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Abstract. This study proposes an interpretable machine learning frame-
work to model bidirectional dynamic interactions between macroscopic
norms and microscopic features in clinical data. Leveraging real-world
medical records from a specialized chest hospital (containing unstruc-
tured text, complex categorical variables, temporal indicators, and non-
random missing patterns), we perform numerical processing through La-
tent Semantic Analysis and dimensionality reduction via Non-negative
Matrix Factorization. Macroscopic therapeutic norms are identified us-
ing HDBSCAN clustering, while SHAP-XGBoost integration selects crit-
ical microscopic features, including multidrug-resistant tuberculosis di-
agnosis and liver function biomarkers. We integrate symbolic regression
with the Peter-Clark Momentary Conditional Independencecausal dis-
covery method based on partial correlation, constructing cross-scale func-
tional relationships with temporally rigorous constraints. Specifically,
PySR derives nonlinear mapping equations, while partial correlation-
based conditional independence tests establish time-lagged dynamic de-
pendency networks. Guided by the Dynamic Maximum Entropy across
Scales (DyMES) principle, multi-scale perturbation experiments reveal
bidirectional mechanisms. Within our dataset and framework, DyMES
reveals dynamic constraints’ interplay driving statistical equilibrium be-
tween macroscopic clinical norms and microscopic patient characteristics
through nonlinear coordination and threshold-triggered time-encoded
mechanisms. Persistent constraint interactions induce novel steady states
formation with dynamically preserved system memory.

Keywords: Medical Norms · Interpretable Machine Learning · Dynamic
Maxent across Entwined Scales · Symbolic Regression · Distributed health-
care

1 Introduction

Medical norms, predominantly designed for human practitioners, are encoded
in unstructured natural language with implicit references to clinical expertise,
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posing significant challenges for autonomous agents to dynamically adapt to
evolving norms (e.g., treatment guidelines for drug-resistant tuberculosis) in dis-
tributed healthcare systems. Enabling autonomous agent systems to learn and
perceive the norms among healthcare professionals is both intriguing and essen-
tial for their integration into real-world distributed healthcare environments [7,
13]. The heterogeneous phenomena of medical norm propagation and adoption
within autonomous multi-agent systems are intrinsically linked to the emergence
of collective behaviors and the formation of organizational structures. These
processes constitute fundamental manifestations of organized complexity [1, 16].
One of the key challenges in current complex system modeling lies in the weak
interpretability of emergent behaviors and insufficient formalized descriptions.
Integrating machine learning into agent-based modeling is a highly promising
research direction. Feature-based explanation approaches provide novel perspec-
tives for understanding the complex emergent behaviors of multi-agent systems
and linking micro- and macro-level characteristics [11, 8].

Current research on norm propagation in medical autonomous multi-agent
systems has achieved progress in formal modeling and validation with real-world
clinical datasets [9]. However, two critical limitations persist. First, the absence
of formalized cross-scale dynamic coupling mechanisms, particularly the lack of
quantitative methodologies for macro-level norm and micro-level patient feature
co-evolution. Second, existing models fail to effectively characterize the associa-
tion between norm dynamic adaptation processes and system multi-scale char-
acteristics [3, 15]. For instance, the inability to quantify how microscopic feature
variations (e.g., liver function test results) trigger macroscopic norm adjustments
(e.g., medication plan revisions), and how such macroscopic adjustments subse-
quently influence treatment cycle timelines across diverse patients. This consti-
tutes a core manifestation of organized complexity in healthcare systems. The
central challenge lies in constructing a formal framework for dynamic constraints
between microscopic individual features and macroscopic therapeutic norms.

Building upon the two limitations explored above, we extended the Dynamic
Maxent across Entwined Scales (DyMES) theory [4] in complex systems to study
medical norms in autonomous multi-agent systems. DyMES is a dynamic theory
combining Top–Down information-theoretic inference with Bottom–Up state-
variable-dependent mechanisms. In this framework, state variables influence mi-
croscale dynamics while being computed as averages over probability distribu-
tions of microvariables. This integration enables simultaneous prediction of time-
evolving state variables and microvariable distributions. Central to DyMES is
the notion of transition functions, which govern microvariable dynamics. Scale
entwinement, and in particular, downward causation, is captured by explicit
dependence of transition functions on state variables as well as on microvari-
ables [4].

