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Abstract. Influenza and other acute respiratory diseases pose a signifi-
cant challenge to global health. The complexity of analyzing and mitigat-
ing influenza transmission is related to heterogeneity of contact network
structures in modern cities. The need for effective public health strategies
has driven the development of highly detailed network and agent-based
models. To overcome a drawback of modeling multi-agent systems, which
is their high demand for computational resources, approximate models
can be employed. In our article, we present an approach that allows to
convert heterogeneous synthetic populations into an input for the edge-
based compartmental SEIR model. We demonstrate the method applica-
tion by simulating influenza spread in a contact network of the synthetic
population of Chelyabinsk, Russia. At a cost of neglecting some details
in contact network structure, the proposed algorithm allows to greatly
enhance simulation speed compared to multi-agent modeling, and at the
same time to preserve population heterogeneity, which makes it a good
choice for application in epidemic surveillance.
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1 Introduction

Influenza, along with other acute respiratory diseases, continue to pose a sig-
nificant challenge to global health. The complexity of influenza transmission,
coupled with the need for effective public health strategies, has driven the de-
velopment of a wide array of mathematical models. Mathematical models in
epidemiology enable the prediction of epidemic dynamics and the evaluation
of epidemic indicators, such as the reproductive number and the number of
immune individuals. Furthermore, they allow computational experiments that
facilitate the assessment of best vaccination strategies and other methods of dis-
ease control. The largest epidemics occur in major cities, where high population
density and numerous contacts between individuals are prevalent. Modern cities
can be considered as complex systems with heterogeneous network structure,
which creates challenges for modeling the spread of diseases. Classical SIR-type
compartmental models assume homogeneous mixing in the populations and are
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unable to account for effects associated with heterogeneity, such as existence of
super-spreaders. The two most popular approaches that come to the rescue are
multi-agent and network models.

The first method, multiagent modeling (MAM) based on detailed demo-
graphic data, is a powerful tool for modeling epidemic dynamics down to the
level of a single individual. MAM allow us to consider effects connected with
population heterogeneity, track the spatial spread of disease and chains of trans-
missions. However, high model detail results in long simulation time. This aspect
is critical for epidemiological surveillance purposes, as the model calibration
process requires numerous simulation runs. Another drawback is the need to
build a synthetic population for every city of consideration. Collecting data on
demographics, schools, urban development and workplaces of the city is time-
consuming, and it is often difficult to verify the resulting datasets [12].

The second method, network modeling, represent a simplified approach, where
contact networks are represented by random graphs and nodes are not distin-
guished by individual characteristics, enabling the conservation of contact trac-
ing without the necessity of developing detailed synthetic populations. Barabási-
Albert [4] and Erdős-Rényi [15] networks are commonly utilized for constructing
contact networks. This method may not represent accurately the topology of
contact networks in real populations.

To overcome a drawback of modeling multi-agent systems, which is their
high demand for computational resources, approximate models can be employed.
Kiss et al. showed that the computationally intensive SIR network model can be
effectively approximated via a range of ordinary differential equation models [6].
Namely, edge-based compartmental modelling (EBCM), being the most exact
of the approaches provided, approximates well the simulation results shown by
network models and at the same time provides those results much faster than
them [10]. While SIR models are partially applicable for the infections with short
latent period, like influenza, their applicability to diseases with long incubation
period, like COVID-19, is a matter of discussion. In order to fully take into
account the latent period, it is more logical to consider the SEIR (Susceptible-
Exposed-Infected-Recovered) model. The SEIR EBCM models were proposed
and used in [3], [13], [14]. In these articles, the networks of standard topologies
were used as an input, and the usage of synthetic populations in the models was
not considered.

