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Abstract. In this paper, we present an approach for the detection,
segmentation, and quantification of stenoses in coronary arteries using
modern computer vision and deep learning techniques. Our system in-
corporates a detection model based on YOLOv8 and a segmentation
model (DeepLabV3+) for precise localization and delineation of stenosis
regions. In addition, a novel method is introduced to measure arterial
thickness to support clinical decision-making. The experimental evalua-
tion shows that the approach demonstrates high quality and performance
in comparison to existing solutions. This work aims to improve diagnostic
efficiency and reduce the reliance on expensive foreign-made equipment
by providing an integrated solution that can operate on standard hard-
ware.
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1 Introduction

Cardiovascular disease remains one of the leading causes of death worldwide.
Among various cardiovascular conditions, coronary artery stenosis stands out
as a major concern—this narrowing of the arterial vessels that supply blood to
the heart can lead to ischemic heart disease, myocardial infarction, and other
severe complications. The timely diagnosis of stenosis plays a crucial role in
preventing these outcomes and reducing mortality associated with cardiovascular
diseases [9]. A modern diagnostic approach for stenosis is coronary angiography,
a method that visualizes the heart’s vessels using X-rays and contrast agents.
However, this method requires the mandatory involvement of highly qualified
specialists and substantial time for manual image analysis. Furthermore, the
results of such analysis are susceptible to human error, especially under high
workloads faced by medical personnel.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_10

https://dx.doi.org/10.1007/978-3-031-97557-8_10
https://dx.doi.org/10.1007/978-3-031-97557-8_10


2 Evtyukhov D. et al.

Automating the diagnosis of stenosis through computer vision methods has
the potential to revolutionize the processing of medical images. Deep learn-
ing and computer vision algorithms enable rapid and accurate analysis of an-
giograms, allowing for the detection of abnormalities and the extraction of vessel
geometry information. This approach not only accelerates the diagnostic process
but also minimizes errors due to human factors. Moreover, automated analysis
systems can be deployed in remote medical centers where access to highly spe-
cialized personnel is limited.

Previous studies have demonstrated the effectiveness of deep learning-based
methods for coronary artery segmentation. For instance, in the study by Serrano-
Anton et al. [7], a UNet-based model with transfer learning was proposed for
coronary artery segmentation in CT angiography images. The findings indicate
that transfer learning significantly improves segmentation accuracy, particularly
when working with limited data. Additionally, Danilov et al. [2] introduces a fully
automated approach for coronary angiogram interpretation using a sequence
of deep neural networks, achieving high accuracy in stenosis detection. These
studies highlight the potential of modern deep learning and computer vision
techniques in automating coronary artery stenosis diagnosis, aligning with the
objectives and methodologies proposed in our work.

2 Related works

Advancements in artificial intelligence (AI), particularly deep learning, have
significantly impacted the automated detection and quantification of coronary
artery stenosis [8].