To address these gaps, we propose a three-stage computational framework
synergizing interpretable machine learning with DyMES theory. First, XAI tech-
niques disentangle macro-micro correlations from noisy EHR data. Second, sym-
bolic regression distills these associations into cross-scale transition functions.
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Third, we integrate PCMCI-based causal discovery with partial correlation con-
ditional independence tests to introduce temporally modulated functions for the
derived transitions, optimizing their parameters through grid search based on
these metrics. Finally, we construct a DyMES model with the optimized dy-
namic transition functions, conducting multiscale perturbation experiments on
strictly monotonic temporal sequences to simulate bidirectional macro-norm-
micro-feature interactions.

This study makes three core contributions: first, it establishes a DyMES
framework that integrates maximum entropy principles with interpretable ma-
chine learning to formalize bidirectional cross-scale interactions; second, it devel-
ops a unified methodology combining symbolic regression-derived equations with
PCMCI-validated bidirectional feature causality; finally, it introduces the first
computational dynamical model for co-evolution between institutional medical
norms and personalized patient characteristics.

2 Cross-Scale Dynamic Modeling Framework

We propose a general extensible framework comprising two categories of compo-
nents. The first category corresponds to the colored sections in Figure 1, specif-
ically a Two-Stage Computational Architecture responsible for all XAI-related
operations. The second category (white sections in Figure 1) extends the DyMES
model to healthcare datasets through simulation components, aiming to rigor-
ously interpret macro-micro correlations within the dataset.

2.1 Two-Stage Computational Architecture

Fisrt stage. The initial stage can be abstracted as: decoupling macro-micro
correlations in datasets through diverse XAI tools based on their inherent char-
acteristics and structural composition, where machine learning methods and fea-
ture processing approaches are selectively employed according to data properties
and sparsity levels.

The fundamental principle of this first stage involves identifying crucial fea-
tures from noisy data, uncovering strong dependencies between significant fea-
ture vectors, and subsequently distinguishing macro/micro features through in-
tegration with domain expertise and clinical knowledge.

For processing hybrid medical datasets containing clinical norms, the pri-
mary methodology involves unifying heterogeneous features into computable
encodings, removing overly sparse and insignificant feature columns, followed
by reasonable dimensionality reduction methods to prevent matrix oversizing.
Our observations indicate these datasets typically exhibit semi-structured for-
mats — organized as structured tables with explicit headers corresponding to
the categories documented in the ’Main Module’ column of Table 1 (e.g., Basic
Information, Clinical Process, Diagnostic Testing Modules). In this architecture,
each patient sample comprehensively populates all categories defined under the
’Main Module’ column of Table 1, forming a complete longitudinal record.
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Fig. 1. Dynamic cross-scale norm interactions

The identification of critical feature vectors within the processed feature ma-
trix is primarily achieved through interpretable clustering approaches. Recom-
mended clustering methods for handling hybrid feature matrices typically in-
clude HDBSCAN, Fuzzy C-Means Clustering, and Autoencoder KMeans. Subse-
quently, feature importance analysis is conducted based on the clustering results.
Recommended static analysis methods applicable here include cluster persistence
scores, density analysis of clusters, cluster membership probabilities, and cluster
hierarchy trees. A more efficient dynamic approach involves training supervised
classification models using cluster labels, followed by analyzing feature contri-
butions to cluster label prediction through SHAP and LIME techniques. Based
on the hybrid content formats of datasets, methods including association rule
mining (Apriori/FP-Growth), dependency and correlation analysis, and rule in-
duction (decision trees/RIPPER) can also serve as recommended alternative
approaches for analyzing clustering results.

For encoded matrices derived from hybrid medical datasets containing clinical
norms, analysis of clustering results typically yields a finite set of correlation
combinations. Ultimately, through integration with medical domain knowledge
and clinical expert validation, we can identify clinically significant macro-micro
correlations within these combinatorial patterns.

