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Abstract. Deep neural networks and supervised machine learning for
medical image segmentation, including dermatology [10], require large
pixel-wise annotated datasets for training, which can be di�cult to ob-
tain. Image classi�cation, on the other hand, only requires a label for
each image, which is often automatically provided with a medical di-
agnosis, but does not provide segmentation maps. However, in image-
classi�cation tasks, Explainable-AI (XAI) algorithms provide a means
of identifying pixels in the original image that are part of the object or
relevant structure. We propose to exploit this information for segment-
ing the images by building a network graph from XAI explanations and
using the graph-cut algorithm for segmentation. Our approach is evalu-
ated using the HAM10k [26] dataset, demonstrating its ability to segment
skin lesions in dermatoscopic images without requiring pixel-annotated
data for training. This makes our approach a cost-e�ective alternative in
scenarios where annotated images are not available.

Keywords: Image Segmentation · Supervised Machine Learning · Ex-
plainable AI · Graph-Cut · SHAP · Grad-CAM · GMM · ResNet152 ·

CBAM.

1 Introduction

Medical image segmentation is a crucial task in the diagnosis and treatment of
diseases, especially in dermatology, where accurate delineation of skin lesions is
essential for early detection of conditions such as melanoma [4,13]. Supervised
machine learning has become an important and frequent paradigm in dermatol-
ogy [10]. One of the most widely used methods is the U-Net [21], which shows ex-
ceptional performance in medical image segmentation. However, it relies heavily
on large, annotated datasets, which are costly and time-consuming to produce.

Clustering-based approaches have been proposed to address this challenge
[23,11], but a drawback is their dependence on pixel intensity, which often re-
quires careful tuning of parameters. Other approaches rely on user-de�ned inputs
that provide markers for initialization and are therefore not automatic [25]. More
recent unsupervised deep learning techniques aim to learn feature representations
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directly from the data but can be computationally intensive and require large
datasets [29].

Skin-lesion segmentation has also been recently formulated as an anomaly
detection problem [8]. This has the advantage that no annotated data is required,
because the network is trained on images showing only healthy skin. However,
this approach does not provide information about the type of anomaly that has
been detected, e.g., di�erent stages of a disease or classes.

Our approach addresses these challenges by proposing a fully automated seg-
mentation framework that integrates Explainable-AI techniques [3], speci�cally
SHAP [15,24] and Grad-CAM [22,17], with Gaussian Mixture Models [14,19]
(GMM) and Graph-Cut [6,5]. Images are annotated with a single label, repre-
senting di�erent classes, and then used to train a classi�cation network. XAI-
driven feature maps provide pixel-wise information on the importance of the
pixel for the correct classi�cation of the image. These feature maps are used to
initialize a graph-cuts method for image segmentation [6]. The XAI-driven fea-
ture maps generated by SHAP and Grad-CAM guide the segmentation process,
while the GMM model the intensity distributions of the foreground and back-
ground. Graph-Cut further re�nes the segmentation by minimizing the energy
function, ensuring that the object boundaries are accurately delineated. This
approach avoids tedious pixel-wise annotations of images and therefore provides
an automatic and scalable solution for medical image-segmentation tasks where
labeled data are scarce or unavailable.

The primary objectives of this study are (i) the development and training of
a medical image-segmentation framework combining XAI-driven feature maps
from SHAP and Grad-CAM with GMM and graph cuts, (ii) the evaluation
of the proposed approach on the HAM10k [26] dataset as well as comparison
of the results with segmentation results obtained by U-Net [21], and (iii) the
investigation of the impact of CBAM [27] integrations on segmentation quality
and model transparency.

2 Methods

The proposed image-segmentation framework consists of the following parts:

(i) The core of the method is a ResNet152 model for image classi�cation, trained
with a subset of the HAM10K dataset from the ISIC_2018 challenge [2].
During training, the network is provided only with the class label for each
image, not ground-truth pixel-wise annotations. Consequently, the network
outputs only a single label prediction for each image.

(ii) SHAP and Grad-CAM explanations, obtained for the ResNet15 model of
step (i), are used to create binary masks for each image. Grad-CAM expla-
nations are further improved by integrating CBAM into ResNet152.

(iii) The binary masks from step (ii) are merged and used to initialize the graph-
cuts method. The resulting graph-cuts segmentations are the XAI-driven
segmentations produced by our method.
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A schematic overview of the method is provided in Fig. 1. In the following, we
provide further details of the di�erent techniques employed in our framework.

