation of
model behaviour, capturing essential information while reducing the dimension-
ality. ABC in particular requires choosing a distance metric and a threshold; a
parameter value is accepted to come from the posterior distribution if the dis-
crepancy between simulated and observed summary statistics falls within the
threshold or filter those with the smallest distances to the observed data. How-
ever, deciding the distance metric and the threshold value can greatly affect
performance [5]. Moreover, ABC aims to estimate an approximate posterior, the
accuracy of which depends on the chosen threshold, and inference is only valid
for the specific observation used; hence, the procedure has to be repeated for dif-
ferent (empirical) observations of the same system. The newly proposed neural
network-based approaches aim to learn the relationship between the parameter
values and their corresponding summary statistics. This addresses some of the
limitations encountered in traditional ABC techniques. They eliminate the need
to choose a distance metric and threshold, and they are amortised, meaning
they can estimate posterior probabilities for any new observation not seen by
the network. Lastly, they do not throw away samples as in ABC, but they use all
available data. This can lead to a more efficient use of simulations, which is es-
pecially important when these are computationally expensive, which is typically
the case for ABMs. However, this new generation of inference techniques has
yet to be extensively tested for parameter inference in ABMs, nor has it been
simultaneously compared with ABC. In addition, summary statistics still have
to be selected carefully for the calibration methods, and a general approach to
do this for ABMs is currently missing.

In this paper, we propose a general approach to construct summary statistics
for spatio-temporal ABMs, while comparing the performance of neural posterior
estimation (NPE) [6,12] and neural ratio estimation (NRE) [7,11] with ABC.
NPE and NRE have shown promising results for economic ABMs, producing sig-
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nificantly more accurate parameter estimations while requiring fewer simulations
[5], but only using a specific configuration of the models tested. We demonstrate
our approach by calibrating the entire range of the satisfaction threshold param-
eter of Schelling’s model of residential segregation [13]. This model is chosen as a
test case as it has only one parameter that governs segregation dynamics and its
underlying mechanisms are well described. Depending on the value of the thresh-
old, one can observe emergent behaviour, non-linear patterns, non-equilibrium
dynamics and/or regions with a large variance in outcomes. These can provide
challenging cases for the calibration methods while still having relatively easy-
to-understand dynamics. Our approach is general enough that it can be applied
to other (spatial) ABMs, and our results provide some indication of how the
inference methods may perform in other scenarios. Both NPE and NRE gener-
ally outperform ABC regardless of summary statistics. Most notably, NRE ex-
cels when employing the most detailed spatio-temporal information, but adding
spatial or temporal information alone is not always beneficial for the methods.
Hence, the study underscores the importance of spatio-temporal information for
accurate parameter inference in this ABM, but information redundancy can de-
grade performance as well. Therefore, finding optimal high-level descriptions to
capture fundamental emergent patterns in the model through summary statistics
might prove crucial in cases where the systems are governed by more complex
behaviour.

2 Background and related work

In this section, only three approaches for calibrating simulation models are dis-
cussed. For a detailed overview of existing methods, we refer to [2]. In SBI the
aim is to estimate the posterior probability distribution P (θ|X), i.e., the poste-
rior distribution of the model parameters (θ) conditional on both the simulated
data from the model (Xsim) and potentially the observations of the real system
(Xobs). When the likelihood P (X|θ) is intractable, but it is possible to simulate
X from a generative model given a set of parameter values (θ), one can perform
SBI. One of the most commonly used techniques in this area is approximate
Bayesian computation (ABC).

2.1 Approximate Bayesian Computation

ABC has been applied to the calibration of ABMs in various fields, including
economics [8], epidemiology [18], and cancer research [14]. In this section, only
the most basic version of ABC will be described. However, for more details, [9]
provide an elaborate study on the various improvements and extensions of ABC
algorithms. The general idea of ABC methods is to generate samples from the
posterior distribution by simulating data Xsim ∼ p(X|θ) and to assess whether
the simulated data are close to the observed data. Specifically, if the discrepancy
between Xsim and Xobs according to a distance metric d falls within a certain
acceptance threshold ϵ. Note that this makes posterior inference using ABC only
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valid for the specific observation (Xobs) used, which is also called: non-amortised.
Rejection ABC is the most basic algorithm of the ABC methods [16]. Here, θi
is randomly sampled from a prior distribution P (θ). Those θi for which the
distance between Xsim and Xobs is less than ϵ are accepted as samples from the
posterior distribution. General ABC rejection for sampling one parameter from
the posterior is as follows:

