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Abstract. Hybrid disease modeling is a perspective area of research
that allows using detailed individual-based models for the outbreak on-
set phase and lightweight compartmental models to capture the general
trend of the disease progression. In such a way, the method of hybrid
modeling provides a good trade-off between the simulation speed and
the accuracy of reproducing disease dynamics. One of the problems re-
lated to this approach is how to switch properly between the two mod-
els. That included detecting the right time moment to finish simulations
with the detailed model and calculating correctly the input parameters
for the compartmental model. In this paper, we propose an implemen-
tation of switching which relies on evaluation and prediction of disease
transmission rate. Using an example with a network-based model and a
discrete compartmental model, we demonstrate several methods of dis-
ease transmission prediction based on statistical models and machine
learning approaches and analyze their advantages and disadvantages.
The developed methods can be generalized to hybrid modeling of highly
detailed demographic processes and propagation processes in general.

Keywords: network models · SEIR models · epidemics · compartmental
models · machine learning · statistical models · disease outbreaks

1 Introduction

For epidemic outbreak modeling, compartmental models, such as SIR [6] and
its modifications, are widely used. Their main drawback is a simplifying as-
sumption of homogeneous mixing among individuals. Detailed individual-based
models, like agent-based models (ABM) [7] or network-based models [10], can
provide more realistic interactions of individuals allowing to capture localized
transmission and super-spreading events. However, detailed models have higher
computational costs and execution time, which is not desirable for situations
requiring fast decision-making. As a result, selecting the best approach between
the two for a particular use case is not an easy task [11]. Good news lies in the
fact that the advantages of mentioned model techniques can be combined and
drawbacks can be compensated by applying hybrid approaches.
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Hybrid frameworks, such as those proposed by Bobashev et al. [3] and Hunter
et al. [5], have shown that the usage of interacting simple and detailed models can
improve both simulation accuracy and computational efficiency. The switching
between the submodels occurs in a certain phase of the epidemic. It is assumed
that in the early phase of the outbreak, when the number of infected individuals
is small, detailed modeling of contacts plays a significant role, which makes an
individual-based model a better option for simulation. Particularly, if transmis-
sion heterogeneity is high across a pathogen group, a small number of individuals
plays a disproportionate role to the spread of a pathogen and targeting control
measures towards those individuals can be very effective to reduce the epidemic
burden [13]. Once the number of the infected is large, the population can be con-
sidered homogeneous, so transitioning to a compartmental model can be done. A
key challenge is to choose the optimal switching moment. Early switching leads
to information loss related to details of disease transmission, while late switching
reduces the computational advantages of the hybrid approach. The success of
hybrid simulation depends on an accurate switching moment, as well as on a
proper alignment of submodels to ensure that the modeled disease prevalence
curve won’t show sudden surges or drops in the moment of switching [8].

Among the parameters of epidemic submodels, the disease transmission rate
β plays a major role and requires special attention when switching between
different model types. As it is noted in [3], thanks to the law of large numbers,
the calculated cumulative average of β tends to stabilize as the number of the
infected gets larger, which indicates a proper moment to use a compartmental
model (a switch point) without altering epidemic dynamics. Hence, one can
detect a switch point by waiting for the cumulative average of β to become
constant and use this value further on in the simulation via the compartmental
submodel. The authors of [3] pay attention to the fact that their hybrid model
is built on top of a rather simple ABM (homogeneously mixed population, no
community structure) which might lower the effectiveness of their approach for
more complicated ABMs. Particularly, other works, such as [12], indicate that
assuming time–dependent β = β(t) throughout the whole simulation, rather than
approximating it with a constant, is essential for accurately recreating epidemic
trajectories in real settings.