A meta-analysis published by Jie at al. [4] evaluates the diagnostic accuracy
of AI-assisted CTA in detecting stenosis and characterizing plaque composition.
The analysis, which included 11 studies with 1,484 patients, reported a pooled
area under the receiver operating characteristic curve (AUROC) of 0.96 for as-
sessing atherosclerotic plaque. For detecting ≥ 50% stenosis, the AUROC was
0.95, and for ≥ 70% stenosis, it was 0.96. The study concludes that AI-assisted
CTA has high diagnostic accuracy but acknowledges substantial heterogeneity
among studies and emphasizes the need for further research to standardize AI
applications in clinical practice. Dundas et al. [3] evaluated an AI-based coro-
nary stenosis quantification (AI-CSQ) tool and compared its performance with
invasive quantitative coronary angiography (QCA). Their findings demonstrated
high diagnostic accuracy, with the AI-CSQ model achieving an AUC of 0.92 for
detecting stenosis ≥ 50% and 0.93 for stenosis ≥ 70%. Additionally, the sys-
tem exhibited a sensitivity of 80% and specificity of 88% for moderate steno-
sis (≥ 50%) and sensitivity of 78% and specificity of 92% for severe stenosis
(≥ 70%). Li et al. [5] developed a deep learning model capable of automatically
segmenting coronary arteries and diagnosing stenosis of ≥ 50% severity. Utilizing
a U-Net architecture for segmentation and a 3DNet for classification, the model
achieved a mean Dice coefficient of 0.771 and an accuracy of 75% in diagnosing
coronary artery disease (CAD). However, the study was limited by its single-
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center design, potentially affecting the model’s generalizability. Danilov et al. [2]
investigate the feasibility of real-time coronary artery stenosis detection using
deep learning. The study evaluates eight neural network architectures, includ-
ing MobileNet, ResNet-50, ResNet-101, Inception ResNet, and NASNet, using
angiography data from 100 patients. The Faster-RCNN Inception ResNet V2
model achieves the highest accuracy (mAP = 0.95, F1-score = 0.96) but has a
slow inference speed (3 fps). In contrast, SSD MobileNet V2 is the fastest (38
fps) but less accurate (mAP = 0.83, F1-score = 0.80). The RFCN ResNet-101
V2 model offers the best balance (mAP = 0.94, F1-score = 0.96, speed = 10
fps). The study confirms the potential of deep learning for real-time stenosis
detection, improving diagnostic efficiency. However, the small dataset and lack
of external validation limit generalizability.

Annotating stenotic regions in coronary angiograms and computed tomogra-
phy angiography images requires expertise from cardiologists or radiologists. How-
ever, inter-observer variability is a significant issue, as different specialists may
interpret and delineate stenotic lesions differently. This variability affects the
consistency of ground truth labels, complicating model training and reducing
generalizability. For instance, Zhang et al. [8] highlighted that machine learning
and deep learning methods face challenges due to the lack of professional image
annotations, which are manually added by experts.

There is no universal consensus on classifying stenosis severity (e.g., mild
<50%, moderate 50–70%, severe >70%), leading to discrepancies in annota-
tion protocols across datasets. Some studies use diameter reduction measure-
ments, while others incorporate functional assessments like fractional flow reserve
(FFR). This inconsistency impacts model robustness and comparability across
different studies. A review by Aleksandric et al. [1] discussed the challenges, limi-
tations, and future perspectives in the functional assessment of coronary stenosis
severity, emphasizing the complexity of coronary physiology in the presence of
valvular heart disease.

Despite these advancements, challenges persist, including the need for large,
annotated datasets and the variability in imaging protocols across institutions.
Future research should focus on developing models that are robust across di-
verse populations and imaging conditions. In conclusion, deep learning has sig-
nificantly advanced the automated analysis of coronary artery stenosis, offering
improved diagnostic accuracy and efficiency. However, addressing current limi-
tations is essential for broader clinical implementation.

3 Deep learning model development and evaluation

The proposed algorithm for the automatic analysis of coronary artery stenosis
comprises several distinct stages, each designed to enhance the robustness and
precision of the diagnostic process.

The algorithm employed for detection, segmentation, and thickness measure-
ment of coronary artery stenosis is structured as follows (see Fig. 1). Initially,
input images undergo a preprocessing step aimed at normalizing and enhancing
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image quality. Subsequently, the processed images are directed into two paral-
lel branches: one for detecting the stenotic regions and another for segmenting
coronary arteries. The detection branch localizes areas suspected of stenosis,
while the segmentation branch delineates the coronary artery structure. The
outputs from these parallel processes, namely the detected stenosis regions and
segmented coronary artery masks, are then mapped together to define precise
areas of interest. These combined masks are subjected to a skeletonization pro-
cess, enabling the extraction of vessel centerlines. Finally, the arterial thickness
is determined by analyzing geometric properties derived from these skeletonized
representations.

3.1 Annotation of stenosis data

Accurate annotation of coronary artery stenosis is a critical step in the develop-
ment of robust computer vision models for automated diagnosis. In this work,
experienced cardiologists manually annotated imaging data to delineate stenotic
regions using the YOLO (You Only Look Once) format. This section outlines
the methodology, guidelines, and quality control procedures employed during the
annotation process.

