
Accelerated Approximation of Bellman Equation
Solutions: Agent Policy Optimization With a

Feedforward Neural Network

Victoria M. Garibay1[0000−0003−0399−0591]

University of Amsterdam, Netherlands Victoria.Garibay@gmail.com

Abstract. Solving recursive equations through iteration can be a com-
putationally expensive endeavour, and the time required to reach an
optimal solution delays the progress of any dependent processes. To ad-
dress this issue for a specific use case of decision-making in an agent-
based model, a method of replacing the iterative function used in said
model, a Bellman equation, with a feedforward multilayer perceptron
was developed. A hyperparameter grid search was performed to deter-
mine the combination of architecture, learning rate, and batch size which
produced results deviating the least from those of the original iterative
method. With the resulting neural network, accepting four inputs and
yielding two outputs, the time required to compute outputs scales sub-
linearly with the number of agents. Excluding training time, for a set of
1,000 agents, the selected neural network produces output at over 66,000
times the speed of the original function. It achieves this acceleration
while maintaining a 99.3% accuracy in adaptation strategy selection and
0.10 mean absolute error in consumption, leading to its ready adoption
as an acceptable replacement for the original method.

Keywords: Dynamic Programming, Recursive Function, Surrogate Model,
Multilayer Perceptron

1 Introduction

Modelling autonomous agents interacting in an environment is an increasingly
computationally intensive task. As new technologies develop improving the ef-
ficiency and capacity of agent based models (ABMs), new levels of complexity
become realizable [9, 3]. Rising towards this higher potential can sometimes
involve reconsidering the approach to certain traditional model aspects. The
particular case addressed in this study is an ABM which follows the evolution
of stock capital for heterogeneous household agents in a society subjected to
exogenous shocks. Loosely founded on the Boltzmann wealth model, within a
timestep, agents exchange capital and decide how to optimally consume and
invest their resources depending on their attributes and perceptions of their
changing environment. The decision on how to partition their capital is based
on a Bellman equation [2], which has a recursive structure accommodating se-
quential processes such as forming an optimal consumption policy based on its

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

2 V. Garibay

expected future values. The form the Bellman equation took in the case model
did not have a known analytical solution. Solutions to the Bellman equation
have been approximated in a variety of creative ways in the past [23, 22, 15,
131]. One such calculation applicable to the custom Bellman equation arrange-
ment required by the ABM is policy iteration, a numerical method which ap-
proximates an optimal policy by alternately evaluating and optimizing the result
of a value function until convergence is reached [22]. This method in its estab-
lished form was not a feasible option for the case model due to the desired scale
(1,000,000+ agents), which a newly developed tensor-based framework (DGL-
ABM) was otherwise capable of supporting. Due to the imperfect nature of the
process of human decision making, there was some flexibility in the performance
of a replacement and, conveniently, the capacity to generate samples as needed
with the existing method, limited only by time and memory dedicated to their
production. To overcome the barrier posed by iterative calculation for a problem
set of sufficient magnitude to serve a million potentially unique agents, several
options for interpolation from known results to form a reference landscape map
or response surface were considered [12, 242]. However, the dimensionality issues
rising from a four-input, two-output structure and the irregularity the custom
Bellman equation made traditional interpolation methods poorly suited to the
task. Instead, attention shifted to the development of a surrogate model of the
equation. The judgment was reached that a Gaussian process regression was
inappropriate due to the piecewise discontinuity of certain specialized aspects
of the equation, moderately high dimensionality of the problem, and the poten-
tially large sample size required to accommodate this dimensionality. With these
restrictions in mind, it was decided to pursue a neural network approximation
for the equation. There are many examples of neural networks being used to
model equations, particularly in engineering and earth sciences [4, 6, 16]. The
potential applicability of neural networks to agent behavior is now also being ap-
preciated [15, 14]. However, approaches used in existing research differ from that
taken for the task in this study, as they primarily focus on using recursive neural
networks to capture the learning process of agents. For the proposed use case,
instead of considering agents to be themselves neural networks, the equation
which describes their decision-making is being approximated with a multilayer
perceptron (MLP) trained on computed results. A similar technique has been
applied to economic models in the past, primarily seeking proof of concept, but
literature on practical application attempts, successful or not, is limited [17]. The
contents of this manuscript are a written record of the motivation, exploration,
and formation of a static mapping technique for the results of a custom Bell-
man equation computation. The primary objectives of this research were to 1)
identify a superior combination of hyperparmeters with which to train a neural
network for the outlined computational task and 2) assess whether the resulting
MLP could be a worthy replacement for the iterative method—specifically, if it
could achieve the substantial speed gains required by the ABM setup while main-