1. Sample θi ∼ P (θ)
2. Run the generative model with θi as input and save summary statistics Xsim

i

that are a description of the model behaviour
3. Accept θi as a sample coming from the posterior P (θ|X) if d(Xsim

i , Xobs) ≤ ϵ
4. Repeat this until a specific number of accepted samples or total simulations

is reached

This technique draws independent samples from the approximate posterior. How-
ever, there are some drawbacks to this approach. First, one has to choose an
appropriate distance metric and a value for ϵ. Second, the acceptance rate is
typically low, specifically when the posterior is much narrower than the prior
distribution, and third, it can be computationally very expensive for a small
value of ϵ. In this study, 10% of the simulations with the smallest Euclidean
distances to the observed data are kept to estimate the posterior distribution.

2.2 Neural density estimation

To avoid the dependence on ϵ, [12] proposed NPE, that frames parameter infer-
ence as a conditional density estimation problem. The method takes the input
X and produces the posterior distribution P (θ|X) by training a neural network
(NN) on simulated data Xsim and the corresponding parameter vector θ. The
NN tries to learn the probabilistic relationship between Xsim and θ through
this training. Note that the empirical data has not been utilised yet and the NN
essentially acts as a surrogate for the generative model. This approach amortises
the inference process, involves training a neural conditional density estimator
once, using training data consisting of data-parameter pairs (Xsim

i , θi) where
Xsim

i ∼ P (X|θ = θi), and then condition the posterior distribution for any
Xobs. This is an improvement over ABC, as ABC’s inference is only valid for
the specific Xobs used. Various variants were developed, but we use the NPE-C
variant of [6] as it is the most flexible and best performing approach.

NRE takes a different approach and uses supervised classification [11]. In its
simplest form, it works as follows: create a random dataset of independent pairs
by shuffling the data-parameter pairs as described above. A neural network is
then trained to classify which combinations belong to the dependent dataset and
which ones to the independent one. Specifically, NRE uses a neural network as
a classifier to distinguish between dependent data points (Xsim

i , θi) ∼ P (X, θ)
and independent data points (Xsim

i , θj) ∼ P (X)P (θ). The dependent pairs are
generated from the simulator, while the independent pairs can be obtained by
shuffling the (Xsim

i , θi) pairs. This destroys the dependencies, thus associating
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Xsim
i with a random θj . Using the likelihood-to-evidence ratio, which represents

the likelihood that the pair belongs to the dependent dataset, one can obtain the
posterior distribution with the help of MCMC sampling. Similarly to NPE, NRE
is an ϵ-free inference technique that does not require the acceptance-rejection
step. It is also simulation-efficient (it does not reject simulations) and does not
rely on a distance function. However, unlike NPE, direct sampling from the
posterior is not feasible, as likelihood ratios are calculated. This necessitates the
use of a sampling technique such as MCMC, introducing an additional, more
computationally expensive step in the process. The variant of [11] is employed
here (NRE-C) as it performs better than other variants in their experiments.

Both NPE and NRE have been used for parameter inference in ABM by
[5] where they show similar or even improved performance compared to kernel
density estimation techniques with fewer simulations in an economic ABM. How-
ever, they do not systematically sweep the parameter space. Hence, there might
be parts where the techniques struggle to infer the parameters of the models.
Moreover, they employ one set of self-constructed summary statistics and use a
NN to learn a set of summary statistics from the simulations, but it is not clear
how varying summary statistics more systematically affect the methods.

3 Methodology

This section provides a detailed explanation of our specific implementation of
the Schelling model, as it is important to relate it to the performance of the
calibration methods. Subsequently, the setup of several experiments with differ-
ent summary statistics for the calibration methods is described, followed by the
calibration pipelines for ABC, NPE and NRE to estimate the true value of the
satisfaction threshold.