In this work, we propose a method that unites the usage of approximate
heterogeneous compartmental models, namely, SEIR EBCM, with the generation
of input contact network graphs based on synthetic populations. We demonstrate
the usage of the method by constructing a contact network graph from the
synthetic population of Chelyabinsk, Russia, and comparing the simulation of the
disease outbreak using a SEIR EBCM with the simulation via a network model.
The ability of the EBCM to replicate real disease incidence is demonstrated by
calibration to 2022-2023 influenza incidence in Chelyabinsk.
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2 Methods

2.1 Synthetic population

A synthetic population is derived from diverse data sources reflecting the actual
urban population. It is formatted into text files and serves as an input for the
model. We have extensively employed multiagent modeling and creating datasets
for synthetic populations in our previous research [7], [8]. These datasets are
compatible to the RTI synthetic populations standard [16], capturing individ-
ual attributes such as household residence, age, gender, and workplace or school
identifiers. A detailed explanation of the data collection process and the syn-
thetic population format can be found in a related publication [8]. An example
of data from a synthetic population file people.txt describing the characteris-
tics of individuals is given in Table 1. The variables sp_id and hh_id represent
numerical identifiers of individuals and their households, while work_id iden-
tifies work office number. Other files that include data related to households,
workplaces and schools have a similar format.

Table 1. Sample records from the file people.txt of a synthetic population

sp_id age gender hh_id work_id
1 25 M 784 14
2 10 F 294 83
3 74 M 33 X
...

...
...

...
...

Chelyabinsk, a major Russian city with a population of over one million,
was chosen for this computational study. A synthetic population of the city was
created using data current as of 2023. The spatial distribution of households,
schools and workplaces is shown in Fig. 1. The data for workplaces is sourced
from Yandex.Auditorii [2], the households are geocoded using the information
from Open Street Map [1]. Workplaces are divided into offices, and households
are divided into apartments. The homogeneous structure of the workplace ar-
rangement depicted in Fig. 1 is related to the aggregated nature of office data
collected by [2]. Each workplace point is associated with the aggregated informa-
tion for workplaces in the corresponding area. The characteristics of the synthetic
population are summarized in Table 2.

Table 2. Population statistics for Chelyabinsk

City Population Households Workplaces Schools
Chelyabinsk 1 189 000 436 000 56 800 114
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Fig. 1. Map of Chelyabinsk with spatial distribution of households, workplaces and
schools from synthetic population data.

All computational experiments given in the article can be done on the full
population of Chelyabinsk, however, converting a synthetic population to contact
network graph of city with a population of 1 million people will require more
than 30 GB of RAM and more than 2 hours of calculations (using Intel Xeon
Gold 6226R 2.9 GHz). To demonstrate the possibility of reducing computational
cost, a sampling algorithm was employed on a full-scale synthetic population
dataset. This algorithm involves reducing the population by leaving r percent
of households in each district of the city. When the household is removed, the
individuals attributed to it are also removed from the synthetic population.

To generate a contact network based on the synthetic population, the follow-
ing algorithm was applied:

– Create a graph with N nodes where N is the size of the population. Each
node corresponds to a specific individual.

– Create an edge between each pair of individuals that have the same hh_id,
work_id or school_id.
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2.2 SEIR EBCM

To explore the peculiarities of epidemic dynamics connected with unique topol-
ogy of contact network and decrease the simulation time, we implemented an
edge-based SEIR model (SEIR EBCM). A EBCM is an approximate model that
incorporates probability generation function with degree distribution of input
population network for constructing a system of equations that describes epi-
demic process on networks. Let the population consist of N individuals corre-
sponding to N nodes of the network. According to works [13], [14] the system of
equations for SEIR EBCM model is the following:

θ̇ = −βψ,
ϕ̇ = −(α+ β)ϕ+ (G′′(θ)β/G′(1))ψ,

ψ̇ = βϕ− γψ + (G′′(θ)β/G′(1))ψ,

S = G(θ),

R = γI,

Ė = βSI − αE.

Table 3 and 4 show the description of the parameters, variables and their
initial conditions, taking the notations for u and v as neighbor nodes, connected
by edge in network. G(x) stands for probability generating function (PGF):

G(x) =

∞∑
k=0

pkx
k,

where pk is the probability that a randomly chosen node degree equals k. Vari-
ables S(t), E(t), I(t) and R(t) in the following equations refer to fractions of
susceptible, exposed, infected and recovered individuals respectively.