Second stage. Macro-micro correlations based on feature importance can-
not be directly transformed into computational models. Therefore, the second-
stage work involves mathematical formula mining through actual data of differ-
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ent feature columns corresponding to macro-micro correlations in the dataset.
The core methodology here combines symbolic regression and PCMCI. The
essence of symbolic regression lies in exploring vast function spaces using evo-
lutionary algorithms or heuristic searches to identify mathematical expressions
that optimally fit the data [17]. Symbolic regression achieves balance between
"unknown candidate function forms in the library" and "required structural
constraints for continuous dynamical systems." In multivariate, multiscale time
series, causal structures often exhibit complexity. PCMCI (Peter-Clark Momen-
tary Conditional Independence) is a statistical method that discovers statisti-
cally significant cross-scale causal mechanisms in medical temporal data through
partial correlation conditional independence tests [14].

By integrating the two methodologies from Stage 2 — performing function
form searching across datasets and conducting multi-parameter optimization of
identified functions on test sets — we derive the formalized functional depen-
dency between micro and macro features as expressed in equation 1. To stream-
line exposition, the complete mathematical definition of equation 1 is method-
ologically consolidated with the implementation framework for extending the
DyMES to medical dataset simulations, thereby establishing an integrated ana-
lytical paradigm.

2.2 DyMES model on medical datasets

We present key mathematical conventions based on the core DyMES framework.
Detailed theoretical derivations are provided in the work of John Harte et al [4].

First define m macroscale variables X = (X1, X2, · · · , Xm) with at most m
corresponding microscale variables x = (x1, x2, · · · , xm). Here macroscale repre-
sent norms themselves while microscale variables manifest as salient features of
individual patient samples. Both vector types X and x derive from previously
mined macro-micro correlations within the dataset’s feature vectors.

R(x) represents the joint probability distribution of microscale variables. To
determine R(x), we maximize the Shannon information entropy of R(x) under
constraints imposed by X and dX/dt. We express these constraints as F =
(h1(X), · · · , hm(X), dX1

dt , · · · , dXm

dt ), where hµ(X) are functions of macroscale
variables. The average values of these functions over R(x) yield the constraint
conditions, denoted by fµ(x, X). For µ = 1, · · · ,m, the functions fµ depend
solely on xµ. In more complex cases when µ = m+1, · · · , 2m, fµ may be functions
of multiple microscale variables. Scale entwinement arises when fµ serving as
transfer functions can depend on both macroscale variables X and microscale
variables x for µ = m+ 1, · · · , 2m. Therefore, we formulate all constraints as:

Fµ =
∑
x

fµ(x, X)R(x|X) (1)

where µ = 1, 2, · · · , 2m, the summation indicates integration over each mi-
croscale variable xi, and explicitly denotes the conditional dependence of R(x)
on X.
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Note that the transition function fµ is methodologically extracted from the
dataset through our Stage 1 and 2 XAI techniques.
By maximizing the Shannon information entropy of R: H = −

∑
x R log(R), we

obtain [5, 6, 12]:

R(x|X) =
e−

∑
µ λµfµ(x,X)

Z
(2)

where λ = (λ1, λ2, · · · , λ2m) are Lagrange multipliers obtained by solving the
constraint conditions [5, 2]. Z is the normalization constant ensuring total prob-
ability sums to 1.

Equations 1 and 2 establish the foundational definitions for our DyMES
framework. A core assumption of DyMES theory concerns the dynamic con-
straint updating process. When X and dX

dt are known at time t, the Lagrange
multipliers λ can be determined through maximum entropy conditions at time
t.
We omit the rigorous derivation process from John Harte et al. [4] and directly
cite the key computational equations:

2m∑
v=1

Cov(fm+i, fv)
dλv

dt
= 0 (3)

where index i ranges from 1 to m ,and Cov(A,B) = ⟨AB⟩ − ⟨A⟩⟨B⟩ denotes
covariance between A and B. Equation (3) provides m relationships among the
2m time derivatives of Lagrange multipliers.

dXi

dt
+

2m∑
µ=1

(
Cov(fi, fµ)

dλµ

dt

)
+

(
Cov

(
fi,

dfµ
dt

)
λµ

)
= 0 (4)

Equations (3) and (4) can be efficiently solved through matrix inversion to de-
termine the time derivatives of Lagrange multipliers, which are then iteratively
updated. Equations (2), (3), and (4) formulate the theoretical foundation of
DyMES. These equations characterize the intertwined dynamic relationships be-
tween macrostate variables and Lagrange multipliers within the system [4].