2.1 Datasets and data augmentation

The HAM10K dataset from the ISIC_2018 challenge [2] contains dermatoscopic
images of skin lesions, categorized into seven classes: melanoma (MEL), nevus
(NV), actinic keratosis(AKIEC), basal cell carcinoma (BCC), benign ker-atosis-
like lesions (BKL), vascular lesions (VASC), and dermato�broma (DF). A key
characteristic of this dataset is its class imbalance. For example, the most preva-
lent class, NV, includes over 58 times more images than the least common, DF.
The original dataset contained 10,015 training images (each with a corresponding
ground-truth segmentation mask), 194 validation images (without ground-truth
segmentations), and 1,503 test images (without ground-truth segmentations).
Our goal is to generate U-Net and XAI-driven segmentations and evaluate their
accuracy using the Dice [30] and Jaccard [20] scores. These scores compare the
generated segmentations to the ground-truth segmentations. Since the test and
validation set lacked ground-truth segmentations, we restricted our analysis to
the original training set of 10,015 images, which was then divided into 3 parts,
de�ning dataset A, consisting of 8,012 images for testing, 202 images for valida-
tion during training, and 1,803 images for testing.

To enhance the dataset and improve model performance, image augmenta-
tion techniques were applied to the training and validation dataset using the
PyTorch deep learning library [18]. For augmentation, the Albumentations li-
brary [1,9] was chosen due to its extensive range of augmentation options and
e�cient implementation. To address class imbalance in the dataset, a weighted
augmentation strategy was employed. Using Albumentations, images from un-
derrepresented classes were speci�cally targeted for augmentation. This strategy
was based on inverse class frequency weighting or adaptive data augmentation,
which ensured that minority classes received more augmentation than dominant
classes. The goal was to balance the distribution of classes in the training data
and improve the generalizability of the model. Not all images were augmented;
the focus was primarily on the minority classes. Data augmentation resulted
in 29,213 training images and 4,190 validation images. The number of testing
images remained unchanged, de�ning dataset B.

2.2 Model training and feature extraction

We use a ResNet152 [12] network as the backbone for feature extraction. ResNet
[12] introduces the concept of skip connections, improving training stability and
convergence.

The model was trained on dataset A and on the augmented dataset B. Both
trainings were conducted on one of the HPC compute nodes of the University of
Applied Sciences Koblenz, equipped with 2 AMD EPYC 7713 CPUs (64 cores,
128 threads each), 1 TB RAM, and 4 NVIDIA A100 GPUs (80 GB each) con-
nected via NVLink. The training con�guration included a learning rate of 0.1
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Fig. 1: Overview of the pipeline: Images are augmented and used to train a
ResNet-152 as a black-box classi�er. The transparent model processes each in-
put to produce Grad-CAM and SHAP attribution maps, which provide an initial
binary mask. A Gaussian Mixture Model is then �tted to both foreground and
background regions and used to guide a graph-cut algorithm for image segmen-
tation.
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with a learning rate scheduler, momentum set to 0.8, and a weight decay of
0.001. An early stopping strategy was employed to save the best model during
training, preventing over�tting and ensuring better generalization.

Class Precision Recall F1-Score Support

Class 0 (MEL) 0.71 0.57 0.63 158
Class 1 (NV) 0.93 0.97 0.95 1248
Class 2 (AKEIC) 0.72 0.85 0.78 81
Class 3 (BCC) 0.81 0.57 0.67 68
Class 4 (BKL) 0.83 0.73 0.78 201
Class 5 (DF) 0.78 0.74 0.76 19
Class 6 (VASC) 0.82 0.96 0.89 28

Accuracy 0.88 1803

Macro avg 0.80 0.77 0.78 1803

Weighted avg 0.88 0.88 0.88 1803

Test Loss 0.5447

Table 1: Classi�cation results of the ResNet152 model, trained with dataset B,
for the test set.

2.3 Initial segmentation-mask generation using XAI

Fig. 2: The �rst row displays the original images from the HAM10K dataset,
followed by the raw SHAP attributions extracted from the transparent model in
the second row. The third row shows the corresponding binary masks generated
from the SHAP values.

The learned feature maps from the ResNet152 model serve as input for the
XAI methods, SHAP and Grad-CAM. SHAP values are used to generate the
importance of pixel-level features, highlighting the most in�uential regions for
image classi�cation [15,24]. Grad-CAM utilizes the feature maps generated by
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Fig. 3: The �rst row presents the original images from the HAM10K dataset,
followed by the raw Grad-CAM attributions extracted from the transparent
model in the second row. The third row displays the corresponding binary masks
generated from the Grad-CAM explanations.

the �nal convolutional layers of the neural network to create coarse localization
maps that highlight areas of interest (see Fig. 3, second row). These maps in-
dicate regions that contributed the most to the predictions, providing valuable
insights into where the model is focusing its attention [17]. The outputs from
SHAP and Grad-CAM are combined to create an initial binary mask, leverag-
ing SHAP's pixel-level importance and Grad-CAM's spatial localization. This
complementary approach addresses the limitations of each method individually,
with Grad-CAM providing broader context and SHAP capturing �ner details. A
binary bitwise AND operation using the OpenCV [7] library is applied to merge
the masks, ensuring that only pixels signi�cant to both methods contribute to
the �nal combined mask, improving segmentation accuracy.