In this research, we develop and assess methods of switch point detection
and β estimation to ensure accurate switching between the submodels. As a
baseline method, we regarded the switching of models using a last estimated
value of β. The alternative proposed methods include various ways of dynamic
β estimation along with β prediction based on the historically known epidemic
waves. The methods are tested on a hybrid model which couples a detailed
network submodel with a lightweight compartmental submodel. The goal of this
work is to compare the computational efficiency (runtime) and accuracy (RMSE)
of the analyzed methods. The source code implementing the methods proposed
in this paper is available on GitHub [1].
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2 Methods

2.1 Submodels for the hybrid approach

Compartmental submodel. The baseline compartmental submodel we use in
this study is a deterministic discrete SEIR model with a time step equal to one
day. To address the stochasticity which is intrinsic to network and agent-based
submodels of the hybrid framework, we also employ the stochastic version of the
same model with probabilistic transitions using binomial sampling. In the ex-
periments further on we demonstrate both the deterministic and the stochastic
compartmental models. Let S be susceptible individuals, E — exposed individu-
als, I — infectious individuals, and R — recovered individuals. The dynamics of
the groups’ sizes over time for a discrete stochastic case are set by the following
difference equations:

St+1 = St − ξSE , (1)
Et+1 = Et + ξSE − ξEI ,

It+1 = It + ξEI − ξIR,

Rt+1 = Rt + ξIR,

S0 ≥ 0, E0 ≥ 0, I0 ≥ 0, R0 ≥ 0,

S0 + E0 + I0 +R0 = N, (2)

where ξSE ∼ Bin(St, βIt), ξEI ∼ Bin(Et, σ), ξIR ∼ Bin(It, γ).

Network submodel. The population is modeled as a network where each indi-
vidual is a node, and interactions between the individuals are possible if and only
if they are connected by an edge. In our simulations, we used a Barabasi-Albert
network topology [2]. The Barabasi-Albert model generates networks through
preferential attachment: when new nodes are added, they preferentially connect
to existing nodes that already have a high degree (many connections). This
process leads to the emergence of “hubs” – highly connected individuals – and
a long-tailed degree distribution. In the context of disease spread, this implies
that infections may spread more rapidly through these hubs. The network sub-
model does not have the β parameter as in the SEIR model. Instead, the disease
transmission is characterized by τ , the probability for one person to infect the
other via the common edge.

In the network submodel, the infection dynamics is defined by the contact
network topology and the value of transmission probability τ . In a compartmen-
tal model, the infection transmission is solely governed by the transmission rate
β. We assess βt from a modeled output generated by the network model, using
an approximate formula (Eq. 3):

βt = −St+1 − St

St · It
. (3)

As stated earlier, the choice of β values for the compartmental submodel is
important to ensure a proper switch. To address this, we generated baseline
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epidemic prevalence trajectories made solely by the network submodel, without
switching. The values of σ and γ were fixed, we varied only 2 parameters – τ
and I0, the fraction of initially infected. Resulted epidemic curves, as will be
described in detail later, constituted test and train datasets which were used to
evaluate our methods of β analysis and prediction.

2.2 Beta estimation approaches

The regarded approaches were grouped into three categories: (a) those that rely
on a current incomplete disease trajectory (which mimics the ongoing epidemic
process), (b) those that are based on a train dataset with complete trajectories
(which helps establish the form of βt based on previously collected information),
and (c) those that use both a train set and a current disease trajectory (which
makes it possible to better adjust a form of βt to an actual disease curve). Each
group of approaches has their own baselines. In graphs and tables, we use the
abbreviated names in the form of M<type>, where <type> is the method name.

Estimation on current incomplete data. To estimate the value of β for
switching, we started with three baselines: choosing the last known βt value, i.e.
the closest to a switch point (Mlast_val); taking the last value from the moving
averages of βt (Mma_val), taking the last value from the cumulative averages of
βt (Mca_val). The more advanced method of β estimation is to fit a function
to incomplete βt data before the day of switch and use it in a compartmental
model (Mbiexp). The function should have a similar shape with actually observed
trends of βt, i.e. bear similarity with a skewed bell. The chosen function is the
biexponential decay function (Eq. 4):

βt = a(e−bt − e−ct), (4)

where a, b and c are estimated through non-linear least squares.

