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Abstract. In Malignant Pleural Mesothelioma (MPM), solid stress and
tissue deformation significantly impact tumour growth and invasion. This
study presents a computational framework that integrates biomechani-
cal tumour dynamics, tissue deformation, and force interactions within
a realistic anatomical setting. Using the Finite Element Method, the
framework is applied to a lung mesh reconstructed from CT scans, incor-
porating a synthetic mesothelioma tumour with defined material proper-
ties. Numerical results from the simulations closely match the analytical
solution, with deviations within 5%, confirming the model’s reliability
and accuracy. Simulations of point compression and surface expansion
effectively capture the localised tumour deformation and lung volume
changes, replicating expected breathing mechanics under different con-
ditions. The findings emphasize the role of mechanical interactions in
tumour progression, demonstrating how increased tissue stiffness affects
deformation patterns and respiratory dynamics. This study establishes
a foundation for integrating computational biomechanics with predic-
tive tumour modelling, offering potential applications in personalised
medicine for MPM.

Keywords: Finite Element Method · Tumor biomechanics · Malignant
Pleural Mesothelioma · Tissue deformation

1 Introduction

Cancer is one of the leading global health challenges, with growing mortality
rates. In 2020, approximately 10 million deaths, or roughly 16% deaths world-
wide, were attributed to cancer [31]. Cancer growth displaces and disrupts the
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normal functioning of healthy organs and tissues, contributing to organ failure
and eventual death. One of the tumours that most exemplify this is Malignant
Pleural Mesothelioma, also known as MPM. MPM is an aggressive lung cancer.
MPM originates from the pleura, a thin membrane lining the lungs and thoracic
cavity. It typically spreads in a crescent-shaped pattern, encasing the lung and
exerting external pressure on both the lung and the mediastinum [16]. Overall,
patient’s survival after diagnosis is estimated to be between 4 to 12 months,
with some multimodal therapies extending life expectancy to 5 years for 3%
to 18% of patients [16]. Biomechanical modelling of tumour interactions with
surrounding structures is essential but has often been overlooked, even in cases
where its impact is evident, such as in malignant pleural mesothelioma. There-
fore, it is critical to advance knowledge about the mechanisms involved in MPM
tumour dynamics and the interplay with the surrounding environment in order
to develop better treatment options and patient outcomes [23].

Multiple models have been developed to study tumour dynamics and treat-
ment response. They can be divided into three types: discrete, continuum, and
hybrid models. Discrete models focus on individual cells or groups of cells, used
for cell signalling studies, while ignoring tissue mechanics [23].Continuum mod-
els describe tumours as multi-phase systems using differential equations but lack
single-cell resolution [12]. Lastly, the hybrid models combine both approaches,
such as modelling cells individually while treating extracellular components as
the continuum model [24]. While these models have advanced our understanding
of tumour biology, they primarily focus on the microenvironment ignoring the
macro-scale mechanical interactions between tumours and their surrounding tis-
sues [26]. For example, tumours can deform adjacent organs or alter physiological
functions (e.g., lung expansion during breathing), but this interaction is usually
not modelled explicitly. Moreover, biomechanics plays a crucial role in tumour
progression. In a realistic anatomical context, mechanical forces would stir the
tumour into a growth path of least resistance [8], while causing tissue defor-
mation, impairment of organ functioning and friction between the surrounding
tissues [17]. This interplay of mechanical forces, alongside biochemical and bi-
ological factors, plays a crucial role in the onset, development, diagnosis, and
treatment of cancer. Tumours, like other biological tissues, are subjected to var-
ious mechanical forces, which impact cellular function and behaviour [3]. These
changes create a complex landscape where both cancer cells and surrounding
tissues exhibit distinct physical abnormalities, directly impacting tumour be-
haviour and its response to treatments [17].

The transition from medical imaging to computational modelling follows a
structured process of scanning, geometric reconstruction, and meshing. CT and
MRI scans capture high-resolution tumour and lung structures, which are then
processed for segmentation. Deep learning-based methods [30] have enhanced au-
tomation and accuracy in identifying anatomical features. Computational mod-
els automate meshing and predictive tasks, enhancing efficiency while preserv-
ing anatomical detail [32]. AI-driven models further support structural analy-
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Framework for modelling biomechanical tumour-tissue interaction 3

sis, patient-specific simulations, and treatment planning, advancing personalized
medicine [5].

