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Abstract. This study presents a new fractional computational approach
applied to a new dataset, silicosis. This is a scalable and flexible approach
for training neural networks using fractional computation, which conve-
niently use the conformable fractional derivative. During the training
process, the method includes an independent variable, α, which provides
additional degree to the framework. Fractional variants of the sigmoid
and relu activation functions are explored and compared to conventional
activation functions. This method builds on earlier approaches by em-
ploying the conformable fractional derivative. The fractional activation
functions notably converge to the actions of their standard version when
α = 1, guaranteeing a smooth integration with conventional neural net-
work models. The study also tackles the problem of managing both pos-
itive and negative inputs, which is a crucial prerequisite for the deriva-
tive but has been mainly disregarded in earlier studies, underscoring the
originality of the current work. The experimental framework incorporates
both feedforward neural network and convolutional neural network using
fractional activation functions. The findings indicate that the suggested
framework performs better and is more accurate for particular values
of α. The efficiency of the suggested computational approach is demon-
strated by showing that fractional activation on Convolutional Neural
Network when paired with transfer learning, performs better for silicosis
chest X-ray classification than conventional transfer learning models.

Keywords: Convolutional Neural Network · Activation · Fractional com-
putation · Silicosis Data

1 Introduction

Silicosis is an irreversible and potentially fatal lung disease, which is, entirely
preventable. It results from exposure to respirable crystalline silica. Many work-
ers worldwide are at risk of contracting this illness across a variety of industries.
Pneumoconiosis refers to a diverse group of occupational interstitial lung dis-
eases resulting from the prolonged inhalation and accumulation of mineral dust
in the lungs. Early detection of this is crucial for detect the disease in its prior
stages, enabling timely interventions to improve outcomes for affected work-
ers while also facilitating the evaluation of shortcomings in workplace safety
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protocols[18]. This ailment is very common among Indian workers, particularly
in Rajasthan, and early finding is the only way to treat it but there are very few
studies for computer aided detection of this [16]. A similar occupational disease,
Pneumoconiosis, was also spread in China. A detection model for this condi-
tion has been developed using a deep convolutional diagnostic approach [8]. In
state of the art the transfer learning models are very helpful for classification
of lungs X- rays [20]. Although state-of-the-art research has explored models for
silicosis detection, the available datasets often suffer from imbalances and may
lack proper authorization[19]. In contrast, this study utilizes a properly labeled,
balanced, and authorized dataset to develop a custom model specifically for sil-
icosis medical X- ray images classification. The proposed approach achieves an
accuracy of 0.8276, demonstrating superior performance compared to existing
methods in the literature.

Activation functions are pivotal in determining the stability of neural net-
works and significantly impact their performance in modeling and interpret-
ing physical phenomena. They assess the relevance of neuron inputs and decide
whether a neuron should be activated through mathematical computations[10].
The study of fractional activation functions for neural networks is a rapidly grow-
ing area of research. By extending common functions like sine, cosine, and the
logistic function based on the Mittag-Leffler function concept, Ivanov presented
a novel method for creating fractional activation functions[12]. The impact of
these fractional activation functions on neural network learning and prediction
accuracy was assessed through experiments. Optimal parameter settings which
occcurs by random search α ≈ 0 and β = 1 improved accuracy, occasionally
achieving 100% in over epochs.

Recently, the fractional approach in optimization and training of neural net-
works gained more highlight [9,11,21]. Fractional Adaptive Linear Units, a new
generalization of adaptive activation functions, are introduced and the method
expands on earlier effective activation function research [26]. Common activa-
tion functions can be categorized into families using fractional calculus, which
enables the creation of sets using a fractional derivative with a new parameter
α denoting the derivative order[27]. The fractional adaption in step and multi-
quadratic functions make it possible to select one and generate the other by
calculating its fractional derivative. Expanding on this idea, a thorough expla-
nation of the three primary activation function families in this way is given[6]. A
new definition of the fractional derivative is proposed and considered a natural
extension of the conventional derivative and satisfies the arithmetic properties of
the classical derivative and also aligns with the well-known fractional derivatives
of polynomials [14].

An improved conformable fractional derivative is presented and a sort of
historical memory parameter is added to the formulation of this improved con-
formable fractional derivative, which is also local by definition [7]. The con-
tribution to physics and its physical interpretations validate the conformable
fractional derivative [24,1,22].
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A family of fractional activation functions using improved fractional deriva-
tive and its impact with different α ∈ (0, 1] is represented on some datasets
[15]. By using the ideal conformable fractional derivative to create fractional
activation functions, this work expands on the earlier approach. This method’s
ability to guarantee that the fractional activation function acts similarly to the
conventional activation function when α = 1. This approach helps to compare
α ∈ (0, 1] in a single framework. In the experiments it will also make sure that
it can handle positive and negative inputs, which is required by the derivative’s
definition and hasn’t been covered in earlier research, underscoring the novelty
of this work.