3 Experiments and simulations

3.1 Dataset processing

We conducted experiments using the dataset (collected in a specialized chest
hospital), comprising longitudinal clinical data from the multidrug-resistant tu-
berculosis (MDR-TB) diagnosis and treatment database established and main-
tained by our research team. All enrolled patients underwent monthly follow-up
assessments in strict accordance with therapeutic protocols developed by a mul-
tidisciplinary therapy group [10].

The dataset exhibits three primary characteristics: high sparsity with non-
random missingness and heterogeneous medical data types. It comprises 31 ma-
jor feature categories (see Table 1 Submodule Components) containing 1,245
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Table 1. Main features in the dataset

Main Module Submodule Components
Basic Information Module Patient Identification

Demographic Characteristics
Clinical Baseline

Clinical Process Module Clinical Examination Records
Initial Diagnosis Documentation
Follow-up Information
Transfer Records

Diagnostic Testing Module Hain GenoType MTBDRplus
GeneXpert MTB/RIF
Mycobacterial Speciation
Chest Radiography
Sputum Smear Microscopy
Sputum Culture
Liver Function Tests
Conventional Drug Susceptibility
(Selected Key Features)

Assessment & Monitoring Module Evaluation Metrics
Visit Assessment Protocols
Adverse Events (AE/SAE Records)
Therapeutic Outcome Documentation

Treatment Management Module Therapeutic Regimen Specifications
Treatment Protocol Documentation

Research Management Module Case Enrollment Forms
Longitudinal Follow-up Records
Serial Number Identification

feature columns, where 23 categories demonstrate > 0.8 sparsity. The time span
is from April 11, 2018 to December 14, 2023. These 1,245 columns incorporate
temporal (follow-up dates, report dates, etc.); categorical (sputum smear results,
conventional drug susceptibility testing, medication regimen codes, etc.); numer-
ical (ALT levels from hepatic panels, serum creatinine values from renal profiles,
etc.); binary (sputum culture submission flags, cavitation presence in chest imag-
ing, etc.); and natural language data types (radiographic findings descriptions,
etc.).

We take the zero-missing "follow-up date" column as the temporal axis. The
datetime values are normalized to [0,1] with day granularity, followed by times-
tamp micro-adjustments for same-day samples to ensure strictly increasing time
series aligned with dataset span; For categorical and binary feature columns,
missing value indicator columns are appended before one-hot encoding, with
subsequent NMF dimensionality reduction applied to high-dimensional features;
Numerical columns with sparsity threshold <0.8 are filtered and retained; Tex-
tual description fields undergo TF-IDF vectorization extracting unigrams and
bigrams as base features, accompanied by binary indicators for text missing-
ness. Truncated SVD (i.e., LSA) reduces TF-IDF matrix dimensionality based
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on singular value decay curves. Semantic features are concatenated with missing
indicators, forming final structured encoded features where each column has its
own CSV file.

Pre/post-processing metadata including data types, encoding schemes, and
notes are recorded in JSON files. All feature CSVs are merged into a 20872 (sam-
ples) × 387 (features) matrix, followed by Gower distance matrix computation.

3.2 Mining Macro-micro Correlations

For this high-dimensional dataset characterized by elevated sparsity, non-random
missingness, and heterogeneous data types, we evaluated and implemented the
four clustering methods detailed in Table 2. The experimental results demon-
strate that HDBSCAN achieves optimal performance, attaining the highest Sil-
houette Score (0.5275) and lowest Davies-Bouldin Index (0.8192) among all eval-
uated approaches. While the hybrid Autoencoder+K-Means method exhibits
potential competitiveness, its practical implementation faces challenges in ar-
chitectural optimization of the deep neural network, which incurs significant
engineering overhead and compromises computational efficiency.

Table 2. Clustering method performance Comparison

Clustering Method Silhouette Score Davies-Bouldin Index
HDBSCAN 0.5275 0.8192
Fuzzy C-Means 0.3489 0.9717
KMeans 0.3179 1.0144
Autoencoder + K-Means 0.4663 0.8754

The HDBSCAN clustering results show: Number of clusters = 55. Number
of noise points = 7,980. These noise points represent specific cases that are not
the current focus due to the high matrix dimensionality and sparsity. The final
corrected valid samples shape is (12892, 12892). Initial static analysis reveals: the
largest cluster contains 837 samples, the smallest cluster has 235 samples. The
maximum persistence score is 0.6304, with 4 clusters exceeding 0.1 persistence
score threshold.