One significant biomechanical factor is solid stress, an influential component
within the tumour environment that plays a crucial role in cancer initiation,
aggressiveness, and metastasis. While other mechanical stresses, such as inter-
stitial fluid pressure (IFP), exist within the tumour microenvironment, solid
stress is particularly important as it directly influences tumour growth and in-
teractions with surrounding tissues [22]. Moreover, stresses like IFP and others,
including fluid-induced shear stress and hydrostatic pressure, can be directly
modelled within the current framework by extending the governing equations to
incorporate fluid-structure interactions and pressure-driven deformations. Given
its pivotal role in tumour progression, incorporating solid stress into predictive
models is essential for improving diagnostic and therapeutic strategies [11].

In this study, this gap will be addressed by developing a computational frame-
work to model tumour dynamics and tissue interactions, with a specific focus
on mesothelioma. To investigate the deformation behaviours of lung tissue and
tumours, the framework will be benchmarked using simple geometries subjected
to compressive and tensile forces, allowing for an initial assessment of mechanical
properties. These tests will be compared against analytical solutions to evalu-
ate model performance. Building on this foundation, the model is extended to
a realistic anatomical structure: a lung mesh derived from CT scans, with a
synthetic mesothelioma tumour modelled as a sheet surrounding the lung. Point
compression will be applied to the tumour to simulate forces from surrounding
structures, while surface expansion within the lung will mimic breathing me-
chanics. By testing various deformation scenarios and implementing different
elasticity models, this study aims to explore how mechanical forces impact the
structural integrity and functionality of these biological structures.

2 Methods

Fig. 1. Overview of the computational workflow for modelling tumour dynamics and
tissue interactions. The process consists of data preprocessing, model implementation,
simulations, and result analysis, with different colours indicating distinct stages.
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Fig. 1 illustrates the key steps of the computational framework, from data
acquisition and mesh generation to finite element simulations and result analysis,
highlighting the integration of different modelling approaches for benchmarking,
validation, and biological scenario testing.

2.1 Mathematical formulation of the elasticity model

In this section, we present the mathematical equations that form the basis of the
computational framework, focusing on the elastic deformation of materials [6].

Linear elasticity PDE: using the Navier-Cauchy equations for small defor-
mations can be written as:

−∇σ = f in Ω (1a)

σ = λ tr(ε)I + 2µε (1b)

ε =
1

2
(∇u+∇uT ) (1c)

where σ is the stress tensor, f is the body force per unit volume, λ and µ are
Lamé’s elasticity parameters for the material in Ω, I is the identity tensor, tr is
the trace operator on a tensor, ε is the symmetric strain tensor (symmetric gra-
dient), and u is the displacement vector field. Above we have assumed isotropic
elastic conditions [7, 21].

Variational formulation: consists of forming the inner product of the Eq.1.
Which is gathered by deriving the weak form by integrating the linear elasticity
equation against a test function and applying integration by parts [10]. This
results in:

a =

∫
Ω

σ(u) : ∇υ dΩ (2)

Analytical solution: used in the simulation is based on uniaxial stress-strain
relations from Hooke’s Law, resulting in the following reaction force:

Fanalytical = S ·A =
E ·∆h

H
·A (3)

where Fanalytical is the analytically computed force, S is the applied stress, A
is the cross-sectional area, E is Young’s modulus representing the material’s
stiffness, ∆h is the applied deformation or step size, and H is the initial height
of the material. This assumes a simple linear relationship between stress and
strain in a homogeneous material under uniform loading, which aligns with the
small deformation assumption in the finite element implementation [9].
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2.2 Simulation case studies

Three unique cases were analysed and simulated in the study. This section sum-
marises the methods utilised for simulating and analysing these cases.

Cube Compression and Stretching: In this simulation, the deformation of
a cube under compression and stretching was analysed for varying amounts of
total deformation, compared to an analytical solution to serve as a benchmark of
the simulation. The deformation was applied in three steps: 10%, 50%, and ap-
proximately 100% of the cube’s total height. The total deformation was applied
uniformly on the cube. An analytical solution based on uniaxial stress-strain
relations from Hooke’s Law was compared to the resulting deformation. The re-
sults were then displayed in a corresponding load-deflection curve was recorded
for both the numerical and analytical solution. The numerical and analytical
solutions will closely match if the maximum margin of error is below the 5%
for numerical approximations [33]. The deformed shapes of the cubes for each
deformation level were also visualised.