The system of ordinary differential equations is solved numerically using
odeint method from scipy library for Python language. Compartment sizes
are multiplied by N to find the absolute value of individuals at each state.

2.3 Data

Influenza incidence data were sourced from Research Institute of Influenza, St.
Petersburg, Russia. The number of individuals infected with each strain was
assessed with the help of strain-specific laboratory diagnostic data. Details of the
data processing methodology are outlined in [9]. In this research, we investigated
2022-2023 epidemic season in Chelyabinsk, Russia. The incidence data is shown
in Fig. 2. Some time points do not have incidence values due to a lack of data
for this period. During 2022-2023, the strain A(H1N1)pdm09 was the dominant
strain, accompanied by strain B, which maintained lower incidence rates, not
exceeding 2,000 new cases per week. For the purpose of simplifying the analysis
of the epidemic dynamics, we used the aggregate number of new cases across all
strains.
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Table 3. Variables description for SEIR-EBCM model equations

Variable Description Initial value
θ(t) Probability that the node u did not

transmit an infection to node v at a time
step t

1− ρ

ϕ(t) Probability that the node u of an edge
from u to v is exposed, and the edge did
not transmit an infection at a time step t

εϕ << 1

ψ(t) Probability that the node u of an edge
from u to v is infectious, and the edge did
not transmit an infection at a time step t

εψ << 1

S(t) Fraction of susceptible individuals in the
population at time t

1− ρ

E(t) Fraction of exposed individuals in the
population at time t

0

I(t) Fraction of infected individuals in the
population at time t

ρ

R(t) Fraction of recovered individuals in the
population at time t

0

Table 4. Parameter description for SEIR EBCM equations

Variable Description
β Infection transmission rate over one edge
α Rate for exposed nodes to become

infectious
γ Rate for infectious node to become

recovered
ρ Initial fraction of infectious nodes

3 Results

3.1 Synthetic population transformation

The synthetic population of Chelyabinsk was reduced using a sampling algo-
rithm, so that only r = 10% of households were left. That resulted in approxi-
mately N ≈ 350000 individuals compared to the full city population of 1189000.
To evaluate the effect of the sampling algorithm on the contact network structure
within the population, we generated histograms illustrating the distribution of
households and workplaces sizes. The plots are presented in Fig. 3, showing that
the distribution of household sizes moved to the right, while sizes of workplaces
significantly decreased (from 8 to 2 individuals in average). Since in this study
we do not calculate epidemic indicators, we consider these changes not crucial
for fulfilling our goals, but in case of using the model in epidemic surveillance
we consider using sampled populations with larger r, along with ’repopulating’
workplaces to retain original average number of individuals in them.
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Fig. 2. Strain-specific influenza incidence data for 2022-2023 epidemic season in
Chelyabinsk, Russia

As a next step, a contact network was generated from the synthetic popu-
lation, according to the aforementioned algorithm, with its software implemen-
tation in Python by means of networkx library. The resulting contact network
degree distribution is shown in Fig. 4.

To demonstrate the usage of the contact network, we performed a simulation
on it using a stochastic SEIR network model. The stochastic simulation was
made by Gillespie algorithm [5] from EoN (Epidemics on Networks) library [11].
In a Gillespie simulation, the timing of the subsequent event is determined by
computing the rate of all possible events at the current state. A waiting time
is then sampled from an exponential distribution characterized by that rate.
Subsequently, an additional random number is utilized to select which specific
event among the possible options will occur. In our case, initially, most nodes
are susceptible, with a certain fraction ρ of them set as infected. Each infected
node may transmit infection to its susceptible neighbors according to a defined
transmission rate. Exposed nodes transition to infected states, and infected nodes
recover based on corresponding rates. The simulation output is time series equal
to those of a compartmental SEIR model, i.e. S(t), E(t), I(t), R(t).