To mine macro-micro correlations from the clustering model and results, we
compared multiple methods.

Regarding core objectives: association rule mining primarily identifies fre-
quent co-occurrence patterns among features (e.g., "feature A and feature B
frequently co-occur"), dependency/correlation analysis focuses on detecting sta-
tistical relationships between features (using metrics like Pearson correlation
coefficients and mutual information), rule induction aims to generate human-
readable "if-then" rules (e.g., "age >60 AND complications > 3 → high-risk clus-
ter"), while SHAP analysis explains model decision logic for cluster assignments.
Comparative evaluation reveals rule induction and SHAP methods demonstrate
superior performance in medical data analysis (see table 3).
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Particularly, decision tree or RIPPER-based rule induction produces intuitive
"if-then" rules that prove invaluable for clinical visualization and cross-domain
expert collaboration. However, experiments on the considered dataset confront
challenges from high-dimensional heterogeneous data (containing numerical, en-
coded, missing indicators, and NMF/SVD dimensionality-reduced features) -
requiring noise control through feature selection, clinical binning, and prun-
ing optimization. The feature type diversity and high dimensionality may lead
to verbose rules with reduced interpretability, especially when features aren’t
rigorously refined. Single decision trees or RIPPER algorithms might gener-
ate complex logical structures with excessive branching, necessitating domain
knowledge-guided secondary optimization.

Table 3. Comparative analysis of interpretation methods

Metric Association
Rules

Dependency
Analysis

Rule
Induction

SHAP

High-dim Support Low Medium Low High
Pattern Efficiency Low Medium Medium High
Interpretability Medium Low High High
TB Applicability Low Medium High High
Clinical Operability Medium Low High High

Here we selected XGBoost - a tree-based model demonstrating superior per-
formance on tabular data. We trained the XGBoost model using 55 cluster labels
as classification targets, then conducted global feature importance analysis on
387 features determining each cluster label, and generated their respective sum-
mary plots (bee swarm plots).

As shown in Figure 2, this SHAP (SHapley Additive exPlanations) feature
contribution diagram displays: The Y-axis lists semantically mapped feature
names using clinically interpretable descriptions, sorted in descending order of
global feature importance with the most discriminative key features positioned
at the top. The X-axis represents the distribution range of SHAP values, which
physically signifies the directional impact of features on sample assignment to
specific clusters: Data points distributed on the right side (SHAP values > 0)
indicate positive driving effects that enhance model confidence in assigning sam-
ples to corresponding clusters; points clustered on the left side (SHAP values
< 0) reflect inhibitory effects on cluster membership. The color gradient (red-
blue spectrum) encodes the magnitude of original feature values: Red spectrum
indicates high feature values (e.g., abnormally elevated biomarker levels), while
blue spectrum denotes relatively low-value states (e.g., physiological parameters
at lower reference limits).

Figure 2 displays Cluster 30 with the highest persistence score. We selected
the TherapyStatus-Feature1 column, corresponding to the TherapyStatus vari-
able containing eight distinct categories in the dataset, as a macroscale feature.
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Fig. 2. Global feature importance analysis for Cluster 30

These eight categories are: continuation of existing regimen, no treatment ini-
tiated, establishment/modification of treatment regimen, transfer-out, adverse
drug reaction, voluntary discontinuation by patient, other, and exclusion of
multidrug-resistant tuberculosis (MDR-TB) diagnosis.

The remaining features in the diagram predominantly represent patient-
specific characteristics. To identify micro-level features exhibiting strong corre-
lations with the TherapyStatus column, we retrained an XGBoost model using
the eight macro-level states as classification targets and computed the predictive
contribution of the remaining 386 features. The four most significant features are
listed in Table 4.

Table 4. Top-4 micro-Level features contributing to macro-Level TherapyStatus clas-
sification

Feature SHAP Value

x0 =MxDataExt_MxName_NMF_2 (Follow up time-Component2) 0.8150031
x1 =TbDiagnosis-Multidrug-Resistant Tuberculosis (MDR-TB) 0.6279506
x2 =LiverFunc.Result.Dbil_DoubleValue (Direct Bilirubin) 0.19392538
x3 =LiverFunc.Result.Alb_DoubleValue (Albumin) 0.18071306
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3.3 Transition function search and validation

The macroscale features encoded by the eight TherapyStatus categories were
reduced to a single feature vector y via NMF dimensionality reduction. The four
features in Table 4 were sequentially designated as x0, x1, x2, x3 in descending
order of importance.