Estimation on train set. The methods in this group obtain the form of βt

based on the train set, therefore the form of βt is fixed and is not influenced by
actual prevalence data related to the ongoing simulated outbreak. The baseline
method (Mmedian) for this group is to use the trajectory of median values of βt

for each day t (β̃t) from the train set. The alternative method is to use βt in
the form of third order polynomial regression (Mregr) with L2 regularization.
The model takes t as input and outputs log(β). Input values are modified by
removing the mean and scaling to variance.

Estimation on train set and incomplete data. The methods from this
group use both generated trajectories and the current sample’s data to generate
the forecast for the model switch. The baseline methods consist of taking the
forecast β values from the previous group of methods and making them better
comply with β values of current data.
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The first baseline method (Mshift
median) is to shift modeled values of Mmedian,

adding a scalar. The summand is calculated as the difference between an actual
and estimated β at the switch point. The value of the actual β is chosen as a
moving average at the switch point. Let β′ denote β estimate from the baseline
and t – the time of switch, then the shifted trajectory is set by the following
equation:

β
′

shifted = β′ + (MAt − β′
t), (5)

where MAt is a moving average for βt.
The second baseline (Mshift

regr ) is to shift a regression forecast (Mregr) in a
similar manner. The third one (Madd

regr) is to additionally train a regression model
for additional N epochs, using β values from the currently observed outbreak as
target values.

The main methods are a regression model with an extended set of income fea-
tures (Mregr_ext) and a Long Short-Term Memory (LSTM) network (MLSTM )
[4]. LSTM was chosen as it is often used for time series forecasting and for
epidemic modeling in particular [9].

The regression model is with third degree polynomial features, i.e. all poly-
nomial combinations of the features with degree 1 and 2. The regularization is
L2. Input values are scaled by removing the mean and scaling to unit variance.

The LSTM network consists of 2 LSTM layers. The loss function is a mean
squared error (MSE), the optimizer is RMSprop with an initial learning rate of
0.001 and a learning rate schedule: multiply the learning rate by 0.1 after 30
epochs. The training was conducted with a batch size of 64 for 100 epochs with
early stopping: training was stopped if validation loss did not improve after 7
epochs. The model was trained to forecast based on 14 days prior. The chosen
architecture (Fig. 1) is complex enough to catch the trends for β prediction on
the train dataset.

LSTM

input: output:

(_, 14, 3) (_, 14, 64)

Dropout 

input: output:

(_, 14, 64) (_, 14, 64)

LSTM_1

input: output:

(_, 14, 64) (_, 64)

Dropout_1

input: output:

(_, 64) (_, 64)

Dense

input: output:

(_, 64) (_, 1)

Fig. 1. LSTM architecture

2.3 Switch point detection approaches

To determine the optimal time of switch from the network submodel to the com-
partmental submodel, we need to monitor β values. Initial days of an epidemic
are characterized by a highly variable β with its further smoothing, therefore
our criteria for switching is low β variance. This ensures that the compartmen-
tal model can accurately reproduce epidemic dynamics without significant loss
of detail.
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To compare dynamic methods described further, we also utilize static meth-
ods with constant switch points, later refered to in the form of SP<n>, where n
is the chosen day of switch.

Change in variance. The first method (SPonce) involves calculating the mov-
ing variance of β, i.e. calculating variance over the previous k days. Let MVt

denote the calculated moving variance value for a given day t:

MVt = V ar(βt−k+1, ..., βt) (6)

To establish a switch condition regardless of the range of β values, we apply
min-max scaling to get values in the range from 0 to 1 (Eq. 7):

MV ′
t =

MVt −MVmin

MVmax −MVmin
(7)

This scaling allows us to interpret MV ′
t = 0 as the minimal observed variability.

Therefore, when MV ′
t falls below a chosen threshold (ε), we can consider β

stable, which indicates the optimal time to switch.