Imaging data were sourced from standard clinical modalities, including coro-
nary angiography and computed tomography angiography (CTA), reflecting real-
world diagnostic practices. Annotations were performed using a specialized tool
(e.g., LabelImg3) adapted for medical imaging. Cardiologists followed strict clin-
ical guidelines to delineate the boundaries of stenotic lesions. Each lesion was
annotated by drawing a bounding box that encapsulated the region of stenosis.
The process was conducted by experts to capture even subtle variations in lesion
morphology accurately.

The annotations were saved in the YOLO format, where each line in the
annotation file represents a single object detection. The format includes the
following normalized parameters:

– class_id: An integer representing the category (e.g., “0” for coronary artery
stenosis).

3 https://github.com/HumanSignal/labelImg

Fig. 1. General algorithm’s scheme
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– x_center, y_center: The normalized coordinates of the bounding box cen-
ter relative to the image dimensions.

– width, height: The normalized width and height of the bounding box.

For example, an annotation line such as “0 0.450 0.550 0.200 0.150” in-
dicates that the stenotic region has a center at 45% of the image width and 55%
of the image height, with a bounding box spanning 20% of the image width and
15% of the image height.

To ensure consistency and accuracy, each image was independently annotated
by at least two cardiologists. Discrepancies between annotations were resolved
through consensus meetings. This dual-review process minimized inter-observer
variability and ensured that the final annotated dataset accurately reflected the
clinical characteristics of coronary stenosis.

3.2 Arterial Thickness Measurement

A reliable estimation of arterial thickness is crucial for quantifying the severity
of coronary artery stenosis. In our approach, thickness is measured based on the
segmented vessel mask by following a series of computational steps:

First, the segmented binary mask, representing the vessel region, is prepro-
cessed to ensure a consistent data format. A skeletonization algorithm is then
applied to this binary mask to extract the vessel’s centerline, which serves as an
approximation of the mid-curve running through the arterial lumen.

Subsequently, a Euclidean distance transform is computed on the binary
mask. This transform assigns to each pixel a value corresponding to its shortest
distance from the vessel boundary. For pixels that lie on the skeleton, the distance
value effectively represents the approximate distance from the centerline to the
edge of the vessel. Under the assumption that the vessel’s full diameter is roughly
twice this distance, the local arterial thickness is estimated by multiplying the
distance value by two.

Finally, by aggregating the thickness estimates along the entire skeleton, key
statistical metrics such as the minimum, maximum, mean, and median thickness
are derived. These summary statistics provide a comprehensive quantitative de-
scription of arterial wall thickness, aiding in the assessment of stenosis severity
and contributing to enhanced clinical decision-making.

3.3 Preprocessing

Medical imaging is often subject to challenges such as non-uniform illumina-
tion, contrast variability, and image noise. Consequently, a robust preprocessing
pipeline is imperative to improve image fidelity and optimize model performance.
The preprocessing pipeline consists of the following stages:

– Standardization: Normalization of pixel intensity values to mitigate incon-
sistencies in brightness and contrast across different angiographic images.
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– Contrast Enhancement: Application of Contrast Limited Adaptive His-
togram Equalization (CLAHE) to improve local contrast and enhance the
visibility of vascular structures.

– Gamma Correction: Adjustment of image intensity using a power-law
transformation to ensure a balanced brightness distribution.

– Rescaling: Standardization of image dimensions to maintain uniformity in
spatial representation across different datasets.

– Augmentation (for training purposes only): Implementation of ran-
dom transformations, such as rotations and flips, to enhance the generaliz-
ability and robustness of the trained models.

These preprocessing techniques collectively contribute to a more homoge-
neous dataset, reducing intra-class variations and facilitating the identification
of salient anatomical features.

3.4 Detection Model

The identification of stenotic regions is performed using the YOLOv8m object
detection model. This model was selected due to its optimal trade-off between
detection accuracy and computational efficiency, making it well-suited for real-
time clinical applications.