3.1 Schelling’s ABM of residential segregation

To investigate the phenomenon of racial segregation, Schelling [13] developed one
of the first ABMs. He showed that even a mild preference for having people of
the same group in your local neighbourhood could result in a highly segregated
society. Hence, the model yielded counter-intuitive findings, demonstrating that
the outcome of the collective behaviour of agents could differ from the intentions
of the isolated individuals, due to the non-linearity caused by the interacting
agents. Although not completely similar to the original, below we describe the
version used in this study.

– Initialisation: Agents are randomly placed on an 80 × 80 grid and their
total number is such that the density is 90% to allow for relocation. With a
probability 0.5, an agent belongs to either the blue (B) or orange (O) group.

– Movement: At each time step, 15% of agents are allowed to move. An agent
is satisfied in their current location if the fraction of individuals of the same
group in their 8 surrounding cells (Moore neighbourhood) is above a certain
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threshold (µh). If an agent is not satisfied, they move to a randomly chosen
vacant cell, otherwise they stay in their location. The tolerance level of each
household (µh) is sampled from a truncated normal distribution with mean
µ and standard deviation of 0.05.

– Stopping: The simulation is stopped after 100 time steps (to reduce com-
putation time) or when every agent is satisfied.

The relocation process in the model occurs iteratively over time, where the move-
ment of dissatisfied agents can subsequently affect the satisfaction levels of agents
in their new neighbourhood. This potentially triggers a cascade of relocations.
Segregation is measured as the average fraction of similar neighbours. For every
household, the fraction of similar neighbours (the eight surrounding cells) is cal-
culated, itself excluded, and averaged over all households. Although numerous
metrics have been proposed to quantify segregation [10], the average fraction of
similar neighbours is selected because of straightforward use and interpretation.

This simple but powerful model demonstrates that segregation can be much
higher than would be needed to satisfy individual preferences. Figure 1 illustrates
the results of the Schelling model with different tolerance levels, denoted by µ.
These tolerance values indicate the threshold required for agent satisfaction.
When µ = 0.3, an agent is considered satisfied if at least 30% of its immediate
neighbours, here considering a neighbourhood size of 8, belong to the same group.
Note that satisfaction threshold, tolerance parameter, and similar terms are used
interchangeably and refer to the parameter µ.

3.2 Experimental design

ABMs are time-driven models and often have an explicit spatial context [1].
We thus propose and base our experiments on a generic approach of taking
summary statistics at different points (or scales) in time and space. With the
Schelling model, a series of experiments is undertaken across the entire range of
the tolerance parameter µ ∈ {0.1, 0.2, ..., 0.8}. Both 0 and 0.9-1 are excluded as
they are very similar to those of 0.1 and 0.8 respectively.

This assessment allows us to analyse the effectiveness of both methods in
various regimes of model behaviour, including stable regions, non-equilibrium
dynamics, and regions with substantial variance in observations to test the ac-
curacy of ABC, NPE and NRE in different circumstances and compare them.
In this context, the summary statistics are expected to describe the dynamics of
the model sufficiently, such that one can infer the true values of the parameters
that generated the data. Relatively low-dimensional summary statistics are often
comparatively easy to interpret and can serve as a good indicator of the overall
dynamics of the model. However, it might also lead to the loss of important
information and affect the performance of the calibration methods. Therefore,
several summary statistics are tested to see how this affects performance of ABC,
NPE and NRE.

– Scalar: A scalar value that quantifies the level of segregation (average frac-
tion of similar neighbours) observed at the end of one simulation (t = 100).
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– Temporal: A 5-dimensional vector that represents the segregation evaluated
in time steps t = 20, t = 40, . . . , t = 100.

– Spatial: The average fraction of similar neighbours is calculated with a
Moore neighbourhood of sizes 1, 2, 3, 4 and 5 at t = 100. The relocation rule
for the agents is still based on a radius of 1.

– Spatio-temporal: Combines both spatial and temporal dimensions. A 25-
dimensional vector that includes segregation observed at time steps (20, 40,
..., 100) and within various radii values (1, 2, 3, 4, and 5).