Established change in variance. At the beginning of an epidemic the variance
of β may accidentally decrease, not reflecting real stabilization. To account for
such declines leading to early switching, we add the following condition: the value
of MV ′

t should stay below ε for a specified number of consecutive days. Therefore
the second method (SPestab) waits for an established change in variance.

Change in variance after the epidemic situation. The third method
(SPepi_sit) introduces a new condition to avoid the early switch problem. The
first condition, i.e. making sure that MV ′

t is below ε, is accompanied by a sec-
ond condition: the proportion of the infected population should reach a specified
percent; this indicates the epidemic situation.

2.4 Evaluation metrics

To assess the computational efficiency of the algorithms, time spent from the
model initialization to the final prediction was measured. The observed period
includes both training and inference phases. Forecast accuracy was measured by
calculating RMSE between the actual and the predicted time series, both for It
and for βt.

Two additional metrics for It are peak height error (relative) and peak time
error (absolute). Peak time error is negative when the model peak day is earlier
than the real one, and positive otherwise. The value of peak height corresponds
to maximal burden imposed on the healthcare units, whereas the value of peak
time is used to assess the period of time remaining to prepare necessary resources.
In case of positive peak time error, we will be caught by surprise unprepared,
that is why negative peak time error is preferable.
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3 Experiments and results

In our simulations, we used a Barabasi-Albert graph network of 104 nodes, with
each new node attached to 5 existing nodes. Epidemic trajectories were generated
with σ = 0.1, γ = 0.08, τ ∈ {0.01, 0.02, . . . , 0.05}, I0 ∈ {0.005, 0.006, ..., 0.011}.
We regard these trajectories as outbreaks of some generic acute respiratory dis-
ease. The values of parameters σ and γ were chosen to be close to typical in-
cubation and infection periods for ARIs. Values of τ and I0 were selected to
approximately match ARI outbreaks by the length of an epidemic and the max-
imal prevalence.

For each parameter combination, 50 simulation runs were performed with dif-
ferent seeds of a random number generator, thus reflecting the stochastic factor.
A total of 1 500 unique epidemic trajectories were generated, with 20% of the
data selected as a test dataset using a stratified approach based on the param-
eter values τ and I0. All further experiments test the methods of β estimation
and switch point detection on these 300 samples. The results for RMSE of It are
presented in Table 1 and discussed further.

β estimation
method

Switch point detection method
SP20 SP30 SP40 SPonce SPestab SPepi_sit

Mlast_val 244.8 ± 116.0 154.7 ± 134.8 99.7 ± 134.8 265.2 ± 111.0 265.1 ± 109.1 287.5 ± 98.9
Mma_val 273.7 ± 88.5 199.2 ± 124.6 111.5 ± 132.6 264.4 ± 84.6 262.4 ± 83.0 291.7 ± 86.9
Mca_val 229.9 ± 59.9 221.0 ± 74.7 193.3 ± 95.3 244.8 ± 68.5 248.3 ± 69.7 243.3 ± 66.3
Mbiexp 261.4 ± 152.8 205.9 ± 121.2 153.8 ± 84.8 324.8 ± 206.1 290.6 ± 202.4 325.1 ± 190.1
Mmedian 74.2 ± 90.1 42.3 ± 56.9 28.6 ± 38.8 87.2 ± 76.2 83.8 ± 66.0 85.6 ± 71.6
Mregr 109.6 ± 75.8 50.5 ± 65.5 42.7 ± 49.0 139.3 ± 77.4 131.5 ± 74.0 144.0 ± 73.5

Mshift
median 162.9 ± 117.0 70.9 ± 74.3 34.6 ± 61.5 178.1 ± 156.8 161.2 ± 159.6 183.6 ± 136.2

Mshift
regr 213.5 ± 67.0 112.5 ± 62.8 45.2 ± 71.6 209.1 ± 86.0 196.8 ± 87.9 217.2 ± 77.5

Madd
regr 83.4 ± 53.4 59.8 ± 48.9 48.2 ± 42.8 125.0 ± 61.1 120.0 ± 59.6 128.0 ± 58.1