1 Based on methods currently found in [7]
2 Based on methods from [1]

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Accelerated Approximation of Bellman Equation Solutions 3

taining, at minimum, a 90% fidelity in investment strategy and, at maximum,
an average absolute error of 0.25 in consumption. The following methods were
developed out of need, naive to the specific science and standards surrounding
neural network design. Through the process, the conductor of this research has
gained knowledge, become more aware of limitations in the field, and come to
appreciate that there is much remaining for all researchers to understand and
discover in this vast frontier. As such, it is hoped that the methods documented
and ensuing discussion can contribute as precedent for improved, streamlined
efforts to design similar approximation tools in the future.

2 Methods

Subsequent sections describe the methods followed in the process of training an
MLP as a potential replacement for an existing solver used as a decision model
for agents in an ABM.

2.1 Problem Context

The ABM itself is not the focus of this manuscript, thus it will not be explained
in great detail. However, readers may find it helpful to know a summary of rele-
vant points regarding the agent decision process. Agent decisions are described
by a constrained Bellman equation satisfied by a custom value function max-
imizing the value of the state of stock capital, k, resulting from a particular
consumption, c, and investment in adaptation ia (Eq. 1). Maximization is con-
strained by the rule that consumption and investment do not exceed available
funds at the following time step. Investment in adaptation is associated with a
multiplier which reduces the impact of a perceived exogenous shock, rendering
an adjusted shock factor θm,t. The function u is a standard isoelastic utility
function with exact value dependent on the risk aversion of an agent, σ, while
fincome—a function of aptitude, α, and stock capital—is the maximum value
from the results of a capital-only Cobb-Douglas production function evaluated
for available capital output elasticity exponents, γ, minus the cost assigned to
their use (u and fincome are described further in Algorithm 1 in the Appendix).
The depreciation, δ, and discount factor, β, were considered model constants,
homogeneous for all agents.

V (kt) ≡ max
ct,ia,t

{u(ct, σ) + βV (θm,t[fincome(α, kt) + (1− δ)kt − ct − ia,t])} (1)

2.2 Bellman Equation Sample Data Generation

Before attempting to model the Bellman equation (Eq. 1) with a neural network,
it was necessary to develop a training and testing dataset. As mentioned, the
solution to the equation was being computed iteratively relying on techniques

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

4 V. Garibay

documented by Stachurski [22]. For additional context, this iterative optimiza-
tion was occurring up to three times per set of agent properties as conceptually
represented in Algorithm 1, found in the Appendix3; this was because three
variations of the Bellman equation, one for each adaptation option, needed to
be evaluated to determine which produced the highest value for the agent. The
inputs to the algorithm were the agent properties kt, stock capital, θt, shock
perception, σ, risk aversion, and α, aptitude for income generation, as well as
the information on adaptation options, technology coefficients, and their associ-
ated costs. The outputs were the optimal consumption and choice of adaptation
investment, ia, between options of a N(one), L(ow), and H(igh) protection mul-
tiplier, m. The multiplier affects Equation 1 with θm,t = θt +m(1− θt).

A Sobol’ sequence-based Saltelli sampling matrix (N = 8,192) was formed
from the distributions specified in Table 1 [21, 20]. Duplicate agents were re-
moved, leaving 47,935 unique agents. All agents for which the Bellman solution
resulted in an error or did not converge were removed from the dataset, result-
ing in 47,281 remaining samples (a 98.8% retention rate). Prior to training and
testing the model, each input variable was scaled according to its distribution:

– For uniformly distributed:

input =
input−minimum

maximum

– For normally distributed:

input =
input−mean

standard deviation

Likewise, the output variables were scaled according to their maximum values:

output =
output

maximum

Variable Distribution Type Distribution Parameters

θ uniform [0,1)
k uniform [0.1,10)
α normal loc = 1.08;

scale = 0.074
σ uniform* [0.1,2)

* Value rounded to nearest tenth.
Table 1. Distributions used in Saltelli sampling of agent at-
tributes.