2.4 CBAM

To further enhance the feature extraction capabilities of the ResNet152 back-
bone, we integrated the Convolutional Block Attention Module (CBAM) [27] into
the architecture to improve Grad-CAM explanations. CBAM is a lightweight and
e�ective attention mechanism that improves a network's ability to focus on the
most informative features within an image. It operates by applying attention
mechanisms sequentially along the channel and spatial dimensions of the fea-
ture maps, re�ning the extracted features at each stage. The channel attention

module identi�es the importance of each channel by aggregating spatial informa-
tion using global average pooling and max pooling. The resulting descriptors are
passed through a shared multi-layer perceptron (MLP) that includes a bottleneck
layer, where the dimensionality is reduced by a factor known as the reduction
ratio. This reduction controls the trade-o� between model complexity and the
ability to capture �ne-grained details. The outputs of the MLP are combined
and activated using a sigmoid function to produce the channel attention map,
which emphasizes the most relevant channels in the feature map. The spatial

attention module focuses on the most critical regions in the image. It applies
pooling operations along the channel axis to generate spatial descriptors, which
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are concatenated and passed through a convolutional layer to produce a spatial
attention map. This map highlights the important regions in the feature map,
guiding the network to focus on the areas most relevant for segmentation. Inte-
grating CBAM into ResNet152 enhances the network's ability to focus on critical
areas, such as lesion boundaries, in dermatoscopic images. To accommodate the
complexity of the dataset, the reduction ratio in CBAM is set to 4 instead of
the default 16, and the kernel size for spatial attention is increased to 5 [16].

2.5 Segmenting with Graph-Cut

The binary masks obtained from SHAP and Grad-CAM are merged and then
used to initialize Gaussian Mixture Models (GMM) for foreground and back-
ground modeling. GMMs are �tted to the pixel distributions of the image to
compute foreground and background probabilities, where the GMM models the
intensity and color distribution of the foreground and background regions in
the combined mask. This is determined by extracting the coordinates of the
black (background) and white (foreground) pixels from the mask and mapping
these pixels back onto the original image to identify their respective regions.
The resulting foreground and background probability distributions allow esti-
mating the likelihood of each pixel belonging to the foreground or background.
The image is treated as a graph where each pixel corresponds to a node. The
source and the sink of the graph (terminal nodes) are provided by the fore-
ground and background probabilities computed earlier via the binary XAI mask
[6]. Edge weights are calculated from intensity, texture, and gradient similari-
ties between neighboring pixels. These weights in�uence the energy-minimization
process and ensure accurate segmentation boundaries. The Graph-Cut algorithm
then minimizes the energy function that de�nes the relationship of foreground
and background regions. This iterative minimization process re�nes the segmen-
tation mask, e�ectively separating the object of interest from the background
[6].

3 Results

To obtain XAI-guided image segmentation, the ResNet152 model is �rst trained
using the augmented dataset B. The combined outputs of SHAP and Grad-CAM
explanations are used to initialize the graph-cut method for image segmentation.
We report intermediate results for the di�erent parts of our framework as well
as the �nal XAI-guided segmentation performance.

3.1 ResNet152 model for image classi�cation

The ResNet152 model, trained with dataset A, achieved an accuracy of 88%
on the test set. To evaluate model performance, metrics such as precision, re-
call, and F1-score were used. The minority classes DF and BCC underperformed
compared to the other classes. Therefore, we trained with augmented dataset B
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instead, which improved the results. The overall results are summarized in ta-
ble 1. This model provides the core of the proposed framework.

3.2 Binary-mask generation with SHAP and Grad-CAM

SHAP and Grad-CAM explanations are generated for each image of the test set
using the previously trained ResNet152 model. In Fig. 2 and Fig. 3, the computed
SHAP and Grad-CAM explanations are shown in the second row, respectively.
In the third row, the respective binary masks generated from the explanations
are presented. The binary masks obtained from Grad-CAM are very sparse,
making them less suitable for binary-mask generation. By integrating CBAM
[27] into the ResNet152 model, the Grad-CAM explanations and the resulting
binary mask could be improved (see Fig. 4, last two rows). These adjustments
allow the model to capture subtle features more e�ectively, improving the overall
segmentation performance.