The performance of the detection model is assessed using established evalu-
ation metrics:

– Intersection over Union (IoU): A metric quantifying the degree of over-
lap between the predicted bounding boxes and the ground-truth annotations,
formally defined as:

IoU =
|A ∩B|
|A ∪B|

(1)

where A and B represent the predicted and ground-truth bounding boxes,
respectively.

– Mean Average Precision (mAP@50): Measures the detection accuracy
at an IoU threshold of 0.5, providing an indication of model precision.

– mAP@50-95: Evaluates the detection performance over multiple IoU thresh-
olds (ranging from 0.5 to 0.95 in increments of 0.05), offering a comprehensive
assessment of model reliability.

The proposed model exhibits high precision while maintaining inference speeds
conducive to real-time clinical deployment.

3.5 Segmentation Model

The delineation of stenotic regions is conducted using the DeepLabV3+ segmen-
tation model, employing a ResNet-50 backbone. This architecture is particularly
well-suited for high-resolution medical imaging tasks and utilizes atrous spatial
pyramid pooling to capture multi-scale contextual information.

Segmentation accuracy is evaluated using the following quantitative metrics:
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– Intersection over Union (IoU): Provides a measure of segmentation ac-
curacy by computing the overlap between the predicted segmentation mask
and the ground-truth annotation.

– Dice Coefficient: An alternative similarity measure defined as:

Dice =
2|A ∩B|
|A|+ |B|

(2)

where A and B denote the predicted and ground-truth segmentation masks,
respectively. This metric is particularly sensitive to imbalances in class dis-
tributions.

The DeepLabV3+ model demonstrates superior capability in capturing fine-
grained vascular structures, ensuring precise segmentation of stenotic regions.

3.6 Arterial Thickness Estimation

Following stenosis detection and segmentation, the arterial thickness is quanti-
tatively assessed using a distance transform of the segmented vessel mask. This
process enables an objective evaluation of vessel narrowing severity.

Key computational steps include:

– Skeletonization of the vessel structure to extract the centerline representa-
tion.

– Computation of the Euclidean distance from each skeleton pixel to the near-
est vessel boundary.

– Estimation of arterial thickness as twice the computed distance, thereby
providing an approximate measure of luminal diameter.

This methodology provides a rigorous quantitative assessment of stenosis
severity, complementing traditional diagnostic approaches and enhancing clinical
decision-making.

3.7 Dataset description

The proposed system was evaluated on two distinct datasets: one for the detec-
tion task and one for the segmentation task.

Detection Dataset: A total of 9,000 coronary angiography images were
used for the detection task. Of these, 10% (900 images) represent our proprietary
data, while the remaining 90% (8,100 images) were sourced from the ARCADE
dataset [6].

Segmentation Dataset: For segmentation, 250 high-resolution images with
pixel-level annotations of coronary arteries were used. This dataset was similarly
divided into training (175 samples), validation (50 samples), and test (25 sam-
ples) sets.
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4 Model training and evaluation

The system was evaluated on both validation and test datasets using three dif-
ferent configurations.

The baseline solution (without preprocessing) utilized YOLO v5 for de-
tection and U-Net for segmentation. In this setup, no image enhancement was
applied, which resulted in a detection precision of 0.600 and mAP@50 of 0.880.
The segmentation module achieved an IoU of 0.580 and a Dice coefficient of
0.740.

To improve performance, a preprocessing pipeline (PP) was introduced.
This included standardization (to normalize pixel intensity values), CLAHE-
based contrast enhancement, gamma correction for balanced brightness distri-
bution, rescaling to standardize image dimensions, and data augmentation (ran-
dom rotations and flips) for training. Applying PP to the YOLO v5 + U-Net
configuration improved detection performance (precision = 0.672, mAP@50 =
0.930) and led to modest gains in segmentation (IoU ≈ 0.620, Dice ≈ 0.770).

The optimal solution aimed to further enhance performance by integrating
a more advanced detection model (YOLO v8) and a more robust segmentation
model (DeepLab v3+), while retaining the preprocessing pipeline. The YOLO v8
model significantly improved detection accuracy, achieving a precision of 0.966
and mAP@50 of 0.973. DeepLab v3+ further refined segmentation quality, with
an IoU of 0.643 and a Dice coefficient of 0.781, surpassing the U-Net-based
configurations.