The training budget for the methods is varied (N ∈ {500, 1000, 2000}) to see
how this affects the performance for the different summary statistics. The spatio-
temporal summary statistics, containing 25 values, might benefit most from in-
creasing the training budget. With lower sample sizes, inference methods could
struggle to approximate posteriors in this high-dimensional space. As the imple-
mented ABC-method retains 10% of the samples, the number of samples drawn
from the posterior estimations of NPE and NRE are changed accordingly, to
make it a fair comparison (i.e., M ∈ {50, 100, 200}). Moreover, a heterogeneous
version of Schelling’s model, where the two groups have different µ values, is
tested. In this case, the methods have to infer two parameters and possibly a
more complicated relationship between the tolerance parameters and the ob-
served level of segregation. Note that we calculate the level of segregation at
different spatio-temporal scales, but this can be any other metric that is of in-
terest. For example, in an epidemiological model, the percentage of infections on
the different scales could be used instead of segregation.

In summary, ABC, NPE and NRE will be used to estimate the satisfaction
threshold (µ) of the Schelling model described in Section 3.1. The parameter
represents the preference to have at least a certain fraction (µ) of similar neigh-
bours. Its value ranges between 0.1 and 0.8, where 0.8 signifies a high degree of
intolerance toward other groups, while 0.1 indicates impartiality or (almost) lack
of preference. All three methods try to approximate P (µ|X) using the simulated
data (Xsim

i , µi) generated from the model and an observation Xobs. In our case,
Xobs is also generated by the model and setting µ = µtrue, but in real settings
µtrue is generally not known. The SBI Python package is used to implement
ABC, NPE and NRE with their default architectural specifications [15]. The
inference procedure for ABC can be found in Section 2.1 and for NPE/NRE it
can be summarised as follows:

1. Randomly sample N ∈ {500, 1000, 2000} values from P (µ) ∼ U(0, 1).
2. Run the Schelling model with the input parameters µi for each i ∈ {1, 2, ..., N}

and save the summary statistics of each run.
3. Train the NN for NPE and NRE on the simulated data pairs (Xsim

i , µi).
4. Sample M ∈ {50, 100, 200} times from the approximated posterior distri-

bution and calculate the root mean squared error (RMSE) given µtrue:

RMSE = 1
M

√∑M
i=1(µ̂i − µtrue)2.
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4 Results

Given the model specifications and parameter settings in Section 3.1, the Schelling
model is simulated for µ ranging from 0.1 to 0.8, in increments of 0.1 with 10
replications for each parameter value. Figure 1 shows the impact of changing
the tolerance parameter on the resulting level of segregation as measured by the
average fraction of similar neighbours. For low intolerance values (µ = 0.1), ev-
eryone is satisfied with their initial placement, resulting in very low segregation.
However, even a slight increase to µ = 0.3 leads to high levels of segregation
of more than 0.7. Furthermore, as µ approaches 0.6, the level of segregation
increases significantly, resulting in a fully segregated system. For satisfaction
thresholds of 0.7 and higher, a huge decrease in segregation can be seen. This
is because agents have difficulty finding satisfactory locations. This results in
agents continually moving to new locations. At a certain point, there is no solu-
tion that can satisfy all (or a sufficient number of) agents. It is difficult to achieve
a convergence with such a high threshold, and only a few of the conditions may
satisfy all agents. This means that the resulting level of segregation is close to
0.5 as they stay in a different, but close to random configuration every time step
(non-equilibrium dynamics). For 0.1-0.7 the model eventually reaches a stable
state and for 0.7-0.76 there is a steep decrease with high variance.

Fig. 1. Average fraction of similar neigh-
bours at t = 100 as a function of the tol-
erance parameter (µtrue) and 10 replica-
tions for each µtrue value. Note that be-
tween 0.7-0.8, more values are added to
include the high-variance region.

Fig. 2. Average fraction of similar neigh-
bours at the end of a Schelling model run
as a function of the satisfaction thresh-
olds (µblue and µorange). The numbers are
based on the average of 10 model runs for
each combination.

4.1 Empirical calibration with spatio-temporal summary statistics

Figure 3 displays the posterior samples obtained using the NPE and NRE meth-
ods for different summary statistics. Ideally, NPE and NRE draw posterior sam-
ples close to the true tolerance value µtrue denoted by the dashed line. Although
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all posteriors assign at least some probability mass around the true value, nu-
merous posteriors are bimodal. This is most evident when µtrue is 0.1 or 0.74 and
higher. In these cases, some posterior mass is centred around the true value, but
most have two modes, one close to 0-0.1 and the other close to 0.8. This seems
especially to be the case for the scalar summary statistics. This makes sense
given its limited information, since the average fraction of similar neighbours is
the same for a satisfaction threshold of 0.1 and 0.8 (Figure 1). Adding spatial or
temporal information to the summary statistics makes this problem less severe,
but not necessarily in all cases. For µtrue ∈ {0.1, 0.8}, adding spatial information
seems to lead to a more bimodal posterior than for the scalar summary statistic,
for example. However, when adding spatial and temporal information simulta-
neously, the bi-modality disappears, and all posterior mass is centred around the
true values.

