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Abstract. Wave propagation simulations are foundational tools across
scientific and medical applications, yet their computational demands be-
come significant for high-resolution simulations, particularly in medical
applications where precise representation of different tissue geometries
is crucial. This paper presents a novel approach to accelerate 2D wave
propagation simulations in the k-Wave toolbox. Our method focuses on
optimising Fourier transform computations through spectrum pruning.
The Acoustic Field Propagator along with a bisection pruning algorithm
to estimate the position of the spectral coefficients is used. Through
these optimisations, our approach achieves significant performance gains,
demonstrating speedups of up to 1.8x for large simulation domains. Ex-
perimental evaluation on medical ultrasound simulations demonstrates
that the proposed method achieves focal point errors below 1% with
minimal focus position shifts, while skipping up to 90% of spectral co-
efficients in large domains. This results in a significant simulation time
reduction by half over the large simulation domains. Although the pro-
posed method primarily focuses on accelerating k-Wave toolbox wave
propagation simulation, it could be generally applied to wave propaga-
tion problems.

Keywords: Pruned Fast Fourier Transform - Ultrasound Simulation,
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1 Introduction

Wave propagation simulations play a crucial role in various fields of science and
engineering. However, the time required for these simulations to complete can
vary considerably, from a few seconds to days or even longer, depending on
the complexity of the model and the level of resolution required. This paper
focuses on accelerating 2D wave propagation simulations implemented by the
k-Wave toolbox [19], which utilises k-space pseudo-spectral methods based on
the Fourier Transform. The goal is to accelerate these simulations by optimising
the computation of the Fourier Transform, which represents a significant part
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of the simulation. This optimisation is particularly crucial for simulations over
high-resolution domains, where computational demands can be significant.

The most common approach to performing the Fourier transform is the Fast
Fourier Transform (FFT) algorithm [2]. Since some applications only require
a specific subset of frequency components from the FFT algorithm’s output,
computing the complete set of spectral coefficients may be unnecessary. In such
cases, it may be beneficial to reduce the computational cost by implementing
either a Sparse Fourier Transform (sparse FFT) [13] or Pruned Fourier Transform
(pruned FFT) [7] algorithm. The sparse FFT is suitable for signals with few non-
zero /significant coeflicients compared to the size of the input signal, where their
position in the spectrum is unknown. Sparse FFT algorithms are usually specially
designed using domain-specific knowledge. Conversely, pruned FFT algorithms
are optimised to compute spectral coefficients within known patterns that occur
in the spectral domain. This leads to bypassing unnecessary computations in the
standard Fast Fourier Transform [14].

For wave propagation simulations, spectral coefficients typically cluster near
low frequencies [10]. This characteristic makes the pruned FFT particularly suit-
able as a replacement for the standard FFT currently employed in the k-Wave
toolbox. By implementing this change, we aim to accelerate wave propagation
simulations through reduced computational time in the Fourier transform phase
and subsequent operations in the spectral domain.

Given that k-Wave is designed for time domain acoustic and ultrasound sim-
ulations in complex and tissue-realistic media, the evaluation of the proposed ap-
proach will focus on simulations used for non-invasive treatment pre-planning,
such as the application of focused high-intensity ultrasound. This application
exemplifies situations where precise representation of the media geometry can
affect the accuracy of the simulation result [12,21]. Our evaluation will examine
the method’s impact on three critical aspects across various domain resolutions:
simulation accuracy, focal point positioning and computational efficiency.

2 Mathematical Background

To compute the wave propagation, the k-Wave toolbox employs the pseudo-
spectral method using Fourier basis functions. This technique involves represent-
ing the solution of the differential equation as a sum of specific basis functions.
Unlike finite-difference time domain methods, which rely on local computations
at neighbouring points, spectral methods use information from the entire do-
main, leading to higher accuracy [5]. The k-Wave toolbox runs simulations based
on the following governing equations [19]:
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dp
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Where u is the acoustic particle velocity, p is the acoustic pressure, p is the
acoustic density, pg is the ambient (equilibrium) density, ¢o is the isentropic
sound speed, d is the acoustic particle displacement, B/A is the nonlinearity
parameter characterizing finite-amplitude effects, and L, is a loss operator that
accounts for acoustic absorption and dispersion in the medium. Equations (1)
can be written in a discrete form using the k-space pseudo-spectral method [16].
The following equations are part of the spatial gradient calculations based on
the Fourier collocation spectral method:

s = F Hikene AL EG), 2)
ug+% = uz_% - %{%p" + AtSge, (3)
%u?% = }"*1{ikgfi(fik{ﬂgm]:{uz+%}}, (4)
= pp — Atpoaggu?% + ALSpE (5)