3 The code used to generate samples is also available as a notebook [5].

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Accelerated Approximation of Bellman Equation Solutions 5

2.3 Hyperparameter Grid Search

…

α ➝

θt➝

kt➝

σ ➝

➝ ia,t

➝ ct

…

h1 h5h4h2 h3

Fig. 1. Highly generalized diagram of
the multilayer perceptron used to map
the iterative Bellman equation input to
output. The number of hidden layers
and their respective widths were varied
according to Table 3 to execute a grid
search for the best architecture and hy-
perparameter combination.

An exhaustive grid search was performed
to determine the most appropriate model
architecture and hyperparameters for the
equation mapping task. In the process of
defining ranges and points for the search,
formal and informal guidelines were con-
sulted (e.g., Philipp [18], Goodfellow et al.
[8], Richetti et al. [19]), but they were—
by their own admission in some cases—
fairly vague and supported the idea that
hyperparameter selection can be highly
application-dependent. The MLP neural
network for which the search was con-
ducted had an input layer of four nodes,
output layer of two nodes, and between
two and five hidden layers (Fig. 1). The
relative shape of the network was gener-
alized into five architectural variations, or
ratios of layer widths, as specified in Table
3. The nmax referenced in that table is the
maximum number of nodes (i.e., the number of nodes in the widest layer of the
network). All layers used a basic ReLU (rectified linear unit) activation function.
Model training used the Adam optimizer and L2 loss (i.e., mean squared error,
MSE, Eq. 3) to minimize the difference between the predicted values and the
training dataset consisting of 80% of the agent sample data. The remaining 20%
of the sample was reserved for validation. Training ran for 200 epochs with an
early stop triggered after 20 epochs with no improvement in validation MSE.
Other considerations for the grid search were batch size and learning rate. Due
primarily to storage constraints, three random seeds were utilized for each unique
combination of architecture type, learning rate, nmax, and batch size listed in
Table 2. The code used for the model grid search can be found publicly [5]. The
foundational network training and testing scripts followed the Pytorch Template
Project [11].

2.4 Metrics & Model Selection

The metrics recorded for the best model of each combination of parameters in-
cluded mean absolute error (MAE, Eq. 2) for the model, percentage of incorrect
guesses for ia, and MAE for ct of the validation data. For each of these three met-
rics, the average value produced from the three seeds was considered to represent
the performance of each unique architecture and hyperparameter combination.
It was decided that the primary metric of consideration would be the combined
MAE, provided that the same model also fell within the top ten performers in
the other two metrics. In the event of failure to meet this secondary requirement,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

6 V. Garibay

Architecture Type nmax Learning Rate Batch Size

ThreeLayer (3L) 512 0.001 64
FourLayer (4L) 1024 0.01 128
FiveLayer (5L) 2048 0.0001 512

PudgeFiveLayer (P5L) - - -
PudgeSixLayer (P6L) - - -

Table 2. Grid search space for which combinations of one item of each column deter-
mined the model and hyperparameters for training.

Architecture Type h1 h2 h3 h4 h5

ThreeLayer (3L) nmax nmax/2 - - -
FourLayer (4L) nmax nmax/2 nmax/4 - -
FiveLayer (5L) nmax nmax/2 nmax/4 nmax/8 -

PudgeFiveLayer (P5L) nmax/2 nmax nmax/2 nmax/4 -
PudgeSixLayer (P6L) nmax/4 nmax/2 nmax nmax/2 nmax/4

Table 3. Layer widths specified in relation to maximum number of nodes (nmax) for
each architecture type. The column titles h1...h5 correspond to the hidden layers as
labeled in the stylized illustration of the network provided by Figure 1.

the next best model would be evaluated, loosening the top n standard by one,
and so on down the rankings.

Beyond selecting the best model for the intended purpose, additional infor-
mation was collected on differences in model performances to investigate any
potential trends for variables in the grid search space. For this aspect, model
MSE and MAE were the chosen metrics of comparison.

MAE =
1

n

n∑
i=1

|yi − ŷi| and (2)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (3)

where yi is the basis point, ŷi is the predicted value, and n is the sample size.

3 Results & Discussion

With respect to execution time alone, using an MLP as opposed to the, admit-
tedly poorly optimized, iterative computation method was a tremendous success.
In Figure 2, it is possible to observe the linear scaling of the iterative version and

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Accelerated Approximation of Bellman Equation Solutions 7

the sublinear scaling of the MLP version with increasing sample size. It should
be taken into account that the iterative computation method was applied to
agents in series, implying that time efficiency could have been increased through
parallelization.