The Highlights of the proposed work are given below:

1. A custom transfer learning model for classification of silicosis dataset has
been given.

2. Analysis of effect of fractional values on the computation of learning paradigm
of Neural Network.

3. The fractional activation definition is enhanced from other studies as it gen-
eralizes with standard one.

The structure of the article is as follows: section 2 provides mathematical prelimi-
naries about conformable fractional derivative and their fundamental properties.
Fractional activation functions viz. fractional sigmoid and fractional relu function
with the effect of variable α ∈ (0, 1] is presented in section 3. The experimental
work with these proposed functions on wine and silicosis datasets is shown in
section 4. Finally, the conclusion is given in section 5.

2 Conformable Fractional Derivative:

In 2014, Khalil et al.[18] introduced the conformable fractional derivative, a type
of local fractional derivative that retains many properties of classical derivatives.
This formulation not only exhibits greater similarity to classical derivatives but
also preserves the same arithmetic operations and other properties like Rolle’s
theorem and Mean value theorem providing a more consistent extension to frac-
tional calculus.

Definition 1 : The “conformable fractional derivative” of order α of function
Given a function f : [0,∞) → R. is defined by

Dα(f)(t) = lim
ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ
(1)

for all t > 0, α ∈ (0, 1]. If f is α-differentiable in some (0, a), a > 0, and

lim
t→0+

fα(t) exists, then define fα(0) = lim
t→0+

fα(t).

here fα(t) = Dαf(t)
Here are theorems related to conformable fractional derivatives, which provide
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a foundation for the generalization and formal establishment of this derivative
concept [28].
Theorem 1 Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0. Then

1. Dα(af + bg) = aDα(f) + bDα(g), for all a, b ∈ R.
2. Dα(tp) = ptp−α for all p ∈ R.
3. Dα(λ) = 0, for all constant functions f(t) = λ.
4. Dα(fg) = f(t)Dα(g) + g(t)Dα(f).

5. Dα
(

f
g

)
= g(t)Dα(f)−f(t)Dα(g)

g2 .

6. If, in addition, f is differentiable, then Dα(f)(t) = t1−α df(t)
dt .

Theorem 2 If a function f : [0,∞) → R is α-differentiable at t0 > 0, where
α ∈ (0, 1], then f is continuous at t0.

3 Methodological Description for Fractional Activation

Fractional activation functions generalize conventional activation functions by in-
troducing fractional exponents in the exponential term. This section presents the
mathematical formulation of these functions and analyze their behavior across
various fractional α ∈ (0, 1]. To integrate conformable fractional derivatives into
the activation functions of neural networks, a fractional generalization of the
exponential term is employed which offers an additional degree of freedom that
enhances the adaptability of the activation function during network training.

3.1 Fractional Sigmoid Function

The standard sigmoid function is given by σ(x) = 1
1+e−x . The fractional effect is

introduced by incorporating the fractional exponent term with Dαe−x in place
of e−x. The fractional exponent term increases generalization, adaptability, and
memory efficiency in the activation function.

Therefore, the fractional sigmoid function is defined as

Fα
sig(x) =

1

1 +Dαe−x
=

1

1− e−xx1−α
(2)

To guarantee the generalization with α = 1 and, to avoid the undefined input
for layers the fractional sigmoid activation is modified as in Eq. (3):

Fα
sig(x) =

1

1 + e−x|x|1−α
(3)

Now, it is well-defined for all x and for α ∈ (0, 1]. And for α = 1 it converges to
the standard sigmoid function.

Derivative of Fα
sig(x) to be used in backpropogation is defined in Eq. (4) :

DαFα
sig(x) = Fα

sig(x)(1− Fα
sig(x)) (4)
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The above derivative is well-defined and retains the properties of the original sig-
moid derivative, this approach eliminates the complexity introduced by |x|1−αin
the derivative computation. Additionally, this derivative enhances stability dur-
ing backpropagation and provides a gradient that facilitates learning while lever-
aging the benefits of fractional calculus.