Fig. 3. Approximated posterior distributions for different summary statistics. Plots are
based on 100 samples, dashed lines are the µtrue values.

To provide a more quantitative assessment of the methods, the different summary
statistics and how they compare to ABC, the RMSE is reported in Figure 4.
Moreover, because the Schelling model and the training of the neural networks
contain stochastic elements, the calibration procedure is performed 10 times to
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10 E. Dignum et al.

Fig. 4. RMSE for ABC, NPE, NRE and
different summary statistics. For every µ
value, the methods are trained 10 times,
with a different training set consisting of
1000 samples. Hence, the reported RMSE
is an average of 10 RMSEs, each based on
100 samples from the approximated pos-
terior. Average elapsed time (lines without
markers) is on the axis on the right.

Fig. 5. RMSE when µblue is varied along
the x-axis and averaged over the different
values for µorange. The numbers are based
on the average of 10 RMSEs for each com-
bination.

calculate an average RMSE. Calculations are based on sampling 10% of the
training budget, i.e., M = 100 samples for N = 1000.

In Figure 4 it can be seen that in the region µtrue ∈ [0.3, 0.7], the methods
are able to estimate the value of µtrue quite accurately regardless of the sum-
mary statistic used, with most RMSEs below 0.10. The scalar summary statistic
which contains only the average fraction of similar neighbours, seems to per-
form marginally worse than the other summary statistics in the easy-to-infer
region (0.3-0.7). Hence, spatial and temporal trajectories provide important in-
formation on the true value of µ. Moreover, in most cases, NRE performs better
than NPE and ABC. Using spatio-temporal information increases performance
substantially, and NRE does better than NPE, while both outperform ABC.
However, for NPE and µtrue ∈ {0.3, 0.4, 0.5} there is an increase in RMSE. In
the analysis of Figure 3, the posteriors are wider than for NRE, but from only
this figure it is not clear why this performance decrease is observed for NPE.

Moving towards the more difficult to infer regions of µtrue ≤ 0.2 and µtrue >
0.7, one can see that the methods experience a significant increase in RMSE
(Figure 4) and thus a decrease in performance. Using Figure 3, the larger RM-
SEs can be explained because the methods have difficulty distinguishing the
regions around 0.1 and 0.8. For the scalar summary statistic, this makes sense
as they lead to similar values and adding spatial or temporal information does
not seem to change this. Interestingly, the addition of both leads to a substantial
improvement, resulting in very low RMSEs. When µtrue = 0.2, NRE performs
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significantly better than NPE and ABC for all summary statistics. As mentioned
when describing the dynamics of the Schelling model, both regions are rather
extreme cases. For low values, everyone is satisfied immediately, and for high
intolerance, agents keep moving around randomly but are unsatisfied. Interest-
ingly, only adding spatio-temporal information simultaneously seems to be able
to grasp this correctly.

Between 0.7 and 0.8, a region with a high variance in the average fraction
of similar neighbours can be observed (Figure 1). Here, all methods have the
greatest difficulty in terms of RMSE. Not much can be said on the differences in
performance of the methods for scalar, spatial, or temporal summary statistics.
However, adding spatio-temporal information leads to a significant decrease in
RMSE, and this extra information benefits NRE and NPE even more so than
ABC. Here, the usefulness of the neural-inspired methods might stand out, as
they are better able to learn the (more) complex relationship between the input
values and summary statistics in this region of the parameter space. However,
this comes at a computational cost. NPE needs roughly 10 seconds to train and
sample (with no clear difference between summary statistics, see Figure 4), while
ABC runs in an instant. Moreover, NRE needs between 10 and 15 seconds, which
is likely due to the extra MCMC step.