For the Cartesian direction ¢ = z,y in R?, F and F~! denote the forward
and inverse spatial Fourier transform, ¢ is the imaginary unit, At is the time
step, k¢ represents the wave numbers in the ¢ direction, and & is the k-space
operator defined as k = sinc(c,erkAt/2), where c¢,ey is a scalar reference sound
speed. Equations 2 and 4 are spatial gradient calculations based on the Fourier
collocation spectral method. Equations 5 and 3 represent update steps utilising
a k-space corrected first-order accurate forward difference.

The Fast Fourier Transform algorithm is used to convert signals from the
spatial domain to the spectral domain. Each simulation step of the 2D wave
propagation simulation involves 11 FFTs. This computation consumes approx-
imately 60% of the total simulation time, making it a significant part of the
overall simulation [6].

3 Transducer Position

Since most simulations utilise narrow bandwidth sources, the spectral coefficients
cluster around low frequencies, leading to sparsity in the spectral domain, partic-
ularly in high-resolution simulation domains [3]. Despite this apparent sparsity,
sparse FFT approaches prove unsuitable as they discard small but crucial coef-
ficients that contribute to simulation accuracy, while also introducing additional
computational complexity through filtering processes. The spectrum is also not
sparse enough to benefit from the usage of sparse FFT. In contrast, pruned FFT
offers a more efficient solution by precisely computing the specified region within
the spectral domain, preserving all coeflicients regardless of their magnitude and
eliminating the need for additional computational steps. This makes pruned FFT
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a more reliable choice for processing simulation data compared to sparse FFT
methods [10].

One key factor that significantly impacts the position of computed spectral
coefficients is the direction in which the wave propagates through the media
[4]. Thus, the position of the coefficients in the spectrum (among other factors)
depends on the orientation of the transducer that determines the direction of
wave propagation. Fig. 1 shows the wave propagation in water with different
positions of an arc transducer, demonstrating different directions of ultrasound
wave propagation. The direction of wave propagation clearly impacts the position
of the coefficients in the spectrum (the zero-frequency components are shifted
to the centre of the domain).

i

I((((((«(«(Q:%»»»)»)))\\

i
\

)

200 400 600 800 1000
X

Fig. 1: Transducer position’s effect on wave propagation and spectral domain: (a)
pressure field distribution for Y-axis propagation in space domain, (b) frequency
domain representation of Y-axis propagation showing spectral coefficient distri-
bution, (c) pressure field distribution for X-axis propagation in space domain,
and (d) frequency domain representation of X-axis propagation showing spectral
coefficient distribution.

For the application of the pruned FFT in wave propagation simulation, the
most suitable transducer positions are those aligned with one of the axes. This
alignment enables reduction of the area computed by the pruned FFT algorithm
[11]. If the transducer is not aligned with either axis, alignment can be achieved
by rotating the domain around its centre. To obtain a suitable shape for the
simulation domain, which is typically rectangular or square, the rotated domain
can be filled with surrounding media. At the end of the simulation, if needed,
the domain with the wave propagation result can be rotated back to its original
position and cropped to its original size. This operation requires the ability to
fill the domain with surrounding media and the presence of an absorbing layer,
such as Perfect Match Layer (PML) [19] adjacent to the rotated domain. This
layer absorbs the propagated wave around the simulation domain and prevents
possible reflections that might affect the result of the original simulation. In our
proof-of-concept implementation of the two-dimensional pruned FFT algorithm,
the computation reduction is made only in the second dimension (columns - X).
This means that over the first dimension (rows - Y), the full FFT is computed
over each row. In the second dimension, only a given number of columns is
computed. For our implementation, the position of the transducer aligned with
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the X-axis is the most suitable variant. However, the transducer can also be
aligned with the Y-axis. In this case, the suitable reduced dimension would be Y
(rows). This scenario is in actual implementation solved by rotating the domain
by 90° to align the transducer with the X-axis.