While an improvement in computation time was anticipated with the MLP
method, the sheer magnitude of the improvement, emphasized by the identical
log scales of the boxplots, is extremely advantageous in the context of developing
a population-scale ABM and far beyond any improvement that could currently
be achieved through simple parallelization of the iterative computation method
(Fig. 2). For 10 runs of a 1,000-agent sample, the average execution time was
38957s (standard deviation 956s) for the iterative method and 0.53s (standard
deviation 0.23s) for the MLP method [5]. The following subsections contain more
information on the MLP itself and how its performance compared to the original
iterative computation.

1 10 100 1000
Sample Size

10 1

101

103

105

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a)

1 10 100 1000
Sample Size

10 1

101

103

105

Ex
ec

ut
io

n
Ti

m
e

(s
)

(b)

Fig. 2. Boxplots of execution time in seconds on a log scale for (a) the original iterative
solution method and (b) the neural network solution method for increasing sample size
demand. Triangles indicate the mean of 10 runs. The y-axis scale is kept constant for
easier comparison.

3.1 Model Selection

In Figure 3, the best and worst performers in the metrics chosen as a basis of
model selection are shown. The highest ranked model for overall combined MAE
was the P6L architectural ratio with a maximum layer width of 2,048 nodes, a
learning rate of 0.001, and a batch size of 64. Note that, while the same model
was also ranked first for the metric pertaining to ia, it placed tenth for ct MAE.
The closeness of the former and discrepancy of the later may be due to the
order of magnitude difference between the scales for the outputs; the error in ia

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

8 V. Garibay

(maximum 0.5) had finer granularity in its influence on MSE loss during training
than that of ct (maximum 40). The precise model applied to the ABM used the
previously stated hyperparameters with a seed of 84 and took 954s to train.

Other findings well highlighted by the plots are the great similarity in per-
formance among the better models, and the poor performance of 3L models
with 0.0001 learning rates in terms of overall MAE (Fig. 3a). Also, visible in
Figure 3c, the higher learning rate, 0.01, produced results with greater variance
in response to seed change. This tendency was also generally true of the middle
values not shown in the figure. The trend is sensible since a high rate leads to
coarser network updates, making the initialization more crucial and potentially
pushing the model into suboptimal regions of the loss landscape [8]. It should
also be noted that neither batch normalization nor dropout were used in the
network model.

3.2 Trends in Hyperparameter Optimization

While conducting hyperparameter grid search without optimization in the search
itself may be deemed inefficient, it was elected primarily as a straightforward,
thorough way of scientifically selecting a model and in response to the lack of
empirical studies reporting architecture and hyperparameter selection in the con-
text of MLPs for equation mapping. As computational budgets for this task per-
mitted, the exhaustive search was conducted to determine if any general trends
could be identified to direct future attempts at similar mapping problems. It
may be speculated that while the findings in this research cannot be generalized
per se, they may perhaps serve as a way to justify targeting a particular region
of the search space.

The differences in performance by controlled hyperparameter averaged over
the remaining three are shown in Figure 4. For the maximum layer width, nmax,
the downward trend in medians is very subtle and not observable in the mean at
all, indicating that after 1024 nodes there is little improvement; however, there
is a reduction in variance as number of nodes increases within the studied range
(Fig. 4a). The response of changing the learning rate is more complex, with
more of the combinations performing their worst with the lowest learning rate
and their best at a moderate learning rate of 0.001 (Fig. 4b). This is consistent
with the prior observation about high variance with high learning rate and for
the lowest learning rate may be speculatively attributed to the limitation to 200
epochs [8]. For the architectural shape, while the improvement from adding a
fourth layer is substantial, it appears that adding layers beyond four results in
very small marginal improvements in mean performance (Fig. 4c). Another note
of interest is the small gain achieved by ramping up to the widest hidden layer
as demonstrated in the differences in median and mean between 5L and P5L
(Fig. 4c, Tab. 3). As documented in literature, an increase in batch size is one
technique sometimes used to decrease model training time; this choice is, at some
point, to the detriment of the model performance [25]. Within the parameters of
this grid search there was an upwards trend in error with increasing batch size
(Fig. 4d). This suggested that, for the tested learning rates, most of the batch