This final configuration demonstrated the best balance between accuracy
and computational efficiency. The combination of preprocessing, a superior de-
tection model (YOLO v8), and an advanced segmentation model (DeepLab v3+)
resulted in a system capable of high-speed processing while maintaining precise
localization and detailed segmentation of stenotic regions.

Table 1. Detection Performance Metrics

Solution Precision mAP@50
Baseline (YOLO v5 + U-Net, no PP) 0.600 0.880
YOLO v5 with PP 0.672 0.930
Optimal (YOLO v8 + DeepLab v3+ with PP) 0.966 0.973

Table 2. Segmentation Performance Metrics

Solution IoU Dice
Baseline (YOLO v5 + U-Net, no PP) 0.580 0.740
YOLO v5 with PP 0.620 0.770
Optimal (YOLO v8 + DeepLab v3+ with PP) 0.643 0.781
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Tables 1 and 2 summarize the key performance metrics for all three config-
urations.

The baseline configuration with U-Net yielded an IoU of 0.580 and a Dice
coefficient of 0.740, indicating reasonable but suboptimal delineation of vascu-
lar structures, likely due to the absence of preprocessing and U-Net’s limited
contextual awareness in complex angiographic images.

With PP applied, the YOLOv5 + U-Net configuration improved to an IoU
of 0.620 and a Dice coefficient of 0.770. These gains (7% in IoU, 4% in Dice) sug-
gest that enhanced image quality facilitates better segmentation, particularly in
capturing fine vessel edges. However, U-Net’s performance plateaued, reflecting
its architectural constraints in handling multi-scale features.

The optimal configuration excelled with a precision of 0.966, mAP@50 of
0.973, IoU of 0.643, and Dice of 0.781, outperforming the baseline by 61% in pre-
cision and 11% in mAP@50, and the intermediate setup by 44% and 5%, respec-
tively. DeepLabV3+’s advanced feature extraction drove segmentation gains.

Fig. 2. Angiography segmentation steps
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Fig. 3. Example of stenosis detection

Arterial thickness estimates from the optimal setup ranged from 0.8 mm
(severe stenosis) to 4.5 mm (healthy segments), with a mean of 2.4 mm, aligning
with clinical norms and tied to segmentation accuracy. Inference speed was 18 fps
on standard hardware, slower than the baseline (25 fps) but viable for real-time
use. Qualitative results (Figs. 2 and 3) confirmed precise stenosis localization
and delineation in the optimal setup.

We additionally evaluated the model on the ARCADE benchmark, where it
achieved an F1-score of 0.524. Although this figure represents a solid level of
performance, it falls short of the score obtained on our proprietary dataset—a
gap we ascribe primarily to the divergent statistical properties and domain char-
acteristics of the two data sources.

5 Discussion

The results of this investigation substantiate the efficacy of an integrated deep
learning framework for the automated detection, segmentation, and quantifica-
tion of coronary artery stenosis in coronary angiography images. The optimal
configuration, employing YOLOv8 for detection and DeepLabV3+ for segmenta-
tion, complemented by a comprehensive preprocessing regimen, yielded a detec-
tion precision of 0.966, an mAP@50 of 0.973, a segmentation IoU of 0.643, and
a Dice coefficient of 0.781. These outcomes surpass those of the baseline config-
uration (YOLO v5 + U-Net without preprocessing: precision = 0.600, mAP@50
= 0.880, IoU = 0.580, Dice = 0.740) and the intermediate configuration (YOLO
v5 + U-Net with preprocessing: precision = 0.672, mAP@50 = 0.930, IoU =
0.620, Dice = 0.770), underscoring the synergistic effect of architectural choices
and image preprocessing on diagnostic precision.
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In comparison with prior research, the detection performance of this study
aligns with, and in certain aspects exceeds, established benchmarks. Danilov et
al. [2] reported an mAP of 0.950 and an F1-score of 0.960 using Faster-RCNN
Inception ResNet V2 for real-time stenosis detection, albeit with a constrained
inference rate of 3 fps. By contrast, the present YOLOv8-based model, with
an mAP@50 of 0.973 and an inference speed of 18 fps, demonstrates enhanced
precision and computational efficiency, rendering it more viable for real-time
clinical implementation. Similarly, Dundas et al. [3] documented an AUROC of
0.920 for stenosis ≥ 50% and 0.930 for stenosis ≥ 70% using an AI-driven tool
in CT angiography. Although AUROC and mAP are not directly equivalent,
the precision of 0.966 achieved herein suggests a robust capacity for accurate
stenosis identification within the angiography domain.