4 Estimation of the Coefficient Area

An integral part of the pruned FFT algorithm is localising the area containing
coefficients crucial for computing the wave propagation simulation. Most of these
coeflicients represent low frequencies, thus they are present at the corners of
the spectral domain. Since the symmetry of the real-to-complex FFT in the Y
dimension is used, only the first m columns of the X domain will be computed.
To estimate the value of m, the Acoustic Field Propagator (AFP) [17] together
with a bisection pruning algorithm is used.

The AFP enables the calculation of the wave field at all spatial positions
at a given time in a single step. The advantage of AFP is its computational
speed compared to a full wave propagation simulation. However, this method
can only be used in homogeneous media with a single-frequency transducer and
cannot compute the reflections and absorption of the propagated wave. Thus,
it cannot replace a full ultrasound wave propagation simulation. When complex
tissue interfaces create significant reflections or scattering, the AFP may fail to
capture high-frequency components generated at these boundaries. Despite these
limitations, it provides an acceptable estimation of spectral coefficient positions.
The AFP is executed with the same transducer and homogeneous media, with a
sound speed equal to the minimum value present in the original simulation. The
lower the sound speed, the higher the frequencies that may occur in the spectral
domain. The resulting spectrum of the propagated wave is used to estimate the
position of spectral coeflicients that will be computed by the pruned FFT in the
wave propagation simulation.

To determine the first m columns for the pruned FFT, a bisection pruned al-
gorithm is employed. In this algorithm, the dimension X is considered as an inter-
val [0, N/2], to find an optimal cutoff point. First, the AFP spectrum is shifted so
that low frequencies are centred. Then, bisection is applied symmetrically to both
halves along the X-axis. In each iteration, a midpoint m = (lower + upper)/2
is computed. Coefficients below m are temporarily set to zero, preserving only
the spectral information in the interval [m, N/2], after which an inverse FFT
is performed. Due to the symmetrical properties of the FFT, this cutoff has a
corresponding effect on the right half of the full domain [N/2, N], creating a
mirror image of the preserved region. The resulting spatial domain is compared
to the original. Based on a user-defined error threshold, the iteration repeat with
upper half of the interval if the error is below the threshold or lower half interval
if it is above. The algorithm terminates when the border position stabilizes.

Three error thresholds were considered for the bisection pruning algorithm:
Mean Absolute Percentage Error (MAPE), Root Mean Squared Percentage Error
(RMSPE), and Normalised Percentage Lo, Error. However, RMSPE proved un-
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suitable due to its quadratic nature, which led to irregular error changes during
the threshold search and limited spectral coefficient reduction. Table 1 compares
the number of coefficients skipped by the pruned FFT algorithm using MAPE
and Normalised Percentage L., Error in a simulation with an arc transducer
in water aligned along the X-axis. Note that the Lo, error reflects the spatial
domain error after applying the pruned FFT, excluding transducer-related dis-
crepancies.

Table 1: Comparison of error and skipped rows/columns under different levels of
Mean Absolute Percentage Error (MAPE) and Normalised Percentage L, error
in homogeneous domain with edge size of 1024.

MAPE Norm. Perc. Lo
10% | 20% | 30% | 40% | 50% 1% 2% 3% 4% 5%
Rows skip 1 1 614 800 866 670 810 856 886 906

Rows skip (%] | 0.10 | 0.10 | 59.96 | 78.12 | 84.57 || 65.43 | 79.10 | 83.59 | 86.52 | 88.48

Lo error (%] | 0.003 | 0.003 | 0.005 | 0.054 | 0.312 || 0.005 | 0.072 | 0.240 | 0.498 | 0.768

The MAPE appears to yield better accuracy in the simulation results by
computing significantly more coefficients than the Normalised Percentage L,
Error. However, the MAPE was found inadequate as it fails to accommodate zero
values that may be encountered in spatial analysis. In contrast, the L., Error
provides a more reliable measurement by focusing on the maximum difference,
without being influenced by the distribution of smaller errors. Additionally, this
error metric is more intuitive for potential users, as it represents the maximum
error occurring at a single grid point in the entire domain, making it easier
to adjust based on specific needs. Thus, the Normalised Percentage L., Error is
more suitable for area estimation and will be used in all subsequent experiments.