Fig. 1. Fractional sigmoid function and its derivative geometrical shape for α ∈ (0, 1]

The geometrical representation of Fα
sig(x) and its derivative is shown in Fig-

ure 1. For each value of α the curve is different and the curvature of the curve
varies for different α values. In the conventional case, as the sigmoid function
approaches its extreme values (0 or 1), its gradient vanishes. This problem is
mitigated by introducing the fractional term in sigmoid function. By doing so,
because of different fractional values of α function reaches to saturation slowly
as compared to the standard sigmoid function and as a result the gradient does
not vanish easily[5]. As seen in Figure 1, the higher values of α near 1 pro-
vide a smoother transition as compared to its lower values, which have sharper
slopes around 0, this accelerates the training even when neurons receive smaller
inputs. Steeper gradients accelerate learning by enabling larger updates to the
parameters during backpropagation, reducing the number of iterations required
for convergence. However, excessively steep gradients can lead to instability or
divergence, necessitating careful selection of activation functions and learning
rates [25]. The fractional sigmoid allows fine-tuning of gradient behavior, mak-
ing it beneficial for deep networks where standard sigmoid suffers from satu-
ration using parameter α. The Fα

sig(x) allows the variable order alpha to have
more adaptability as α near 0 ( 0.1 − 0.3) can accelerate the training due to
its steep gradients and whenever the training is unstable getting large updates
(α = 0.8−1.0) can smoothen the gradients while other α values (0.4-0.7) provides
moderate gradients generally.

3.2 Fractional relu Activation

The relu activation is very popular in the training of neural networks because
of its simplicity and faster computation. It provides nonlinearity in the model
despite having the simplest form among the activations. Since relu does not have
exponential terms, the derivative of relu in backpropagation will be calculated
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as a fractional conformable derivative to introduce the fractional effect in the
training of the network. The standard relu activation function has a constant
gradient for positive inputs, which limits its adaptability in learning [4]. As seen
in Figure 2, the fractional derivative of relu, provides the dynamic gradients
rather than flattening, allowing it to adapt smoothly to both large and small
input values. This enhances gradient flow, improving the network’s ability to
learn more effectively across different scales of input. The different values of α
will provide an additional degree of adaptability and a better generalization to
the neural network. Fractional relu function is symbolically defined in Eq. (5),
which is similar to the standard one for all alpha values. The effect of fractional
parameter α is observed in its derivative given in Eq. (6). The geometrical shape
of this fractional relu and fractional relu derivative is provided in Figure 2.
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Fig. 2. Fractional relu and its conformable fractional derivative and its geometrical
behaviour for α ∈ (0, 1]

Fα
relu(x) =

{
x, x ≥ 0

0, x < 0
(5)

And the conformable fractional derivative of fractional relu is given as:

DαFα
relu =

{
x1−α, x ≥ 0

0, x < 0
(6)

Figure 2 illustrate that derivative of fractional relu has different properties for
different α values. The small α values provide higher slopes for larger inputs.
The large α values near to 1 has flattening curve and slower growing derivative.
This illustrates that, in learning the fine tuning of α can counter the problem of
exploding and vanishing gradient in deep networks, as the term x1−α in Eq.(6)
provides a significant output for both smaller and larger inputs. Thereby making
it a self adaptive activation function. The derivative of the activation has impact
on the gradient flow during training yielding better training results for different
α values in experiments.
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4 Results and Discussion

The proposed fractional activation functions are integrated in feedforfard neu-
ral network and convolutional neural network for experimental analysis. Two
datasets have been used, one is a simple wine quality classification dataset and
the second is the curated real dataset of X-ray images of silicosis disease. The
results were compared through training and testing accuracies achieved for dif-
ferent α values. The details of the data set are given in Table 1.

Dataset Type Classes Samples

Wine Numeric 3 178

Silicosis Image 2 421

Table 1. Details of Datasets

4.1 Experiment with wine Dataset

The wine dataset is a widely used dataset in machine learning, particularly for
classification. It contains 178 samples with 13 features, representing the chem-
ical properties of wines prevailing from three distinct cultivars. The data set is
categorized into three classes, each representing a specific type of wine. Here, the
classification of the wine dataset has been investigated using a neural network
incorporating fractional sigmoid and fractional relu activation functions. The
neural network architecture consists of two hidden layers, each containing 32
neurons, and remains consistent across training with both fractional activation
functions.The learning rate, determined through random search, is set to 0.002,
with 16 batch size, 200 epochs were taken for training, Adam optimizer was used
for weight updation and loss minimization.