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Accelerated Approximation of Bellman Equation Solutions 9

0.01 0.02 0.03 0.04
Overall MAE

3L, 512, 0.0001, 512
3L, 1024, 0.0001, 512

3L, 512, 0.0001, 128
3L, 2048, 0.0001, 512

3L, 512, 0.0001, 64

P5L, 1024, 0.001, 128
5L, 1024, 0.001, 64

P6L, 2048, 0.001, 128
P6L, 512, 0.001, 64

P5L, 2048, 0.001, 128
P5L, 1024, 0.001, 64

P6L, 1024, 0.001, 128
P6L, 1024, 0.001, 64
P5L, 2048, 0.001, 64
P6L, 2048, 0.001, 64

(a)

2 4 6 8
Incorrect ia (%)

3L, 512, 0.0001, 512
3L, 1024, 0.0001, 512
3L, 2048, 0.0001, 512

3L, 512, 0.0001, 128
3L, 512, 0.0001, 64

5L, 512, 0.01, 64
P5L, 512, 0.001, 64
5L, 1024, 0.001, 64

P5L, 2048, 0.001, 128
P6L, 1024, 0.001, 128

P6L, 1024, 0.001, 64
5L, 2048, 0.001, 128
P5L, 2048, 0.001, 64

P6L, 2048, 0.001, 128
P6L, 2048, 0.001, 64

(b)

0.2 0.4
ct MAE

P6L, 2048, 0.01, 512
5L, 2048, 0.01, 512

3L, 512, 0.0001, 512
P5L, 1024, 0.01, 128
P5L, 1024, 0.01, 512

P6L, 2048, 0.001, 64
P5L, 1024, 0.001, 64
P6L, 1024, 0.001, 64

P6L, 1024, 0.001, 128
P6L, 2048, 0.0001, 128

P5L, 2048, 0.001, 128
4L, 2048, 0.001, 64

P6L, 2048, 0.0001, 64
P5L, 2048, 0.0001, 64

P5L, 2048, 0.001, 64
(c)

Max Nodes: 512
Learning Rate: 0.0001

Max Nodes: 1024
Learning Rate: 0.001

Max Nodes: 2048
Learning Rate: 0.01

Fig. 3. The ten highest- and five lowest-ranked hyperparameter combinations perfor-
mance in (a) overall mean absolute error, (b) percent of incorrect guesses for adaptation
investment, and (c) mean absolute error in consumption for the validation sample in
comparison with the original iterative Bellman equation method. The combination la-
bels follow the convention: Architecture Type, nmax, Learning Rate, and Batch Size
as specified in Table 2. For each point marking the mean value of the metric, the error
bars represent the minimum and maximum value, the point shape indicates the learn-
ing rate, and the point color is indicative of nmax.

sizes were larger than the critical size, beyond which gradient noise becomes too
low, decreasing the generalizability of the trained model to testing data. All of
the observations stated for the MAE aligned closely with results for MSE.

For all hyperparameters, the variance in performance suggested the impor-
tance of their interaction effects. The heatmaps in Figure 5 facilitate the investi-
gation of relationships between hyperparameters as well as successful and poor
combinations. Similarly to the boxplots, it can be observed that learning rate
had a strong influence, but in the heatmap, it is more clear that the width of

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

10 V. Garibay

512 1024 2048
nmax

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Va

lid
at

io
n

M
A

E

(a)

0.0001 0.001 0.01
Learning Rate

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lid

at
io

n
M

A
E

(b)

P6L P5L 5L 4L 3L
Architecture Type

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lid

at
io

n
M

A
E

(c)

64 128 512
Batch Size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lid

at
io

n
M

A
E

(d)

Fig. 4. Boxplots marking the spread of performance in overall mean absolute error for
the validation sample categorized by (a) maximum number of nodes, (b) learning rate,
(c) architecture type, and (d) batch size. Triangles indicate the mean value.

the network had an impact on the magnitude of that effect (Fig. 5f). As men-
tioned before, the average performance decreased with increase in batch size and
improved with the addition of layers, however the learning rate appears to mod-
ulate these effects (Fig. 5d,e). From these plots, general combinations to embrace
or avoid in future training exercises can be identified; e.g., a model with batch
size of 64, nmax of 1024, learning rate of 0.001, and P6L structure will likely
perform well, while a model with batch size of 512, nmax of 512, learning rate of
0.0001, and 3L structure will likely perform very poorly (Fig. 5).