The second method considered for area estimation involved computing the
norm over each column of the spectrum and skipping the columns where the
norm is below a given threshold. However, this approach has two main disad-
vantages compared to the bisection method. First, the resulting area of spectral
coefficients may not be continuous. In contrast, when the estimated area is con-
tinuous, the pruned FFT result can be stored in a reduced-size matrix (with one
dimension equal to the original size), which benefits element-wise operations and
memory optimisation, especially for large domain simulations. Second, the pre-
processing time is higher. The bisection pruning algorithm has a time complexity
of O(log N), whereas the norm computation has a time complexity of O(N) (with
N representing half the number of columns, due to the spectral domain’s sym-
metry). Moreover, when considering the computation of forward and backward
FFTs to determine the threshold error for the AFP, the preprocessing time be-
comes significant. Fig. 2 illustrates the experimental pipeline used to evaluate
the proposed algorithm. The red dashed rectangle highlights the preprocessing
stage, consisting of the AFP execution followed by the bisection pruning.
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Fig. 2: The pipeline with preprocessing operations to estimate area in the spectral
domain and the comparison of the reference and modified simulation.

5 Implementation

All principles described in the previous section result in a proof-of-concept ver-
sion of the two-dimensional k-Wave wave propagation simulation. The original
CUDA implementation of k-Wave was modified to incorporate the pruned FFT
algorithm instead of the FFT.

The pruned FFT was implemented using the cuFFT [9] and VKFFT [15] li-
braries. The computation is divided into two stages: first, a full real-to-complex
FFT along the X-axis using cuFF'T, and second, a Y-axis FFT using VKFFT. Al-
though cuFFT could perform both, VKFFT offers better flexibility for complex
memory layouts—beneficial for future 3D extensions. Because spectral elements
with an X coordinate greater than m are zero, only first m Y-axis FFTs are
executed. The inverse FFT reverses this process: starting with a Z-axis trans-
formation, then a Y-axis FFT for the first m X slices with VKFFT, followed
by zeroing coefficients in the remaining X slices to eliminate artifacts from the
initial transform, and finally an inverse X-axis transform with cuFFT.

To evaluate performance and error, the standard FFTs in the k-Wave tool-
box were replaced by our pruned FFT in the wave propagation simulation. This
approach accelerates computations for acoustic pressure, velocity gradients, and
the absorption term during each simulation step. Additionally, by confining non-
zero coefficients to a single spectral area, we can optimize element-wise matrix
multiplications (highlighted in Equations 2 and 4), potentially further reduc-
ing simulation times, while leaving CUDA kernels for real domain operations
unchanged.

6 FEvaluation of the Method over Real Data

In this section, we evaluate the modified version of the k-Wave wave propagation
algorithm that utilizes the pruned FFT. To simplify the experimental setup and
focus on performance and computational error, all experiments align the wave
propagation direction with the X-axis, eliminating the need for domain rotation
and additional preprocessing.

These examples represent practical clinical scenarios where precise targeting
of specific locations within the human body with focused ultrasound waves is es-
sential. Such applications are particularly relevant in therapeutic procedures that
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— (a) —

(b)

Fig. 3: Ultrasound simulation setups and results: (a) human skull configuration,
(b) human liver configuration, (c) skull acoustic pressure distribution, and (d)
liver acoustic pressure distribution. Orange rectangle shows error measurement
area; green arc indicates transducer position.

rely on ultrasound focusing techniques, allowing us to evaluate the algorithm’s
performance and precision in contexts closely mirroring real-world treatments.

In the search for the optimal focus position, multiple simulations may be re-
quired. To enhance computational efficiency, a two-stage approach is employed:
initially, accelerated simulations with an acceptable error margin are performed
to identify promising transducer positions. Once an approximate optimal posi-
tion is determined, a full simulation is executed using that position to ensure
accuracy and reliability. This hybrid strategy significantly reduces the overall
computational time during the transducer position search while maintaining the
necessary precision for medical applications [12].

Furthermore, high simulation resolution is crucial not only in medical applica-
tions but also in accurately representing diverse material geometries, especially
for structures with large differences in material properties. A higher domain
resolution helps prevent stair-casing artifacts and phase shifts [12], [21]. Conse-
quently, high-resolution simulations tend to contain many more zero or negligible
spectral coefficients, making them particularly suitable for the proposed spec-
trum pruning.

Table 2: Properties of the skull simulation across different domain resolutions.