Subsequent symbolic regression was implemented by utilizing the prepro-
cessed globally monotonically increasing matrix as the search space. We em-
ployed PySR to execute the evolutionary algorithm with: 1,000 evolutionary
rounds, 5 parallel populations, population size of 500 individuals (fundamental
evolutionary units), symbolic parameter controlling maximum expression tree
nodes nmax = 20, and early stopping criteria Terminate if loss < 1e−12 or com-
plexity C > 25. The search results were autonomously logged with an evaluation
rate of 2.710× 103 expressions/second. Here the parameters of the evolutionary
algorithm were configured solely based on computational resource availability,
and comparative analysis across multiple independent experimental trials con-
firmed their negligible impact on search outcomes.

Subsequently, we conducted causal lag analysis on treatment state evolution
patterns using the PCMCI (Peter-Clark Momentary Conditional Independence)
method. The dynamic impacts of key variables exhibited the following char-
acteristics: x0 demonstrated negative regulatory effects at lag-1 (−0.0936) and
lag-2 (−0.0310); x1 showed positive driving effects at lag-1 (0.1066) and lag-2
(0.0646); x2 revealed a positive association at lag-1 (0.0486).

We therefore introduced quadratic and exponential temporal modulation
terms for cross-validation. The quadratic modulation form is expressed as ymod =
ybase × (1 + at + ct2), where the linear term coefficient a ∈ [0.01, 0.15] and
quadratic term coefficient c ∈ [0.001, 0.02]. Through grid search on the training
set (80% samples) with MSE as evaluation metric, we obtained optimal param-
eters a = 0.01, c = 0.001, achieving validation MSE 4.6× 10−5 (R2 = 0.98).

For exponential modulation ymod = ybase×ebt, the growth rate b ∈ [0.01, 0.1]
was constrained to 2× the 0.05-level effect of x2. Using 10-point uniform sam-
pling, we determined optimal parameter b = 0.1, yielding validation MSE 4.8×
10−4 (R2 = 0.79). These results demonstrate effective capture of time-varying
treatment state characteristics through our modulation functions.
The final transition functions we obtained are as follows:

Y (t) =

[
1.0001−

(
x0 + x2

1

)3.1569×10−5
]
× 0.13185 ·

(
1 + 0.01t+ 0.001t2

)
(5)

Y (t) = (0.091956− x0)
exp(x2) · e0.1t (6)

Interestingly, the fitting results of these transition functions on the dataset
demonstrate that they embody computational formulations bridging macro-
micro relationships. This connection manifests mathematically as expressions
that remain computable for machines/models yet counterintuitive for human
experts.
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4 DyMES simulation on the dataset

We simulate the model using all 20,872 strictly increasing samples from the
dataset by incorporating macro and micro feature columns contained in Equa-
tions 5 and 6. The DyMES framework is rigorously constructed following Equa-
tions 1-4. Our algorithmic innovation introduces precomputed acceleration ma-
trices and covariance matrix-approximated Jacobians to significantly accelerate
solving Equations 3 and 4, enabling whole-sample modeling without subsam-
pling.

The precomputed acceleration matrix accelerates candidate function set
fν(x,X, t) evaluations across all microstates x ∈ xarray and macrovariables X.
Conventional methods [4] require recomputing fν per iteration, yielding O(Niter ·
Nx · Nν) complexity (Nx = microstate count, Nν = constraint count). We pre-
construct matrix fmatrix ∈ RNx×Nν with elements: fmatrix[i, j] = fj(xi, X, t).
Matrix reuse strategy: Reusing fmatrix in probability distribution R(x|X),
constraint equations, and Jacobian computations reduces complexity to O(Nx ·
Nν).

Traditional finite difference Jacobian calculation costs O(N2
ν · Nx · Nν)

with step-size sensitivity. Through leveraging fmatrix and distribution R via
np.cov(f⊤

matrix, aweights = R, bias = True), we achieve secondary optimiza-
tion: Eliminating extra function evaluations reduces complexity to O(N2

ν ·Nx).
Since we derived from Equation 1:

Jµν =
∂ (Fµ − ER[fµ])

∂λν
= −CovR (fµ, fν) (7)

where ER[fµ] denotes the expectation with respect to the probability distribution
R.