Fig. 4: Improvements of Grad-CAM explanations via integrating CBAM into
ResNet152: Original images (�rst row), Grad-CAM explanations for ResNet152
without CBAM (second row), Grad-CAM explanations for ResNet152 with
CBAM (third row), and binary masks generated Grad-CAM explanations for
ResNet152 with CBAM (last row).

3.3 XAI-guided image segmentation

Finally, the binary masks obtained in the previous step are merged and used to
initialize the graph-cuts method. The resulting binary segmentations are evalu-
ated using standard metrics: Dice Coe�cient [30] and Jaccard Index [20]. These
metrics quantify the overlap of predicted and ground-truth segmentations pro-
vided by experts. Our segmentation framework achieved a Dice score of 0.84
and a Jaccard index of 0.75 (see table 2). In Fig. 5, segmentation results are
shown for images of the test set. These results show that our framework is able
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to classify and segment skin lesions without using pixel-wise annotations during
training.

The performance of the proposed method is compared with U-Net, a widely
adopted model for medical image segmentation. The U-Net architecture uses
ResNet152 as the backbone for its encoder-decoder framework, with the im-
plementation sourced from GitHub [28]. Both networks were trained with the
augmented dataset B. However, to train the U-Net, the image class labels and
the ground-truth segmentations had to be provided during training, while our
method is trained only with image class labels. The U-Net achieved a Dice score
of 0.92 and a Jaccard index of 0.85 (see table 2). The score of our method is
lower than the one of U-Net, but still in a comparable range. However, a com-
parison in terms of the Dice and Jaccard score alone is di�cult for the following
reason: Ground-truth pixel-wise annotations, which are used to train the U-Net
and to evaluate segmentation performance of both approaches on the test set,
potentially contain a bias. Since the U-Net is trained with this data, it can learn
this bias. Therefore, the boundaries of the segments are closer to the precise
form of the ground-truth annotations, raising the Dice and the Jaccard scores.
When studying the results for individual images in Fig. 5, our method shows, at
least visually, competitive results to U-Net.

Method Dice Score Jaccard Index

U-Net 0.92 0.85
XAI segmentation 0.84 0.75

Table 2: Comparison of Dice and Jaccard metrics between U-Net and the pro-
posed approach (XAI segmentation) for the test set.

4 Discussion and Conclusion

This study presents an unsupervised medical image-segmentation approach that
leverages XAI techniques, such as SHAP and Grad-CAM, to guide the Gaussian
Mixture Model (GMM) initialization for Graph-Cut segmentation. The model
was �rst trained on an augmented dataset, achieving a high accuracy of 88%.
XAI explanations were then generated and converted into binary masks to iden-
tify key foreground and background pixels. These masks were used to �t GMMs,
which provided the initial segmentation. The process was iteratively repeated for
a speci�ed number of iterations n or until a convergence threshold was met, mea-
suring the ratio of changed pixels to the total number of pixels. The �nal output
was further re�ned using morphological operations. For challenging cases, such as
lesions that closely resemble healthy skin, improvements were introduced, includ-
ing the integration of CBAM into the training architecture and adjustments to
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Fig. 5: Example results of our method (XAI-segmentation), U-net and the
ground-truth.
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the number of GMM components for foreground and background modeling. De-
spite the class imbalance in the HAM10k dataset, the proposed method showed
a performance comparable to U-Net. It further eliminates the need for pixel-
wise expert annotations, which is an important advantage in scenarios where
annotated data are scarce or unavailable.

The approach has limitations due to several parameters that in�uence its
performance, including those related to model training, threshold selection for
values generated by XAI methods such as SHAP and Grad-CAM, and parame-
ters of GMM components for foreground and background modeling. These lim-
itations become especially apparent for lesions that are di�cult to distinguish
from healthy skin. In such cases, the raw attribution maps generated by SHAP
and Grad-CAM can di�er signi�cantly due to the distinct underlying computa-
tion methods of each technique. Consequently, merging these masks can result
in suboptimal binary masks, which negatively impact the subsequent GMM seg-
mentation performance (see Fig. 6).

Fig. 6: Limitations of the method: Segmentation fails when the attribution maps
di�er signi�cantly from one another. This discrepancy leads to a segmented
output that does not adequately cover the region of interest.

Future research will focus on improving the binary mask generation pro-
cess, optimizing GMM �tting by testing multiple con�gurations with the goal
of selecting the best combination of components for foreground and background
modeling. Furthermore, multiple models could be trained independently for spe-
ci�c lesion classes to obtain a more detailed understanding of each class. By
isolating the segmentation process for particular lesion classes, such as malig-
nant versus benign cases, models could capture the unique characteristics of each
category in more detail, potentially enhancing overall performance.
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