Tumour Point Compression: The goal of this simulation is to investigate
how point compression affects the deformation behaviour of a tumour mesh,
later to be used to simulate the tumour-environment interactions. The sphere
geometry was compressed at the top, to show how point compression works on
simple geometries. After which, a bundle of points were selected, at extreme
ends of the tumour mesh, as selecting one point is too small to have a visible
impact. The deformation was applied at two levels: 10% and 20% deformation of
the total height of the tumour mesh. Point compression was applied at the top
and side of the mesh with different total deformation constraints. And at two
points of the mesh, to show how multiple point compression can be performed
simultaneously.

Lung surface Extension: The third simulation involves modelling the stretch-
ing of surfaces on a cube to represent the surfaces that will also be selected in
the lung mesh and the expected result of the expansion. In this simulation, 4
sides and the bottom of the cube and lung meshes are selected to be expanded.
For the lung model, 20% of the lung width was selected for each side and bottom
surfaces, with only a few of the highest points fixed to prevent displacement. Ad-
ditionally, 30% of the lung width was selected for the side and bottom surfaces
to observe the impact of surface selection on the deformation behaviour. The
simulation was coupled with compression to model the breath cycle, and the
corresponding changes in volume were plotted. To demonstrate the versatility
of the model, the elasticity parameters were adjusted, and a non-linear, stiffer
material model was introduced, in which E is scaled with strain. The more
strain, the stiffer the model. This allowed for exploration of different material
behaviours, showing how the simulation can be adapted for varying conditions.
The volume rate of change during the breath cycle was also analysed.
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2.3 Finite element simulation

The finite element method (FEM) is a numerical technique for solving partial
differential equations (PDEs) over complex geometries by discretizing the do-
main into smaller elements. FEniCSx an open-source platform designed for
FEM simulations due to its automatic differentiation is used in this study [1].
DOLFINx, the C + +/Python interface and the back-end of FEniCSx0.9,
were used for modelling. It provides the core functionality for mesh handling,
function spaces, and solving PDEs [13, 14]. A third-order Lagrange finite element
space was employed to achieve higher accuracy in the numerical simulations.

Simulation parameters and material properties: To perform the simula-
tions, material properties for the tumour and lung tissues were selected based on
reported values in the literature. These properties include the Young’s modulus
(E) and Poisson’s ratio (ν), which were used to calculate the Lamé parameters
(λ, µ) in equation 1b.

Table 1. Material properties used in the simulations, including Young’s modulus (E)
and Poisson’s ratio (ν) for tumour and lung tissues. The table also specifies the simu-
lation domain size, mesh resolution, and relevant references.

Tissue Type E [Pa] ν Domain Size (mm) Mesh Cells References

Tumour 105 0.3 [161× 161× 273.52] 5, 922, 906 [17, 25, 20]

Lung 104 0.3 [147× 147× 267.89] 3, 032, 524 [25, 20]

Lung (Non-linear) 104 − 108 0.3 [147× 147× 267.89] 3, 032, 524 [25, 20]

The table summarises the material properties used in Eq.1, for the simula-
tions, E and ν for tumour and lung tissues. For normal lung tissue, a constant
E of 10 kPa was chosen [25]. For non-linear lung tissue, E is assumed to increase
with stress, reflecting the strain-dependent stiffening typical of lung tissue, es-
pecially under larger deformations or pathological conditions. Tumour tissue is
modelled with a higher E of 100 kPa, simulating the stiffness of fibrotic or ad-
vanced tumours [17]. A Poisson’s ratio of 0.3 was used for both tissues, reflecting
their near-incompressibility [25, 20].

Mesh generation

Mesh definitions for unit cube and sphere: A structured unit cube mesh
was generated using DOLFINx′s built-in meshing capabilities as a benchmark
model. The domain, [0, 1]× [0, 1]× [0, 1], was discretized into a hexahedral mesh,
which consists of small cube-shaped elements. After which, the cube was uni-
formly divided into 12 elements along all axis, resulting in a total of 1,728 el-
ements [14]. A sphere tetrahedral mesh was created using Gmsh, allowing for
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finer meshing control compared to FEniCSx’s native tools and a complexer shape
compared to the cube. The meshes were converted to XDMF format for use in
FEniCSx simulations.