4.1.1 Wine classification using fractional sigmoid In this experiment, fractional
sigmoid Fα

sig(x) was applied as activation to train the network. The results of
achieved train and test accuracy are given in Figure 3. Figure 3 illustrates that
for α = 0.3 and α = 0.6, the training accuracy attains highest value. However,
α = 0.3 also yields the highest testing accuracy among all alpha. Both training
and testing accuracies reach 1.0, which can be genuine because dataset is very
small and simple and the proposed model can learn the exact patterns of the data
instead of general patterns. The dataset exhibits a simple structure and is almost
linearly separable, making the results realistic and not an unusual occurrence.
The reason for α = 0.3 can be justified by the behaviour of fractional sigmoid
which shows that, for small α < 1 values, the training is faster because of sharper
gradients. α = 0.1, 0.2 exhibit steep gradients also, but they may lead to unstable
gradients in an early phase. In contrast, α = 0.3 provides a balance, ensuring
both stable training and sufficiently steep gradients.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97557-8_4

https://dx.doi.org/10.1007/978-3-031-97557-8_4
https://dx.doi.org/10.1007/978-3-031-97557-8_4


8 Rinki Sharma and Priyanka Harjule

Fig. 3. Training and testing accuracies achieved for different α values with fractional
sigmoid on wine dataset

For, α = 0.5 results indicates some unusual conduct, with testing accuracy
higher than training accuracy. However, this can be regarded as insignificant by
considering the test dataset’s small size and simple patterns[2]. Notably, α = 0.3
and α = 0.6 outperform α = 1, which shows the standard training approach
with the same parameters. This observation shows that the fractional effect on
activation enhances generalization on unseen data as compared to the standard
activation.

4.1.2 Wine classification using fractional relu In this experiment, the Fractional
relu Fα

relu activation function and its conformable fractional derivative is used
for classification of the wine dataset. All network parameters remain the same as
the previous experiment with fractional sigmoid. The results for α values with
achieved training and testing accuracies provided in Figure 4. For α = 0.2, the
training and testing accuracies both reach 1.0, which is the best result among
all α.

Fig. 4. Training and testing accuracies achieved for different α values with fractional
relu on wine dataset

For α = 0.3, the training accuracy remains 1.0, while the test accuracy is
0.9722, which is closer to the training accuracy. For α = 0.6, the testing accuracy
surpasses the training accuracy, which can be attributed to the small test size [2].
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The training process has been highly effective, ensuring that the test data aligns
well with the network without any errors. Here also, the best result is attained by
α = 0.2 other than α = 1 therefore, it can be concluded that fractional activation
behaves better than the standard activation function. The comparison of results
with recent state of the arts is given in Table 2.

State of The Art Accuracy Method

[3](2024) 0.97 Generic Algorithm

[23](2023) 1.00 Deep Neural Network

[13](2024) 0.99 Fractional order
Differential evolution

[17](2024) 0.98 BP Neural Network

Proposed 1.00 Fractional Activation

Table 2. Comparison of wine data accuracy with recent studies

4.2 Experiment on Silicosis Dataset

Silicosis identification in X-ray pictures is mostly dependent on radiologists’ skill,
which frequently causes delays in diagnosis. Computer-aided identification meth-
ods based on machine learning are being developed as a solution to this problem.
However, the development of highly accurate deep-learning models for silicosis
detection remains challenging due to the limited availability of large databases.
This study proposes a novel approach with a new dataset for silicosis detection
using transfer learning techniques applied to available X-ray radiographs. The
Dataset was curated at Sawai Man Singh hospital Jaipur by a team of radiolo-
gists under the project no.1000114110 funded by the Government of Rajasthan.
The Dataset division has been given below in Table 3. The dataset maintains
a good balance among classes, effectively preventing class dominance. The test
data remains unseen by the model throughout training. Due to limited data
availability, no separate validation set was used. This study leverages transfer
learning model VGG 19 from our previous studies[19] with additional pooling,
flattening, two fractional dense layers. The sample images of silicosis dataset are

Silicosis Dataset Label Count

Train Data
Silicosis 195
Normal 197

Test Data
Silicosis 14
Normal 15

Total - 421

Table 3. Silicosis Dataset Distribution

shown in Figure 5.

The Architecture of the proposed model is given in Figure 6. This study
proposes a custom model specifically for the regional chest X-ray dataset for
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(a) Silicosis lungs (b) Normal lungs

Fig. 5. Silicosis and normal lungs image of Dataset

silicosis classification using fractional sigmoid and fractional relu. The input
function for the output layer can be represented by Eq. 7

Z(X) = Fα(Fα(GAP (V (X)) + bi) + b′i) (7)

Here V (X) is the output of VGG 19 and GAP is global average pooling effect,

Fig. 6. Architecture of model for silicosis classification

bi, b
′
i are bias of dense layers and Fα is fractional activation for nonlinearity.