1x 2x 4x 8x 16x 32x
Nx 288 576 1152 2304 4608 9216
Ny 384 768 1536 3072 6144 12288
dx/dy [m] |9.375e—4|4.6875e—4|2.34375e—4|1.17187e—4|5.85937¢—5|2.92969¢—5
CLF 0.3 0.3 0.3 0.15 0.1 0.05
PPW (water)| 5.36 10.73 21.46 42.92 85.85 171.69
Time steps 2798 5595 11189 44753 134258 537031

In all subsequent experiments, the domain properties—sound speed, den-
sity, and absorption coefficients—reflect those of real tissue. Fig. 3a shows the
transducer’s position relative to the skull, while Fig. 3b illustrates its position
relative to the liver. An additive transducer operating at 300 kHz with an ampli-
tude of 100 kPa was used [20]. The same figures indicate the area within which
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acoustic pressure error is evaluated. Although the pruned FFT removes high
frequencies—resulting in significant error at the transducer itself—the primary
concern in ultrasound applications is the error within the tissue. This approach
for assessing the accuracy of nonlinear wave propagation in layered, absorbing
fluid media follows the method used in [8]. All experiments were executed on an
NVIDIA RTX A5000.

Table 3: The measurements in the human skull with different bisection threshold.
1% Threshold

1x 2x 4x 8x 16x 32x
Skip [%] 22.92 43.40 63.02 77.78 87.41 93.51
Lo domain [%] 3.13 10.72 14.15 15.43 16.56 17.62
Lo focal point [%] 0.23 1.05 1.13 0.89 0.60 0.76
Focal point shift [mm)] 0 0.469 0 0 0.059 0
Time original [s] 0.38 1.69 15.84 | 243.75 | 3636.13 |54366.42
Time modified [s] 0.37 1.53 12.21 169.62 | 1916.76 |29333.16

Step time original [ms] || 0.136 0.296 1.386 5.325 26.48 98.97
Step time modified [ms]|| 0.132 0.268 1.069 3.706 13.96 53.40

AFP time [s] 0.23 0.74 2.62 9.10 32.34 42.34
Speedup 1.03 1.10 1.30 1.44 1.90 1.85
2% Threshold

Skip [%] 39.58 61.11 77.43 87.59 93.27 96.44

Lo domain [%] 5.63 13.82 17.92 20.23 21.67 22.69

Leo focal point [%] 067 | 121 130 | 114 | 119 | 093

Focal point shift [mm] 0 0.469 0 0 0.059 0

Time original [s] 0.38 1.68 15.87 243.67 | 3654.35 |54374.44
Time modified [s] 0.35 1.43 11.93 166.06 | 1847.03 |28782.14

Step time original [ms] || 0.136 0.294 1.389 5.324 26.61 98.98
Step time modified [ms]|| 0.125 0.250 1.044 3.628 13.45 52.39

AFP time [s] 0.26 0.62 2.66 9.47 33.25 174.20
Speedup 1.09 1.17 1.33 1.47 1.98 1.89

To measure the impact of the optimisation on the differently sized simu-
lations, the resolution of the original simulation domains was upscaled using
nearest neighbour approximation to maintain the domain in its segmented form.
This ensures that no artificial material properties are introduced during the up-
scaling process. To show the impact of the bisection threshold on the simulation
result, the measurements were made for 1% and 2% Normalised Percentage L,
bisection threshold. The simulation properties for both the skull and liver setup
are presented in Tables 2 and 4 respectively.

The original size of the simulation in skull was 288 x 384 with uniform grid
spacing of 9.375 x 10~*m. This simulation was upsampled up to 32 times while
keeping the physical size the same as the original simulation. The original size of
the liver simulation was 480 x 480 with uniform grid spacing of 3.333 x 10~ *m.
This simulation was upsampled up to 16 times. Since absorption was present in
all experiments, it was necessary to adjust the Courant—Friedrichs-Lewy (CFL)
number to maintain simulation stability [18]. The CFL number affects the sim-
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Table 4: Properties of the liver simulation across different domain resolutions.

1x 2x 4x 8x 16x
Nx 480 960 1920 3840 7680
Ny 480 960 1920 3840 7680
dx/dy [m]| [3.33333e—4|1.66667e—4|8.33333e—5(4.16667e—5|2.08333e—5
CLF 0.3 0.3 0.3 0.3 0.15
PPW (water) 15.09 30.18 60.36 120.72 241.44
Time steps 5524 11047 22094 44187 176746

Table 5: The measurements in the human liver with different bisection threshold.