Tumour and lung mesh definitions: Open-source CT scan data was used
from the Cancer Imaging Archive [2], with TotalSegmentator [28] employed to
extract the right lung instead of the left, as seen in Fig. 2a. The right lung was
chosen due to its larger volume and three-lobe structure, making it a better can-
didate for studying tumour interactions. The segmented lung was processed to

Fig. 2. (a) CT scan used to extract lung segmentation, with the right lung highlighted
in magenta. (b) Tetrahedral mesh of the segmented right lung. (c) Synthetic tumour
mesh, with the purple point indicating the top of the tumour used for compression sim-
ulations. (d)-(f) Cross-section images of the tumour, showing the empty space inside,
representing the space occupied by the lung. (g)-(h) Cut surfaces of the tumour to vi-
sualise internal structures. (i) High-resolution sides of the tumour for surface expansion
simulations. (j) Downsampled mesh with 5% of the original points for computational
efficiency. (k) High-resolution region at the top of the tumour for point compression
simulations. (l) Full-resolution tumour mesh.
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ensure accurate voxel spacing for further mesh generation. The segmented lung
data was converted into a tetrahedral mesh using Gmsh, see Fig. 2b. Surface
extraction was performed using marching cubes, followed by mesh simplification
and repair to ensure watertightness, meaning the mesh is completely enclosed
without holes or gaps, making it suitable for simulations and further processing.
The refined surface was then imported into Gmsh, where a surface loop and
volume definition enabled high-quality mesh generation. Mesh parameters were
adjusted to optimise curvature adaptation, and the final mesh was exported to
XDMF format for use in FEniCSx simulations. A synthetic tumour was cre-
ated encasing the segmented right lung based on the crescent-like mesothelioma
growth patterns, see Fig. 2c. The tumour was generated using morphological
dilation operations to simulate realistic spread, ensuring it remained confined to
2cm outside the lung, making it a significant sized tumour. See Fig. 2d-f for cross
sections of the tumour and Fig. 2g & e, for the cut tumour, to see the inside
structures. To optimise computational efficiency, the segmentation was down-
sampled to 5% of the original number of points (see Fig. 2j for the downsampled
mesh and Fig. 2l for high resolution mesh) while maintaining high resolution
in regions where pressure would be applied. The same Gmsh-based meshing
process was applied to the tumour segmentation to ensure consistency in the
tetrahedral mesh. The final meshes maintained high-resolution regions where
mechanical stress would be applied while optimising computational efficiency,
see Fig. 2i & k.

3 Results

3.1 Benchmark simulation results on a unit cube

The results of the cube compression and extension simulations are shown in Fig.
3, where the deformation patterns and load-deflection curves are compared to
the analytical solutions 3. Figures 3(a-c) illustrate the normalised displacement
for three different compression levels: 10%, 50%, and 100% of the total height.
Figures 3(g-i) show the deformation patterns for cube stretching at 10%, 50%,
and 100% total extension. As expected, the deformation increases proportionally
with the applied load. Figures 3(d-f & j-l) show the corresponding load-deflection
curves, comparing the numerical (Eq.1) and analytical solutions (Eq. 3). Sim-
ulation results show a good agreement with the analytical solution, suggesting
that the numerical method accurately captures the expected deformation be-
haviour. To quantify this, the maximum relative error between numerical linear
elasticity solution and analytical solution of uniaxial stress-strain relations (from
Hooke’s Law) was calculated, revealing a consistent 4.68% error, well within the
5% requirement. All simulations exhibit the same error because the chosen linear
elasticity model inherently scales proportionally with applied forces and defor-
mations. The results demonstrate that the numerical model reliably predicts
deformation under uniform loading and extension, ensuring sufficient mesh res-
olution and correctly applied boundary conditions, making it suitable for more
complex simulations.
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Fig. 3. (a-c) Normalised displacement for three different compression levels: 10%, 50%,
and 100% of the total height. (g-i) Deformation patterns for cube stretching at 10%,
50%, and 100% total extension. The bottom of the cube remains fixed, and the dis-
placement is visualised using a colour gradient, with higher displacement values at the
top surface. Deformation increases proportionally with the applied load (d-f) and (j-l).

3.2 Tumour point compression simulation results

The point compression simulation was performed on a spherical geometry and
a complex tumour mesh to analyse localised deformation. Applied forces and
resulting displacements were recorded to assess the finite element model’s ac-
curacy. In the spherical case, top compression caused a localised indentation
with a maximum normalised displacement of 10%, showing smooth, symmetric
deformation consistent with theory.
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Fig. 4. (a) Tumour mesh under single-point compression at the top, producing a lo-
calised indentation with a maximum normalised displacement of 10% of the tumor’s
total height. (b) Increased deformation magnitude and shifted compression location,
showing asymmetric displacement distribution. (c) Multiple-point compression applied
at the top and side of the tumour mesh, simulating complex loading conditions with
maximum normalised displacement reaching 30%. The displacement is visualized using
a colour gradient, where higher displacement values are represented in yellow and lower
displacement values in purple.