3.3 Limitations, Notes, & Future Work

A weak point in making generalizations, even in the very specific context of
this case study task, is the small model seed sample size of three. Although
the variance for points of the same combination was fairly low, particularly for

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Accelerated Approximation of Bellman Equation Solutions 11

512 1024 2048
nmax

64

128

512

B
at

ch
 S

iz
e

(a)

512 1024 2048
nmax

P6L

P5L

5L

4L

3LA
rc

hi
te

ct
ur

e
Ty

pe

(b)

64 128 512
Batch Size

P6L

P5L

5L

4L

3LA
rc

hi
te

ct
ur

e
Ty

pe

(c)

0.0001 0.001 0.01
Learning Rate

64

128

512

B
at

ch
 S

iz
e

(d)

0.0001 0.001 0.01
Learning Rate

P6L

P5L

5L

4L

3LA
rc

hi
te

ct
ur

e
Ty

pe

(e)

0.0001 0.001 0.01
Learning Rate

512

1024

2048

n m
ax

(f)

0.01

0.02

0.03

Fig. 5. Heat maps showing the combined effects of two hyperparameters on the overall
mean absolute error for the validation sample. The hyperparmeters compared include
(a) batch size to maximum nodes, (b) architecture type to maximum nodes, (c) ar-
chitecture type to batch size, (d) batch size to learning rate, (e) architecture type to
learning rate, and (f) maximum nodes to learning rate. Dark blue indicates relatively
high error while light green indicates relatively low error.

the best-performing models, uncertainty in performance and ranking could be
reduced by training more models with each hyperparameter combination. Upon
further research into general guidelines surrounding MLPs, it was surmised that
2,048 nodes is considered very wide for a network with only four inputs and that
such an overabundance of nodes may potentially lead to memorization of training
sets [8]. For models with an nmax of 2,048, the average MSE of the validation
dataset was approximately 93% higher than that of the training dataset, strongly
suggesting that these models were subject to overfitting; however, as the average
absolute difference was ∼0.00044, the practical consequences were considered
negligible, and the initially selected model was retained for use with the ABM.
This knowledge will be considered for the next iteration of hyperparameter search
and training, which will incorporate the adaptation option information as input
variables so that more flexibility can be gained in the ABM implementation.
Future efforts will also use larger training sample sizes to improve generalizability
and reduce overfitting. Expanding the model inputs would provide some answers
as to whether it might be appropriate to generalize the research to other Bellman
equations. Further comparison against optimized solvers of other equation forms
would be useful in determining the robustness of the method and findings, but
this type of testing was far beyond the scope and aspiration of this research.

The evidence that the shape of the architecture had relevance, more specif-
ically that ramping the width up then down versus abruptly up was better for

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

12 V. Garibay

results, deserves further experimentation. It is unclear whether the total number
of nodes being slightly higher was the driver of this outcome or the shape itself
was responsible. Although only tangentially related, a similar observation was
made in a study of convolutional neural networks [10]. Other experiments which
were conducted outside of the scope of this manuscript included splitting the
task into two MLPs (one for each output with ia as categorical), experimenting
with alternate activation functions (Swish and Mish), and experimenting with
scaling inputs and outputs. With regard to splitting the model, preliminary re-
sults did indicate that there was minor improvement, particularly in results for
consumption, which is to be expected given the current arrangement in which it
is effectively underrepresented in the loss calculation during training. By using
Swish and Mish in place of ReLU, there was improvement in the average met-
rics for incorrect ia and ct MAE, particularly with Mish. However, in both the
split case and the alternate activation function case, the improvement was so
marginal, that it was deemed unnecessary to replace the equation in the ABM.
Still, these aspects may be explored further in future training exploits. The ex-
periments on scaling included omitting the scaling process for inputs, outputs,
or both. While the outcome of these experiments will not be fully summarized
here, the most telling statistics were that, in an average performance, using both
unscaled inputs and outputs yielded a 10,940% increase in model MSE, 1,259%
increase in overall MAE, and 18% increase in training time over fully scaled
counterparts.