Mregr_ext 58.1 ± 48.2 37.2 ± 36.8 28.2 ± 28.5 66.9 ± 62.0 64.0 ± 60.2 67.1 ± 56.5
MLSTM 80.9 ± 68.5 31.6 ± 26.8 20.9 ± 13.6 102.7 ± 85.6 94.6 ± 86.3 105.1 ± 85.5

Table 1. RMSE of It for all methods of beta estimation and switch point detection;
top-3 beta estimation methods for each switch point are highlighted in bold

3.1 Beta estimation approaches

The aim of these experiment series is to compare the accuracy of β estimation
approaches within each group, corresponding to their use cases.

Estimation on current incomplete data. We applied the methods of β
estimation from the first group (section 2.2) to each test sample. Our addi-
tional subject of interest is to compare prediction results for constant and time-
dependent β.
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As can be seen in Fig. 2 and first 3 rows in Table 1, using constant β as input
for the SEIR provides a poor fit to actual values of It. The β trajectory is highly
variable, so using Mlast_val leads to a big difference in RMSE based on the day
of switch. The moving average (Mma_val, the best results with a window size of 7
days) and the cumulative average (Mca_val) approaches result in lower variance
of RMSE compared to Mlast_val. To further analyze limitations of constant β
values, we took values from 0 to 4 · 10−5 with a step size 10−6 as inputs to the
SEIR model. The modeled It trajectories either are too wide or have a higher
peak to match actual It (Fig. 3, left). This suggests that constant β gives poor
results because the data requires a varying β trajectory, not because the constant
value was chosen incorrectly.

The first time-dependent β estimation approach (Mbiexp) does not estimate
values similar to the initial β. The modeled β trajectory after the switch point
does not match the curve of real values either, which leads to peak height under-
estimation. However, the method with time-dependent β has area of improve-
ment, which will be showed further.
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Fig. 2. Simulated prevalence curves for beta estimation methods based on current data:
last value, moving average, cumulative average, biexponential decay

Estimation on train set. We applied the methods of β estimation from the
second group (section 2.2) to each test sample.

As can be seen in Fig. 3 (right), the maximum variation of actual values
occurs at the beginning of an epidemic. Then, when an outbreak starts spreading
rapidly and β values have the most effect on modeled It trajectories, the range
of values is narrower. The methods Mmedian and Mregr have similar estimated
trajectories after the 30th day when β values should be the most relevant for
modeling, but the metrics vary significantly with Mmedian having lower errors.
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Fig. 3. Modeled trajectories for It with constant beta values (left); median β values of
all generated trajectories and the output of the regression model fit on a day (right)

This implies that a slight mismatch even solely in first initial β values can nearly
double the median RMSE of It.

Even a slight difference in β values results in a noticeable change in a number
of infected people. This can be supported by Fig. 3 (left): each increment by 10−6

gives around 100 additional infected people at the modeled peak, i.e. 1% of the
population.
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Fig. 4. Simulated prevalence curves for beta estimation methods based on train set:
median of train set, regression on day

Estimation on train set and incomplete data. We applied the methods of
β estimation from the third group (section 2.2) to each test sample.

Both shift methods (the best results with a window size of 14 days) result
in worse metrics than original methods (Mmedian and Mregr). One reason may
be the shape of β values in simulated trajectories. While initial days have a
high variability in values, shifting based on these days’ values (even with rolling
average) results in inflated β values at the end.