The tumour mesh (Fig. 4b-d) was subjected to the single-point compres-
sion at the top, from one side and from 2 sides. The simulation tested different
displacement magnitudes and locations. First, a small deformation (10% of the
tumour’s total height) was applied (Fig. 4b), followed by an increase in de-
formation magnitude and a shift in the compression location to evaluate the
response (Fig. 4c). The results confirmed that the implemented FEM correctly
captured the expected indentation behaviour, with the displacement distribution
smoothly radiating from the compression point. Fig. 4c shows the result of a sin-
gle compression force at the side, testing the mesh’s response under asymmetric
loading. This preliminary test ensured that the code correctly handled irreg-
ular geometries and non-uniform stress distributions before introducing more
complex loading conditions. Once verified, multiple points were compressed si-
multaneously, as seen in Fig. 4d, to simulate realistic interactions in a biological
environment. This is particularly relevant as surrounding structures in the body
exert different forces at various locations on the tumour, forcing it to deform
and adapt accordingly. Compression at the top and side of the mesh resulted in
highly localised deformations, with maximum normalised displacement reaching
30% in the most compressed regions. Across all test cases, the numerical model
accurately captured the expected deformation patterns, confirming its reliability
for simulating soft tissue mechanics under localised compression.
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3.3 Surface expansion simulation results

Fig. 5. (a) Expansion of selected surfaces in the lung mesh, illustrating the direction of
expansion along four sides and the bottom surface, while the top surface remains fixed.
(b, c) Applied expansion of 20% and 30% of the mesh surface width, respectively. The
20% expansion case shows localised deformation, whereas the 30% expansion leads to
deformation across the entire lung. (d, e) Simulated lung volume and volume rate of
change during breathing cycles.

The surface compression simulation simulated the expansion of surfaces in
both the cube and lung models to analyse deformation behaviour under stretch-
ing forces. Figure 5a illustrates the expansion of selected surfaces in the lung
mesh, showing the direction of expansion along four sides and the bottom sur-
face, while the top surface remains fixed. The applied expansion was set to 20%
and 30% of the mesh width, as shown in Fig. 5b & 5c, respectively. The 20%
expansion case resulted in localised deformation, with some regions of the lung
remaining nearly stationary. In contrast, the 30% expansion case produced de-
formation across the entire lung, suggesting a more realistic representation of
breathing mechanics. Figures 5d & 5e show the corresponding lung volume and
volume rate of change during simulated breathing cycles. The lung volume (Fig.
5d) follows a cyclic pattern with a sinusoidal-like curve, which is consistent with
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the expansion and contraction dynamics expected in real pulmonary function.
The volume rate of change (Fig. 5e) further confirms this behaviour, showing
a smooth transition between phases of inhalation and exhalation. The stiffened
model, see Fig. 5d & e, which incorporates a non-linear elasticity response, re-
sulted in a more gradual expansion at higher deformations compared to the soft
tissue model. The ability to simulate both linear and non-linear deformation al-
lows for a detailed evaluation of how different material properties influence lung
mechanics under expansion forces.

4 Discussion

The results highlight the effectiveness of point compression in simulating diverse
pressure distributions on the tumour. This method provides a foundation for
future simulations where mechanical forces can be scaled based on the densities
and stiffness of surrounding tissues, allowing for a more realistic representation of
tumour-environment interactions. Similarly, the lung volume change simulations
followed expected physiological patterns, capturing key characteristics of normal
respiration and forced respiration. The volume rate of change reflects the known
asymmetric behaviour of inspiration and expiration due to airway resistance
and lung tissue viscoelasticity, consistent with experimental findings [18]. The
observed reduction in peak lung volume and slower rate of volume change in the
stiffened lung model aligns with clinical studies on pulmonary fibrosis, where
increased tissue stiffness leads to restricted expansion and airflow dynamics [25].