4.2.1 Silicosis classification using fractional sigmoid In this part the fractional
sigmoid has been used in dense layers of the model to enhance the classification.
The results have been shown in Figure 7. Graph shows achieved training and
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Fig. 7. Training and testing accuracies achieved for different α values with fractional
sigmoid on silicosis dataset

testing accuracy for every α ∈ (0, 1]. Training has been done for 50 epochs. The
learning rate has been selected by random search to be 0.01, batch size is 16,
dropout = 0.2 and Adam optimizer is used for weight update. Hyperparameter
values were determined through a random search strategy applied to the model.
As seen in Figure 7, α = 0.3, 0.4, 0.5 shows best performance with α = 0.3 giving
the highest training accuracy so this can be considered the best α among others
for this experiment, and the best test accuracy is achieved at α = 0.3 which is
0.8276. It is observed that as α is approaching the value 1, performance of the
model is decreasing. To show the model generalization performance on unseen
test data the receiver operating characteristic (ROC) curve is given in Figure
9a in which the area under the curve (AUC) is 0.83. The AUC of 0.83 indicates
that the model performs well, assigning a higher probability to a positive sample
than a negative sample in 83 out of 100 cases. Also it is better than the random
guessing which has 50% AUC. The model is showing good performance as it
achieves high true positive rate by maintaining a low false positive rate.

4.2.2 Silicosis classification using fractional relu In this section, the fractional
relu activation is involved in the custom model for silicosis identification. The
model parameters remain consistent as the previous experiments i.e. learning
rate of 0.01, batch size of 16, dropout of 0.2, and epochs set to 50. Figure 8
illustrates the training and testing accuracy achieved with fractional relu among
different α ∈ (0, 1]. The findings indicate that the best test accuracy of 0.7931 is
attained with α = 0.3 and 0.4, that is less than that achieved using the fractional
sigmoid activation function. This outcome can be predicted because fractional
sigmoid introduces fractional effects in both the function and its derivative, which
provides fractional adaptability in forward pass as well as backward pass whereas
the fractional relu has fractional value only in the derivative which has effect only
in the backward pass. Additionally, fractional relu activation also has the issue
of dying neurons for negative inputs like standard relu, which could explain why
the performance is slightly lower compared to the fractional sigmoid for this
silicosis dataset.
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Fig. 8. Training and testing accuracy achieved for different α values with fractional relu
on silicosis Dataset

(a) Roc curve using fractional sigmoid (b) Roc curve using fractional Relu

Fig. 9. Roc curves for silicosis classification using fractional activations

The receiver operating characteristic (ROC) curve has been shown in Figure
9b with area under the curve value equals 0.79. This indicated that the the
proposed model is performing better than the random guessing. The proposed
model with fractional relu has classified the data by providing a high probability
to a positive sample than a negative sample 79 cases out of 100. The performance
of both activations with different performance metric is given in Table 4.

Activation Accuracy precision sensitivity F1-score

Fα
relu 0.7931 0.80 0.79 0.79

Fα
Sig 0.8276 0.84 0.83 0.83

Table 4. Evaluation of performance metrics for Fα
relu and Fα

Sig activation functions

5 Conclusion

This study introduces a generalized fractional variant of two widely used ac-
tivation functions, sigmoid and relu. The fractional activation function adds
another degree of freedom α to improve generalization capabilities. A promising
approach is proposed to objectively improve training performance by providing
the capacity to fine-tune α. Using the suitable α, the issue of vanishing and
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exploding gradients can be mitigated, leading to a more flexible training pro-
cess. The fractional sigmoid is less prone to the saturation problem, preventing
vanishing gradients, while the fractional relu avoids flattening gradients and ef-
fectively adapts to inputs due to the varying α values. Additionally, this study
experiments on a newly approved silicosis dataset to evaluate the effectiveness of
the proposed approach. The empirical results for the silicosis and wine dataset
using this approach demonstrate superior performance compared to the state of
the art. For the silicosis dataset specifically, the fractional sigmoid outperforms
the fractional relu. This may be due to the absence of the fractional α in the
forward pass, as well as the inherent issue of dying neurons in relu, which can
affect the training process for this data. Future research will focus on develop-
ing optimization algorithms for α and further improving silicosis classification,
which could surely benefit patients in local communities. Also, a dynamic model
that adapts the α as needed for slow or fast training can be made using different
α values during training.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

Data Availability The code and data will be provided as per the individual’s request.
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