1% Threshold

1x 2x 4x 8x 16x

Skip [%] 30.17 64.17 76.04 84.64 91.54

Lo domain [%] 10.84 20.49 25.25 29.78 33.53

L focal point [%] 0.47 0.99 0.86 0.05 2.07

Focal point shift [mm] 0 0.236 0.755 0.750 0.750
Time original [s] 1.03 6.75 72.35 537.40 9549.67
Time modified [s] 0.95 5.56 41.38 339.19 5106.51

Step time original [ms] 0.186 0.425 2.14 7.80 34.52

Step time modified [ms] 0.172 0.350 1.22 4.93 18.46

AFP time [s] 0.48 1.43 4.77 15.92 55.81

Speedup 1.08 1.21 1.75 1.58 1.87

2% Threshold

Skip [%)] 59.58 75.42 85.00 91.41 95.47

Lo domain [%)] 18.14 25.24 29.31 33.03 35.12

Lo focal point [%] 2.60 0.33 1.48 2.02 2.37

Focal point shift [mm)] 0 0.850 0.755 0.750 0.750
Time original [s] 1.03 6.77 72.06 539.87 9554.37
Time modified [s] 0.92 5.40 40.13 323.92 4984.51
Step time original [ms] 0.186 0.426 2.13 7.84 34.54

Step time modified [ms] 0.167 0.340 1.19 4.70 18.02

AFP time [s] 0.48 1.32 4.60 16.69 94.15

Speedup 1.12 1.25 1.80 1.67 1.92

ulation time step, which can result in longer simulation times. The simulation
time was chosen based on the time it takes the wave to travel from one corner
of the grid to the geometrically opposite one.

When we examine the results in Table 3 (skull simulation) and Table 5 (liver
simulation), we observe that the number of skipped spectral coefficients increases
with the simulation domain resolution, reaching up to approximately 90%. The
Fig. 4a and Fig. 4b show the error distribution of the normalized L., error
using a 1% bisection threshold and reveal that significant errors primarily occur
at the tissue boundaries where sound speed and density change dramatically.
Throughout most of the simulated media, errors remain manageable at just a
few percentage points. As expected, increasing to a 2% bisection threshold leads
to higher computation errors across all simulations, but also results in a more
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significant reduction in computed coefficients due to the greater loss of spectral
information.
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Fig. 4: The distribution of the Normalised L., error over grid points of the final
acoustic pressure distribution in (a) 16 times upscaled liver and (b) 32 times
upscaled skull, grouped into 10 intervals.

A crucial aspect for focused ultrasound procedures is the accuracy of the
focal point and its position. With a 1% bisection threshold, the focal point
error remains mostly below 1%. In skull simulations, the focal point shift is
minimal, either zero or limited to a single grid point relative to the original
domain size. In contrast, liver simulations can experience focal point shifts of
several grid points due to the heterogeneous nature of bone tissue. Notably,
simulation times improved significantly, especially for larger domains. With a 1%
bisection error, a speed-up of up to 1.8 times was observed, reducing simulation
time from roughly 15 to 8 hours—a substantial saving when multiple simulations
are required. However, when including the AFP preprocessing time, the pruned
FFT’s benefits diminish for small domain sizes due to overhead, while for large
domains, AFP accounts for only a negligible portion of the total time saved.

Profiling

The profiling of the proof-of-concept pruned FFT implementation was performed
on the same GPU used for the experiments, employing the identical input dataset
utilized in the resolution evaluations described in Section 6.

Fig. ba compares the overall time spent on FFT computations in both direc-
tions between the original and modified implementations. The results indicate
that acceleration was achieved for all simulation sizes, with larger simulations
exhibiting greater speedup. The only exception is the largest simulation, where
a decrease in speedup may be due to less efficient FFT algorithm selection. This
trend is easily explained by the decreasing percentage of coefficients processed in
the Y dimension. As noted in Section 2, FFTs account for approximately 60% of
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the total simulation time. According to Amdahl’s law, with 60% of the compu-
tation optimisable, the maximum theoretical speedup is 2.5 times. Comparing
this limit to the actual speedup shown in Fig. 5a highlights the high efficiency
of the optimization.
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Fig. 5: Performance comparison between original and modified implementations:
(a) FFT computation duration; (b) Time percentage breakdown of FFT and
kernel computations.