As these results can depend on the number of training samples used, the same
experiment is repeated for different training budgets (N ∈ {500, 2000}). Figures
A1-A2 show results that are very similar to those using N = 1000, but there
are some noticeable differences. Firstly, in terms of computational cost, NPE
and NRE take a couple of seconds less for N = 500, but significantly more
time for N = 2000 (between 200 and 600 seconds). Moreover, using spatial
summary statistics instead of scalar is not always beneficial. In the case of 2000
training samples, NRE performs even better for the scalar summary statistic
than for temporal and spatial statistics separately in the case of µtrue ≤ 0.2.
Hence, information redundancy can also hurt performance. Lastly, it seems that
increasing or decreasing the training budget causes a slight general drop (N =
2000) or an increase (N = 500) in RMSE.

4.2 Multi-parameter problems: two groups with different thresholds

To test the methods on potentially more challenging and realistic problems, the
Schelling model is extended with additional parameters. In this extension, groups
have independent and possibly different satisfaction thresholds (µblue, µorange),
where one group can be tolerant while the other is not, for example. In this case,
calibration methods need to approximate the joint posterior distribution and a
potentially more complex interaction pattern.

Figure 2 shows the average fraction of similar neighbours for different com-
binations of the two parameters. Almost complete segregation is the result if
both groups have a threshold value between 0.4 and 0.7. If one or both groups
have a low threshold value, segregation is low. In the case of both having high
threshold, the agents are never satisfied, and hence, segregation is also low, as in
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the homogeneous case (agents keep on moving). To approximate the posteriors,
the methods are again given N = 1000 samples for training, and 100 values are
sampled from the posteriors to calculate the RMSE with respect to the true
values. This is repeated 10 times to arrive at an average RMSE per method and
summary statistic, for each combination of the parameters.

For scalar summary statistics, the methods show similar performance (Figure
5). However, adding extra information does benefit NPE and NRE more than
ABC. These results are in line with the one-parameter case. Note that in the
figure, µblue is varied along the x-axis and that these numbers are averaged
over the various µorange values. Furthermore, NPE and NRE sometimes perform
more than 50%-80% better than ABC (plots are available upon request), which
appears to be mainly in the moderate-high segregation region and when both µ
values are large (> 0.7). Although ABC sometimes performs better than both
NPE and NRE as well. In general, one could say the latter two are obtaining
lower RMSEs in most of the parameter space, especially when increasing the
amount of information provided by the summary statistics.

Furthermore, when the standard deviations of the tolerance thresholds are
allowed to vary (σblue, σorange), the number of parameters goes from two to
four. The standard deviations allow for control of the degree of heterogeneity
within the group. Figure 6) shows three calibrations for different values of the
four parameters. As four parameters must now be estimated, the sample size is
set to 10,000. Although all methods perform better than the RMSE calculated
on the prior values (except for two scalar summary statistic cases), NPE and
NRE outperform ABC in almost all cases. Again, this may hint at the fact that
these neural network methods are better able to learn in higher-dimensional
spaces and/or more complex relationships. In addition, information redundancy
sometimes degrades performance. In the last case for NRE, the scalar summary
statistic has a lower RMSE than the others and in the first case, both temporal
and spatial information separately have lower RMSEs for NPE and NRE.

Fig. 6. RMSE of ABC, NPE and NRE when trained on a four parameter problem
with 10,000 samples. The dashed line is the RMSE when using the prior values (i.e.,
training data) as estimates. Contrary to the other experiments, the RMSEs are for one
training dataset only.
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5 Conclusion

In most ABMs, it is often hard to perform traditional statistical inference, as
the likelihood is analytically intractable or computationally expensive to sample
from. Fortunately, methods from the field of SBI, do not rely on the likelihood
function to conduct parameter inference. This study assessed the performance
of two recently developed SBI techniques using neural networks, NPE [6] and
NRE [11], and compared them to a more commonly used one: ABC. In addition,
we proposed a general approach, suitable for many ABMs, to provide spatio-
temporal information in the summary statistics, which is a necessary and cru-
cial ingredient for calibration. Compared with previous studies [5,4], the meth-
ods were evaluated for a large part of the parameter space of the satisfaction
threshold (i.e., tolerance parameter) in Schelling’s model of residential segrega-
tion [13], instead of only one particular set of parameter values with relatively
straightforward dynamics. This includes regions of high variance in output and
non-equilibrium, as well as equilibrium dynamics. This could be (more) challeng-
ing dynamics to perform empirical calibration on. In addition, changes in the
amount of spatial and/or temporal information in the summary statistics, alter-
ing training budgets, and increasing the number of parameters to be estimated
were tested.