Lung tissue is inherently non-linear, and experimental studies have demon-
strated that lung parenchyma does not behave as a simple linear elastic mate-
rial. Instead, strain-dependent stiffening occurs due to collagen fibre engagement
during deep inhalation [25]. The stiffened model in this study successfully cap-
tures this effect, improving its biomechanical accuracy. Additionally, the cyclic
breathing pattern observed in the simulations suggests energy-efficient breath-
ing dynamics, where tissue resistance at higher lung expansion mirrors real-life
pulmonary mechanics [29]. The damping effects observed in the volume rate of
change further support this accuracy, as lung tissue naturally absorbs mechanical
energy to prevent damage under large deformations. This aligns with previous
studies highlighting how lung mechanics involve both elasticity and resistance
to rapid expansion/contraction [25].

Unlike existing continuum or hybrid models that rely on homogenized tissue
properties or fixed boundary conditions [23], this model provides spatially re-
solved, patient-specific mechanical feedback from actual lung and tumour geome-
tries. This enhances its ability to simulate local tissue deformation and mechani-
cal impedance, critical for mesothelioma’s heterogeneous, surface-bound growth
patterns. Future versions should incorporate time-dependent tumour growth,
driven by proliferative pressure, evolving stiffness, and mechanical feedback from
the surrounding lung parenchyma, allowing for more dynamic, realistic growth.
Integrating growth kinetics or coupling with cellular automata models could bet-
ter simulate the spatial and temporal progression of mesothelioma. This would
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not only help understand how increasing stiffness and tumour volume affect
breathing mechanics but also identify the path of least growth resistance. By
simulating tumour expansion, the model could pinpoint areas where the tumour
is likely to grow with minimal resistance, aiding in treatment planning and sur-
gical decision-making, including predicting tumour invasion and adaptation to
mechanical changes.

A key application of this model lies in personalized medicine, where patient-
specific tumour and lung geometries from medical imaging could be incorporated
into individualized simulations [27]. Such models could improve predictions of
tumour-tissue interactions, enabling more precise treatment strategies and sur-
gical interventions tailored to a patient’s unique biomechanical properties. Be-
yond oncology, the ability to simulate mechanical changes in diseased lungs has
broader clinical implications. Conditions such as pulmonary fibrosis and chronic
obstructive pulmonary disease (COPD) involve significant alterations in lung
mechanics, which could be explored using similar modelling approaches. Un-
derstanding how stiffening or obstruction affects lung compliance may inform
improved ventilation strategies in clinical settings [25, 4].

Expanding beyond biomechanics, integrating this model with biochemical
processes such as nutrient transport, oxygen diffusion, and metabolic activity
would provide a more comprehensive understanding of tumour-environment in-
teractions [19]. Additionally, incorporating blood flow dynamics could enhance
realism by accounting for vascular adaptations, such as tumour-induced angio-
genesis or perfusion deficits in diseased lung tissue [15].

5 Conclusions

This study aimed to develop a computational framework based on linear elastic-
ity to model tumour dynamics and tissue interactions, with a specific focus on
mesothelioma. The approach was first validated using simple geometries, such
as a cube and a sphere, subjected to compressive and tensile forces. By com-
paring the numerical results with analytical solutions, the model demonstrated
strong accuracy, with numerical deviations staying within the expected 5% er-
ror margin. This validation confirms the reliability of the framework for further
simulations involving more complex geometries and biological structures.

Beyond simple benchmarking tests, the model was extended to simulate tu-
mour and lung interactions using point compression and surface expansion anal-
yses. The point compression simulations on both spherical geometry and tu-
mour mesh successfully captured localised deformation behaviour, confirming
the model’s ability to handle asymmetric and multi-point loading conditions.
Additionally, the surface expansion simulations on the lung mesh demonstrated
realistic breathing dynamics, with lung volume changes following expected cyclic
patterns. The results indicate that the framework can effectively simulate soft
tissue deformation and mechanical interactions, providing a strong foundation
for modelling tumour progression and biomechanical responses.
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While the current framework effectively captures fundamental tissue me-
chanics, it remains a simplistic model and requires further refinement to more
accurately represent complex biological systems. More advanced testing, includ-
ing the use of more difficult force equations beyond linear elasticity, is necessary
for improving the model’s applicability to real-world scenarios. Future work will
focus on incorporating additional mechanical properties, such as viscoelasticity
and anisotropy, to better represent lung and tumour behaviour. The inclusion
of patient-specific data from imaging techniques could further enhance the ac-
curacy of simulations, making the model more relevant for MPM applications.
This study sets a baseline from which these refinements can be made.
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