4 Conclusion and Takeaway

As ABMs and other models which rely on computationally complex subfunctions
grow in scale, occasions where their implementation is inhibited by techniques
which were previously acceptable become more prevalent. The case study solved
as documented in this manuscript is but a single example to set a precedent
for the use of MLPs to overcome this situation. While the journey taken in
the process of conducting this research could definitely be termed a learning
experience, the results met the need that was established well enough to allow
the modelling of agent behavior with a Bellman equation to continue without a
major overhaul in fundamental basis. While perhaps not a perfect replacement,
the neural network performs with sufficient accuracy, at a far faster rate, and
scales sublinearly with the addition of more agents. This provides hope that other
models may benefit from similar replacement strategies in the future, perhaps
incorporating some of the caveats against overfitting, observations on thresholds
of diminishing return for node and layer additions, and notes on architectural
performance differences.

Acknowledgments. The author acknowledges and is grateful for constructive aca-
demic discussions with Debraj Roy and Alex Gabel. This research was conducted with
support from the Dutch Research Council (NWO) under contract 27020G08, titled
“Computing societal dynamics of climate change adaptation in cities”.

Disclosure of Interests. The author is aware of no competing interests regarding
the content of this article.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Accelerated Approximation of Bellman Equation Solutions 13

5 Appendix

Algorithm 1: Computation of optimal consumption and adaptation
Input: Dictionary of agent parameters with kt, θt, σ, α and AdapTable

(array of ia and m pairs); TechTable (array of γ and cost pairs)
Output: ia,t ∈ {N,L,H} and ct

1 feasible← []
2 for ia ∈ AdapTable do
3 if ia < maxi=1,...,n [f(α, kt, T echTable) + θt(1− δ)kt] then
4 (c, v, convergence)←

solve_bellman(BellmanEquation(u,f, kt, θt, σ, α, ia,m));
5 feasible.append([c, v, convergence]);

6 index ←"NaN", converged← [], values← [], labels = [N,L,H]
7 for result ∈ feasible do
8 converged.append(result[2])
9 values.append(result[1])

10 if False ∈ converged then
11 return "NaN", "NaN"
12 else
13 index ← values.argmax();
14 ia ← labels[index] max← feasible[index] ct ← max[0]
15 return ia, ct
16 Function solve_bellman(BellmanEquation):
17 Function solve_bellman(BellmanEquation) is primarily a while

loop of update_bellman(vgrid , BellmanEquation) based on the
method described in Stachurski [22]. If errors for the policy solution
are not within tolerances at loop exit, convergence ← False

18 return c, v, convergence

19 Function update_bellman(vgrid, BellmanEquation):
20 Function update_bellman(vgrid, BellmanEquation) iterates over

an array of grid points to maximize and update their value function
results, vgrid, through optimization of consumption, cgrid, very
similar to the method described in [22].

21 return cgrid, vgrid

22 Function u(c, σ):
23 Function u(c, σ) returns utility of consumption σ
24 if σ ̸= 1 then
25 return c1−σ−1

1−σ

26 else
27 return ln(c)

28 Function f(kt, α, TechTable):
29 Function f(k, α, TechTable)returns agent income with
30 income← []
31 for i ∈ TechTable.keys() do
32 entry ← α ∗ kTechTable[i][0] − TechTable[i][1]
33 income.append(entry)

34 return max(income)

35

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Bibliography

[1] Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for
convex hulls. ACM Transactions on Mathematical Software 22(4), 469–483
(1996), https://doi.org/10.1145/235815.235821

[2] Bellman, R.: On the theory of dynamic programming. Proceed-
ings of the National Academy of Sciences 38(8), 716–719 (1952),
https://doi.org/10.1073/pnas.38.8.716

[3] DeAngelis, D.L., Diaz, S.G.: Decision-making in agent-based modeling: A
current review and future prospectus. Frontiers in Ecology and Evolution
6, 237 (2019), https://doi.org/10.3389/fevo.2018.00237

[4] Espinosa Barcenas, O.U., Quijada Pioquinto, J.G., Kurkina, E., Lukyanov,
O.: Surrogate aerodynamic wing modeling based on a multilayer perceptron.
Aerospace 10(2), 149 (2023), https://doi.org/10.3390/aerospace10020149

[5] Garibay, V.M.: nnbellman (2025), URL
https://github.com/vmgaribay/nnbellman

[6] Garzón, A., Kapelan, Z., Langeveld, J., Taormina, R.: Machine learning-
based surrogate modeling for urban water networks: Review and future re-
search directions. Water Resources Research 58(5), e2021WR031808 (2022),
https://doi.org/10.1029/2021WR031808