We can compare Madd
regr (the best results with 3 additional epochs) in Fig. 5

with Mregr in Fig. 4. The tail of estimated β from Madd
regr is the same, but the

beta values near the switch point are closer to the actual β. This gives a lower
peak, although the epidemic generally has the same duration.
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Mregr_ext and MLSTM methods are in top-3 for RMSE of It according to
Table 1. Input features for Mregr_ext and MLSTM were selected to achieve the
least RMSE without redundant features. For Mregr_ext, the input features are:
t, St, Et, It, Rt, It−1. The input features for MLSTM are: t, Et, It−2. Feature
values at switch point are compartment values from the network model. The next
day is modeled with compartments from the discrete SEIR. We experimented
with different values for It−s, where s is the shift; s = 2 gave the best results.
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Fig. 5. Simulated prevalence curves for beta estimation methods based on current data
and train set: shifted median, shifted regression, regression with additional learning,
regression with extended input features, LSTM

3.2 Switch point detection approaches

The aim of these experiment series is to assess switch point detection approaches
and the stability of β estimation methods. To achieve this, we calculated the met-
rics for a fixed set of switch points and for variance-based detection approaches.
RMSE of It for all β estimation methods and switch point detection methods
can be found in Table 1.

The lowest accepted switch point was set to 14 days to not interfere with
MLSTM ’s input shape. The most test samples visually have an epidemic start
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(1% of the population is infected) around days 20, 30, and 40. We chose these
three days as constant switch points. The choice of switch point does not affect
the top-3 β estimation methods based on RMSE. This may suggest that even
though SP20 may be too early to switch, or SP40 is too close to the peak,
no method of β estimation gains any benefits to overcome the top-3 methods
(Mmedian, Mregr_ext and MLSTM ).

Switch detection methods have a different optimal threshold ε. SPonce shows
best results with ε = 0.05, i.e. 5%. SPestab has best results with ε = 0.05 and
2 consecutive days. SPepi_sit shows best results with ε = 0.1. The discrepancy
comes from the methods’ conditions: the last approach waits for 1% of the pop-
ulation to be infected, further β values are more stable, so we can switch with
fewer risks, therefore a higher ε.

Constant switch points have limited usage for real-world applications because
they do not consider the ongoing epidemic dynamics. Out of the three remaining
methods, SPestab has the lowest errors, according to Table 1. However, high
accuracy may be a result of switching closer to the peak, which reduces the
benefits of the hybrid approach. For instance, as it can be seen in Table 1,
increasing the value of a constant switch point (from 20 to 30 and 40) results in
decreasing the RMSE of It for the corresponding methods (SP20, SP30, SP40).
Thus, it is important to also consider the distance between the detected switch
point and the actual peak time, i.e. the difference between their values in days.
Fig. 6 shows that the method with the largest median difference between the
switch and the peak time is SPepi_sit. Due to that reason, we prefer this method,
although it has the largest errors among the 3 methods based on the variance
of β.

SPonce SPestabl SPepi_sit SP20 SP30 SP40
Switch point detection method
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Fig. 6. Difference between the actual peak time and the detected switch point; boxplots
for constant switch points are filled
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3.3 Evaluation results

Accuracy (RMSE). All figures are presented for the best switch point detec-
tion approach – SPepi_sit. For RMSE of It (Fig. 7), the methods with the best
results are: MLSTM , Mmedian and Mregr_ext with median errors 105.1, 85.5 and
67.1. Therefore, the error for top-3 methods is around 1% of the population. For
RMSE of β values (Fig. 8), the best performing methods are: MLSTM , Mmedian

and Mregr_ext with median errors 1.09 ·10−5, 1.08 ·10−5 and 1.05 ·10−5. The set
of best methods is the same for both metrics. The purpose of a hybrid approach
is to switch to a simpler model without the loss in accuracy for the predicted It
trajectory, so RMSE of β is less relevant. As a result, the final top-3 methods
are: MLSTM , Mmedian, Mregr_ext.
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Fig. 7. RMSE for It. Beta estimation methods based on current data (group 1), train
set (group 2), and combined (group 3). Boxplots for baseline methods are filled.