3.2 Model calibration

The second part of our method consists in feeding the created contact network to
the edge-based SEIR model and launching calibration to data. The first 7 weeks
on the graph with data were not considered for model calibration, as these data
points represent only small fluctuations. We assume that a full-fledged epidemic
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Fig. 3. Distribution of sizes of dwellings and offices according to synthetic population
data

begins from week 7, when the growth of number of new cases becomes apparent.
The calibration was conducted using a combination of automatic approach via
simulated annealing method and a manual parameter tuning. The resulting pa-
rameter values are presented in Table 4. To measure the accuracy of calibration,
the R2 metric was used. The calibration result is shown in Figure 5.

The comparison of simulation time for different model types is presented in
Table 6 and Fig. 6.

During the simulations, we have discovered an unpleasant effect which ap-
parently takes place for some synthetic population structures. In Figure 7, we
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Fig. 4. Degree distribution of the contact network in a sampled synthetic population
of Chelyabinsk
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Fig. 5. SEIR EBCM calibration to influenza incidence data of 2022-2023 epidemic
season in Chelyabinsk

demonstrate the comparison of simulation curves for two different types of in-
put contact networks. While the incidence curves for the EBCM and network
models are well approximated when using a Barabási-Albert contact network,
these incidence curves may have significant discrepancies when modeled on a
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Table 5. Parameter values for SEIR EBCM obtained by calibration

Parameter Value
β 0.0038
α 0.1
γ 0.14
ρ 0.0005

Table 6. Comparison of simulation time of different models.

Model Avg. simulation time, sec Complexity
SEIR ODE ≈ 10−3 Low

SEIR EBCM ≈ 10−1 Low
SEIR network model ≈ 102 Medium

Multiagent model ≈ 104 High
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Fig. 6. Simulation time for different models depending on the number of nodes of the
contact network graph. Experiments were conducted using Barabási-Albert network
with m = 5

contact network constructed from the synthetic population data. Particularly
in this case, EBCM failed to reproduce the bimodality of the incidence curve.
To our knowledge, this effect was not reported in the studies we relied upon.
Consequentially, the usage of EBCM seems to be limited at least to unimodal
curves, otherwise it changes the disease dynamics. Further studies are planned to
quantify this limitation, exploring dependency of curves approximation quality
on sampling ratio r and synthetic population structure of different cities.
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Fig. 7. Simulated daily incidence with different contact network graphs: a) simulation
on Barabási-Albert network; b) simulation on a contact network graph based on syn-
thetic population data.

4 Discussion

In this article, we proposed a method for fast and detailed modeling infection
propagation which is based on combining synthetic population transformation
and SEIR EBCM usage. To assess the applicability of the method, we compare
different aspects of its usage with other modeling methods. Traditional meth-
ods, such as the SEIR ODE approach, offer fast simulation time and relatively
straightforward calibration, making them appealing for rapid assessments of epi-
demic indicators and incidence prediction. However, these models fail to account
for heterogeneous effects within populations. In contrast, multiagent modelling
with synthetic populations provides a detailed view of epidemic spread at the
individual level, capturing complex interactions and behavior patterns of indi-
viduals. Despite its advantages, multiagent modeling is hindered by high simu-
lation time, which greatly complicates model calibration and data assimilation.
Additionally, creating synthetic populations for these models is challenging and
time-consuming, and these populations quickly become outdated due to demo-
graphic changes. In our method, using SEIR EBCM for modeling offers low
simulation time and makes it possible to capture effects connected with popu-
lation of concrete city using a transformed synthetic population. SEIR EBCM
approach makes it an attractive choice for handling the complexities of epidemic
modeling effectively. By integrating the benefits of different modeling techniques,
SEIR-EBCM can provide more accurate predictions and better support public
health strategies. However, to capture the effects connected with topology of
each city the construction of synthetic populations is also needed.

In future studies, we plan to enhance our approach by upgrading the sam-
pling techniques to preserve the distribution of apartment and work office sizes
more accurately. Additionally, we aim to assess the feasibility of approximating
contact networks based on synthetic populations using typical network models
such as Barabási-Albert or Erdős-Rényi. Furthermore, we intend to employ this
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model for epidemic surveillance as part of a modeling framework that will allow
ensemble forecasting and accurate assessing of epidemic indicators, such as Rt

and fractions of immune population across different age groups.
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