[7] Garín, J., Lester, R., Simms, E.: Intermediate macroeconomics (2021), URL
https://sites.nd.edu/esims/textbook/

[8] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

[9] Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul,
A.: Gama 1.6: Advancing the art of complex agent-based modeling and
simulation. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F.,
K.Purvis, M. (eds.) PRIMA 2013: Principles and Practice of Multi-Agent
Systems, pp. 117–131, Springer Berlin Heidelberg (2013), ISBN 978-3-642-
44927-7

[10] Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 5927–5935 (2017), https://doi.org/10.48550/arXiv.1610.02915

[11] Huang, V.: pytorch-template (2020), URL
https://github.com/victoresque/pytorch-template, accessed: 2024-03-
04

[12] Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of
expensive black-box functions. Journal of Global optimization 13, 455–492
(1998), https://doi.org/10.1023/A:1008306431147

[13] Joppan, N.T.: Modelling Poverty Alleviation Strategies Using Re-
silience Thinking. Master’s thesis, University of Amsterdam (2021), URL
https://scripties.uba.uva.nl/search?id=record_30354

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

Accelerated Approximation of Bellman Equation Solutions 15

[14] Jäger, G.: Replacing rules by neural networks a framework for agent-based
modelling. Big Data and Cognitive Computing 3(4) (2019), ISSN 2504-2289,
https://doi.org/10.3390/bdcc3040051

[15] Kuriksha, A.: An economy of neural networks: Learning from het-
erogeneous experiences. PIER Working Paper No. 21-027 (2021),
https://doi.org/10.2139/ssrn.3973697

[16] Ma, C., Zhu, B., Xu, X.Q., Wang, W.: Machine learning surrogate
models for landau fluid closure. Physics of Plasmas 27(4) (2020),
https://doi.org/10.1063/1.5129158

[17] Maliar, L., Maliar, S., Winant, P.: Will artificial intelligence replace compu-
tational economists any time soon? CEPR Discussion Paper No. DP14024
(2019), URL https://ssrn.com/abstract=3464569

[18] Philipp, G.: The nonlinearity coefficient - a practical guide to neural archi-
tecture design. ArXiv (2021), https://doi.org/10.48550/arXiv.2105.12210

[19] Richetti, J., Diakogianis, F.I., Bender, A., Colaço, A.F., Lawes,
R.A.: A methods guideline for deep learning for tabular data in
agriculture with a case study to forecast cereal yield. Computers
and Electronics in Agriculture 205, 107642 (2023), ISSN 0168-1699,
https://doi.org/10.1016/j.compag.2023.107642

[20] Saltelli, A.: Making best use of model evaluations to compute sensitivity
indices. Computer Physics Communications 145(2), 280–297 (2002), ISSN
0010-4655, https://doi.org/10.1016/S0010-4655(02)00280-1

[21] Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models
and their monte carlo estimates. Mathematics and Computers in Simulation
55(1), 271–280 (2001), ISSN 0378-4754, https://doi.org/10.1016/S0378-
4754(00)00270-6, the Second IMACS Seminar on Monte Carlo Methods

[22] Stachurski, J.: Economic Dynamics, second edition: Theory and Computa-
tion. MIT Press (2022), ISBN 9780262544771

[23] Su, J., Cheng, H., Guo, H., Huang, R., Peng, Z.: An approximate quadratic
programming for efficient bellman equation solution. IEEE Access 7,
126077–126087 (2019), https://doi.org/10.1109/ACCESS.2019.2939161

[24] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nel-
son, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ., Feng,
Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E.A., Harris, C., Archibald, A.M., Ribeiro, A.H.,
Pedregosa, F., van Mulbregt, P., Contributors, S..: SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods 17,
261–272 (2020), https://doi.org/10.1038/s41592-019-0686-2

[25] Zhang, G., Li, L., Nado, Z., Martens, J., Sachdeva, S., Dahl,
G.E., Shallue, C.J., Grosse, R.: Which algorithmic choices matter at
which batch sizes? insights from a noisy quadratic model (2019),
https://doi.org/10.48550/arXiv.1907.04164

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_17

https://dx.doi.org/10.1007/978-3-031-97557-8_17
https://dx.doi.org/10.1007/978-3-031-97557-8_17