Figure 3 demonstrates the fitting results across 100 time steps, where each
grid unit on the horizontal axis encompasses 10 time steps. Here, λ1 corresponds
to the mean constraint of x0 (h1(X) = E[x0]), representing the follow-up time
Component 2, while λ2 corresponds to the mean constraint of x1 (h2(X) =
E[x1]), associated with the MDR-TB diagnosis status. λ3 and λ4 encode the
dynamic constraints governed by Equations 5 and 6, respectively. The experi-
ment reveals that λ2 remained constant, reflecting the stability of x1’s statis-
tical distribution, which implies that the MDR-TB detection status maintains
statistical equilibrium during microstate evolution, with the system preserving
structural integrity through conserved mean values. The slight decline of λ3 in
later stages indicates temporal accumulation effects in Equation 5’s dynamic
constraint (quadratic 0.001t2 term), requiring prolonged time modulation signal
integration to trigger constraint adjustments.

The coupled dynamics of λ1 and λ4 – manifested through their exponential
decay phase in the first 70 steps – arise from the nonlinear interaction between
x0’s mean constraint (λ1) and Equation 6’s dynamic constraint (λ4) mediated by
exp(x2). The synergistic decay emerges from the coupling between x0 and hepatic
function indicators (x2). The abrupt transition in later stages reveals a critical
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threshold (at t ≈ 70∆t) where the time modulation factor e0.1t in Equation 6
dominates the dynamical phase transition. The non-zero terminal states of λ3/λ4

signify the system’s evolution toward a novel steady state incorporating time
modulation terms, where persistent dynamic constraints maintain a "dynamic
memory" encoded jointly by Equation 5’s quadratic temporal term and Equation
6’s exponential temporal driver.
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Fig. 3. Dynamic cross-scale norm interactions

5 Discussion and Future Work

In most complex systems, causal relationships prove challenging to disentan-
gle; DyMES may provide a quantitative methodology for determining both the
directionality and magnitude of causal links [4]. Distinct from conventional top-
down approaches [18], DyMES hybridizes mechanistic principles with Maximum
Entropy (Maxent) theory, establishing an inferential framework that bridges
fine-scale phenomena with coarse-grained outcomes, thereby enabling predic-
tion of microscopic distributions from macroscopic knowledge. This methodol-
ogy demonstrates capability in forecasting both the temporal evolution of state
variables and probability distributions over microvariables.

These properties hold significant implications for investigating dynamic inter-
actions between microscopic clinical practices/behaviors and macroscopic med-
ical norms in distributed healthcare systems. Particularly, it facilitates model-
ing the dissemination and shared understanding of medical norms within au-
tonomous multi-agent systems [9]. While conventional reinforcement learning
paradigms employ reward-based mechanisms (e.g., reinforcement learning) to
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characterize and approximate agent behaviors at deeper levels, their utility re-
mains limited for directly analyzing the complex scientific properties and inher-
ent patterns within raw medical information datasets.

The application of DyMES, as a general mathematical framework in complex-
ity science, to construct computable models for medical norm systems presents
three principal challenges: (1) Transformation of information from unstructured
multi-type non-random missing datasets into modelable microscopic features; (2)
Formal definition and dynamic modeling of evolving clinical norms; (3) Reliable
extraction of authentic transition function relationships between these elements
from empirical data. Our current work systematically addresses these three fun-
damental issues.

Through implementation of an Explainable AI (XAI) framework, we propose
a comprehensive three-phase mathematical modeling approach and empirically
validate the effectiveness of extracted transition functions using clinical datasets.
This investigation establishes a computational foundation for subsequent analy-
ses of dynamic norm properties in healthcare environments.

Future research directions focus on three primary objectives: (1) Formaliza-
tion and extraction of comprehensive composite microscopic features coupled
with dynamic medical norms; (2) Investigation of bidirectional dynamic norm
interactions under DyMES conditions in autonomous multi-agent systems; (3)
Examination of micro-level agent practice (feature evolution) impacts on macro-
scopic norms and reciprocal constraint mechanisms. These explorations are an-
ticipated to drive synergistic evolution of medical normative systems across the-
oretical and practical domains.
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