Mlast_val Mma_val Mca_val Mbiexp Mmedian Mregr

Time, sec 0.016 ± 0.006 0.005 ± 0.005 0.003 ± 0.005 0.003 ± 0.006 0.008 ± 0.006 0.005 ± 0.001

Mshift
median Mshift

regr Madd
regr Mregr_ext MLSTM

Time, sec 0.009 ± 0.007 0.005 ± 0.000 0.007 ± 0.001 0.362 ± 0.073 37.625 ± 14.519
Table 2. Prediction time for the methods of β estimation

Computational efficiency. Time measurements for training and prediction
were performed on a system equipped with an AMD Ryzen 5 5500U proces-
sor (up to 4.0 GHz), 16 GB of LPDDR4x RAM (4266 MHz), and integrated
AMD Radeon Graphics. In a single-threaded configuration without paralleliza-
tion, MLSTM required 1228.4 seconds to finish the training, Mregr_ext took 2.86
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Fig. 8. RMSE for Beta. Beta estimation methods based on current data (group 1),
train set (group 2), and combined (group 3). Boxplots for baseline methods are filled.

seconds. Time for predictions is presented in Table 2. MLSTM , while demanding
the most computational resources, is still considered top-3 due to its forecast ac-
curacy. Two methods with higher RMSE and faster prediction time are Mmedian

and Mregr_ext.

Accuracy (distance to peaks). All figures are presented for the best switch
point detection approach – SPepi_sit.

For an easier interpretation, we present peak errors for each group of β es-
timation approach separately (Fig. 9). The x-axis corresponds to the difference
between the predicted and actual peak time. The y-axis is the fraction of the
predicted peak height to the actual peak height. The best case is at the point
with coordinates (0, 1). Besides the best case, we are also interested in the sec-
ond and third quadrants, which depict cases with peaks predicted earlier. All
top-3 β estimation methods (Mmedian, MLSTM and Mregr_ext) are close to the
best case at (0, 1).

The remaining β estimation methods have larger areas of possible outcomes.
Some additional conclusions may be drawn from methods based on regression
(Mregr, Mshift

regr , Madd
regr). Shifted predictions by Mshift

regr skew the results closer to
the best case for peak height ratio but with larger peak time underestimation.
Additional learning for 3 epochs in Madd

regr makes the error in peak height slightly
lower for almost each point.

4 Conclusions and future work

In this research, we presented the hybrid approach based on a network-based
and a discrete SEIR submodels with dynamic switching. For the correct align-
ment of submodels, it is important to properly estimate the value of β (disease
transmission rate). We conducted several experiments to analyze methods of β
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Fig. 9. Peak errors for beta estimation methods; x-axis is the difference between the
predicted and actual peak time, y-axis is the fraction of the predicted peak height to
the actual peak height

estimation and switch point detection. β estimation methods are divided into 3
groups based on their use conditions: only the current outbreak data are avail-
able, only historic data are available, historic and current data are available.
Switch point detection methods are divided into static methods with constant
switch points and dynamic detection methods based on β variance. Our work is
based on the analysis of synthetic epidemic data; this is the first step towards
the further application of the hybrid approach for modeling real-world epidemic
processes.

The best switch point detection approach was concluded to be SPepi_sit,
i.e. switch point detection based on the declared epidemic. The method has two
conditions: 1% of It and β variance lower than 10%. The best β estimation meth-
ods with the lowest RMSE in It and with the lowest peak errors are: MLSTM

(LSTM model), Mmedian (median of β values in train set) and Mregr_ext (re-
gression model).

For future work, firstly, we plan to use interval estimates as opposed to point
estimates to account for uncertainty. As some papers suggest, epidemic forecasts
should always be done with deep uncertainty methods to enhance decision-
making. Secondly, there is a separate field devoted to changepoint detection,
which analyses when the change happens in the probability distribution of a
certain signal. We can utilize state-of-the-art approaches and assess their appli-
cability for our purposes. Thirdly, to formalize the assessment of switch point
detection methods based on accuracy (distance to peak and RMSE of It) one
can include the weighted metric. Finally, we also plan to generalize the methods
of β estimation for more complex models such as ABM and real data. However,
initial attempts showed more intricate β trajectories for ABM data, thus requir-
ing changes in our approaches. ABM may also have an additional parameter, a
fraction of immune individuals, to consider during modeling and β estimation.
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