Fig. 5b illustrates the relative time usage of the original and modified imple-
mentations, divided into three segments: FFTs, real domain kernels, and spectral
domain kernels, with the overall duration normalized to that of the original im-
plementation. The significant reduction in computation time is observed in the
FFT segment, which decreases in accordance with the domain scale. The time
spent on spectral domain kernels is also greatly reduced; for the largest simula-
tion, it drops from approximately 7% of the overall simulation time to less than
1%. As expected, no speedup was observed for the real domain kernels, since the
optimizations were applied solely to the spectral part of the computation.

7 Discussion

Comparing our implementation with other acoustic pressure wave solvers [1],
experiments at various resolutions show computation errors within acceptable
cross-comparison ranges. For human head simulations similar to ours, relative
Lo, error ranges from 10% to 100% compared to k-Wave. Focal point shifts
(0-2mm) and acoustic pressure errors (1072-10!) also align with benchmarks.
While direct comparison is challenging, the results achieved in the experiments
presented here are promising and provide the first insight into the accuracy of
this method over high-resolution simulations.

A limitation of this approach that requires further investigation is its perfor-
mance in heterogeneous simulations where the difference between the properties
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of two media is so high that removing high frequencies from the spectrum pre-
vents the wave from propagating or reflecting correctly. This can lead to signifi-
cant errors at the boundaries of such media. Another limitation lies in the type
of transducer used. For a piston transducer, the overall simulation error should
be lower since most of the spectral coefficients representing this transducer are
included in the computed part of the spectrum. However, if the piston transducer
is unaligned, high computation errors may occur. In contrast, a point transducer
is not suitable for this optimization, as accurately representing it requires the
inclusion of high frequencies. The worst-case scenario represents the signals with
widely distributed spectral content (sharp impulses or broadband noise). Simi-
larly, simulation involving point source rather than distributed transducers may
retain significant energy in high frequencies, limiting coeflicient reduction.

There are several avenues for further improvement. Implementing the pruned
FFT in the first dimension would reduce arithmetic operations and memory ac-
cesses. Applying the pruned FFT across all dimensions of the two-dimensional
domain would allow storing the resulting spectral coefficients in reduced matri-
ces that correspond to the computed area, potentially enhancing memory per-
formance during simulation steps. Additionally, reducing the spectrum in both
dimensions, rather than only along the X-axis, could be considered. However,
this would likely increase computation error due to the additional removal of
coefficients, and the performance gains may not justify losing the current ad-
vantage of maintaining a single continuous area of coeflicients, which simplifies
subsequent operations.

Despite FFT-pruning being well-established and the impact of spatial reso-
lution on image quality being well understood, integrating these techniques for
spectral methods in wave propagation simulations is novel. This approach bridges
computational efficiency with high-resolution accuracy in complex wave models,
opening new research opportunities in ultrasound simulation and acoustics.

8 Conclusion

This paper presented an approach to accelerate k-Wave’s wave propagation sim-
ulation by replacing the standard FFT algorithm with a pruned FFT. The
proposed method was demonstrated via a proof-of-concept implementation of
the pruned FFT integrated into the k-Wave simulation framework. Experiments
using simulation data from human skull and liver models showed significant
improvements in computational time, particularly for high-resolution domains.
Although transitions between media with significant differences in properties
such as sound speed and density may lead to high computation errors at their
boundaries, the overall impact on focal point accuracy was minimal, resulting in
negligible focal shifts.

This approach shows promising potential for focused ultrasound procedures,
especially in scenarios where multiple simulations are required to determine the
optimal transducer position for targeting specific tissue areas. The improved
computational efficiency makes it particularly suitable for treatment planning,
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where rapid iteration through various transducer configurations is necessary
while maintaining acceptable accuracy. Notably, despite the challenges associ-
ated with ultrasound penetration through bone, our method achieved up to a
1.8x speedup in large simulation domains with a 1% bisection threshold, demon-
strating its robustness in demanding scenarios.

Future research will focus on further improving the pruned FFT implementa-
tion and its integration into the k-Wave toolbox, including enhancements to the
preprocessing phase, comprehensive evaluation and validation of the proposed
approach, and potential extension to three-dimensional simulations. This work
contributes to the ongoing effort to enhance the efficiency of spectral methods in
wave propagation simulations, particularly for medical ultrasound applications.
The promising results pave the way for more efficient high-resolution simulations,
potentially enabling faster and more accurate treatment planning in clinical set-
tings.
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