In general, NRE showed better performance in terms of RMSE than ABC
and NPE in most regions of the parameter space, regardless of which summary
statistics were used. However, especially when adding the most elaborate spatio-
temporal information, a clear performance increase could be seen between NRE
and NPE versus ABC, but even more so for NRE than NPE. These conclusions
remain unchanged when the training budget was decreased or increased. Having
to calibrate two or four parameters instead of one also led to NRE outperform-
ing NPE, and both surpassed ABC, in most cases. This improved performance
may be due to the difference in the principal ideas behind the methods. Firstly,
calibration methods using neural networks might be better able to learn (com-
plex) relationships in the data than the ABC method and being more efficient.
However, neural networks take considerably longer to train and sample, which
can be of importance when selecting a method. Additionally, NRE transforms
the approximation of the posterior into a classification problem. This may be
an easier (supervised) learning task compared to the (unsupervised) learning
task of the direct posterior approximation used by NPE, which may explain
the improved performance of NRE over NPE. Notable is the increase in RMSE
(µ ∈ {0.3, 0.4, 0.5}) when spatio-temporal information is used with NPE. In the
same region, NRE obtains lower RMSEs for using only spatial or temporal infor-
mation. Moreover, this difference does not disappear when the training budget
is increased, suggesting that the problem is not due to an increase in dimen-
sionality. The persistence of this result over multiple training budgets hints at a
possible different, as yet unidentified, cause.

Most ABMs have more parameters to calibrate and slower runtimes than
the Schelling model. In such cases, the performance of the calibration methods
becomes even more crucial. Changing the hyper-parameters of the neural net-
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works and using different architectures can improve performance compared to
the default architectures used here. Assessing the performance when lowering
the training budgets even more, as some models cannot be evaluated that many
times, and increasing the number of parameters and/or summary statistics used
(i.e., making the estimation problem more difficult) are interesting directions for
future studies. One would expect a more rapid degradation in the performance
of ABC, compared to NPE and NRE, because it throws away (many) samples.
Additionally, in this specific setup, adding more information in the summary
statistics is often beneficial, but for other problems, this might be different or
not feasible to test various different summary statistics. Finding optimal high-
level descriptions to capture the fundamental emergent patterns in the model
through summary statistics and ensure the parameters are structurally identifi-
able could prove crucial in cases where systems are governed by more complex
behaviour [17]. Moreover, all three methods have several extensions that can im-
prove their performance. Sequential versions, which might improve efficiency but
lose amortisation [5], could affect performance in different ways (i.e., some can be
more efficient than others). In addition, learning summary statistics rather than
hand-crafting them can improve performance [4]. However, a general problem
with neural networks is that it is not clear how these methods learn, learn-
ing summary statistics would only worsen this problem. A summary statistic
that could have potentially improved performance here, discriminating between
µtrue = 0.1 and µtrue = 0.8, is the total number of relocations. For the former,
the number will be low as agents will be satisfied quickly, and for the latter, it
will be high. Lastly, the actual true value is used for performance assessment
(which is often unknown for empirical data), but there are also several other
assessment metrics. One could compare with the true posterior distribution if it
is available or use posterior predictive checks and simulation-based calibration
[5].

Our general approach (suitable for many ABMs) of providing spatio-temporal
information combined with methods from SBI, most notably NRE, makes it
possible to accurately estimate the posterior distributions of ABMs. This is even
true in difficult regimes, where the model output exhibits a high sensitivity to
parameters and has multiple potential solutions. This approach can be applied to
real-world empirical observations that contain longitudinal information and/or
data that can be aggregated at different spatial scales, paving the way for more
realistic and empirically calibrated ABMs.
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A Appendix

Fig.A1. RMSE for ABC, NPE, NRE and different summary statistics. For every µ
value the methods are trained 10 times, with a different training set of 500 samples.

Fig.A2. RMSE for ABC, NPE, NRE and different summary statistics. For every µ
value the methods are trained 10 times, with a different training set of 2000 samples.
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