Regarding segmentation, the DeepLabV3+ model’s Dice coefficient of 0.781
marginally exceeds the 0.771 reported by Li et al. [5] using a U-Net architec-
ture for CT angiography segmentation. This incremental improvement may be
attributable to DeepLabV3+’s incorporation of atrous spatial pyramid pooling,
which facilitates superior multi-scale feature extraction relative to the convolu-
tional framework of U-Net. Serrano-Antón et al. [7] also employed a U-Net model
with transfer learning, though the absence of specific Dice metrics precludes di-
rect comparison. The IoU of 0.643, while indicative of competent segmentation,
suggests that further refinement in boundary delineation is warranted, partic-
ularly when juxtaposed with higher IoU values typical of non-medical imaging
applications.

A distinctive contribution of this work lies in the development of an arterial
thickness measurement technique, utilizing skeletonization and Euclidean dis-
tance transforms to quantify vessel narrowing. Thickness estimates ranged from
0.800 mm in severe stenosis to 4.500 mm in healthy segments, with a mean of
2.400 mm, consistent with clinical norms. This method provides a reproducible,
non-invasive metric for stenosis severity assessment, distinct from invasive ap-
proaches such as fractional flow reserve (FFR) described by Aleksandric et al. [1].
However, its dependence on segmentation accuracy implies that enhancements
to DeepLabV3+ could further bolster reliability.

Limitations of this study mirror challenges prevalent in the field. The re-
ported performance metrics derive from controlled datasets, which may not fully
encapsulate the heterogeneity of clinical imaging conditions, including variations
in contrast agent distribution or equipment-specific artifacts—issues also noted
by Danilov et al. [2] and Li et al. [5]. Although the dual-review annotation process
mitigated inter-observer variability, as highlighted by Zhang et al. [8], the lack
of a standardized classification for stenosis severity (e.g., mild <50%, moderate
50–70%, severe >70%) impedes consistent comparison with studies employing
divergent criteria. Relative to Jie et al.’s [4] meta-analysis, which reported an
AUROC of 0.950–0.960 for AI-assisted CTA, this study’s emphasis on angiog-
raphy extends the applicability of such techniques, though external validation
across varied cohorts and modalities remains essential to address methodological
disparities.
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We additionally evaluated the model on the ARCADE benchmark, where it
achieved an F1-score of 0.524. Although this figure represents a solid level of
performance, it falls short of the score obtained on our proprietary dataset—a
gap we ascribe primarily to the divergent statistical properties and domain char-
acteristics of the two data sources. These results highlight that while the system
performs well on proprietary data (F1-score = 0.681), domain shift remains a
significant factor affecting generalization to external datasets such as ARCADE
(F1-score = 0.524).

6 Conclusion

This study presents an integrated approach for automating coronary artery
stenosis analysis using deep learning. By combining YOLOv8 for detection,
DeepLabV3+ for segmentation, and a novel thickness measurement method,
our system achieves a detection precision of 0.966, an mAP@50 of 0.973, a seg-
mentation IoU of 0.643, and a Dice coefficient of 0.781. These consistent results
across the evaluation phases demonstrate high performance and scalability for
cardiovascular diagnostics. Future efforts will refine accuracy, expand datasets,
and integrate the solution into clinical practice, potentially extending its utility
to other cardiovascular conditions.
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