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Abstract. Hyperthermia is a minimally invasive auxiliary cancer treat-
ment that induces tumor damage and cell death by elevating tissue
temperatures. The Arrhenius model is commonly used to evaluate ther-
mal damage in biological tissues. However, variability in key Arrhenius
parameters, such as frequency factor (A) and activation energy (Ea),
can compromise the therapy planning. This study quantifies how these
uncertain inputs might affect the simulation results. So, we consider a
three-dimensional breast tissue model governed by Pennes’ bioheat equa-
tion, considering different values of A and Ea found in the literature.
Moreover, this study performs the uncertainty quantification analysis
via Monte Carlo simulations using a GPU-accelerated implementation.
Our results show that uncertainty in A contributes minimally to the
damage integral ΩA. In contrast, variability in Ea broadens the 95%
confidence interval for the critical threshold (ΩA ≥ 4), extending the
required treatment time from approximately 15 to 35 minutes. These re-
marks highlight the necessity of precise Ea estimation to ensure reliable
hyperthermia protocols.

Keywords: Hyperthermia · Cancer · Bioheat · Uncertainty Quantifica-
tion · High Performance Computing

1 Introduction

Cancer refers to a diverse group of diseases that can originate in almost any tissue
or organ in the human body. According to the World Health Organization [33],
it is a major global health issue, responsible for almost 10 million deaths in 2020.
The most frequently diagnosed cancers in 2020 were breast (2.26 million cases),
lung (2.21 million cases), colorectal (1.93 million cases), prostate (1.41 million
cases), skin (non-melanoma, 1.20 million cases), and stomach (1.09 million cases).
Meanwhile, the cancers causing the highest number of deaths were the lung
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(1.80 million deaths), colorectal (916,000 deaths), liver (830,000 deaths), stomach
(769,000 deaths), and breast (685,000 deaths) [33]. Figure 1A shows that, in
women, breast cancer is the leading cause in several countries. Furthermore, in
Brazil, the breast cancer death rate in women is increasing in contrast with
developed countries such as Germany, France, the USA, and Canada, as shown
in Fig. 1B [4].
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Fig. 1. A Leading cancer types causing death in women in 2022; and B Breast cancer
death rate in women. Adapted from Our World in Data [4]

Effective cancer treatment requires accurate diagnosis and tailored thera-
pies. Common approaches include surgery, radiotherapy, and systemic treat-
ments such as chemotherapy and targeted therapies [19].

Hyperthermia, explored since the 1950s [6], is a promising non-invasive cancer
treatment that eliminates tumor cells by raising tissue temperatures to induce
necrosis [15]. It is often used to complement chemotherapy and radiotherapy,
especially in treating liver [14] and breast tumors [11].

One strategy for hyperthermia involves using a magnetic nanoparticles fer-
rofluid. These nanoparticles generate heat when submitted to an alternating
magnetic via Néelian and Brownian relaxation mechanisms [16,17,26].

Despite being explored for decades [6], hyperthermia remains in the early
stages of development, leaving numerous questions open for investigation. Math-
ematical models and computational simulations provide valuable tools for study-
ing and optimizing this treatment. Several models have been formulated to an-
alyze heat transfer in biological tissues [13, 20, 25]. In this study, we employ a
bioheat model proposed by Pennes [23]. Although this model was proposed in
1948, several studies use this bioheat approach because it offers a reasonable
approximation with a low computational cost [1, 5, 20]. Since models like the
Pennes bioheat equation rely on partial differential equations (PDEs), numer-
ical methods are required for their solution. Here, we employ a Forward Time
Centered Space (FTCS) scheme to compute the numerical solution, considering
a heterogeneous medium.

The Arrhenius model is fundamental in evaluating thermal damage in bi-
ological tissues during hyperthermia treatments for cancer [3, 30]. It describes
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the relationship between temperature and reaction rates, explaining biochemical
and structural alterations caused by heat. Key parameters, such as the frequency
factor (A) and activation energy (Ea), govern tissue sensitivity to temperature
changes. The frequency factor reflects the likelihood of molecular interactions,
while activation energy represents the threshold energy required for transforma-
tions. These experimentally determined parameters quantify cumulative thermal
damage, expressed as thermal dose, which helps maximize tumor cell destruction
while minimizing harm to healthy tissues. Integrating bioheat models with com-
putational simulations of cellular responses enhances the precision and safety of
hyperthermia protocols, optimizing treatment outcomes.

The stochastic nature of Ea and A reflects biochemical variability across tu-
mor types, stages, and patient-specific factors [10]. To assess the reliability of
thermal damage models, we employ uncertainty quantification (UQ), focusing
on Ea and A in the Arrhenius equation. Specifically, we investigate how varia-
tions in these parameters — shaped by tissue composition, tumor heterogeneity,
and experimental conditions [12,34] — affect predictions of cumulative thermal
damage. In this context, the Monte Carlo method is used for uncertainty analy-
sis in hyperthermia cancer treatment within both simulation and experimental
contexts [2, 29], and it is also employed for sensitivity analysis in the Arrhenius
model [18]. So, we employ Monte Carlo (MC) simulations to quantify the un-
certainty of the results, considering Ea and A as random variables defined by
probability density functions (PDFs) using values found in the literature. In-
corporating these uncertainties allows for a more robust prediction framework,
which offers insights into the reliability and range of the results of hyperthermia
treatment. So, to the best of our knowledge, no previous studies have analyzed
how these uncertain inputs might affect the Arrhenius model approach for ther-
mal damage and how it might compromise simulations of hyperthermia for cancer
treatment.

Solving PDEs in three-dimensional domains with UQ introduces significant
computational challenges. This work uses CUDA to speed up the computational
time required to solve the PDE model. This strategy enables efficient computa-
tion, significantly reducing the time required to obtain solutions while maintain-
ing scalability and reliability.

We organise this paper as follows. Section 2 describes the bioheat model,
numerical approximation and the uncertainty quantification. The results are
presented in section 3 and discussed in section 4. Finally, section 5 presents the
conclusions and plans for future work.

2 Methods

2.1 Mathematical Model

The heat transfer within living tissues can be described using the Pennes bioheat
equation, expressed as:

ρc
∂T

∂t
= ∇ · k∇T + ωbρbcb(Ta − T ) +Qm +Qr, (1)
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where T represents the tissue temperature, and Ta corresponds to the blood core
temperature. The parameters ρ, c, and k denote the density, specific heat, and
thermal conductivity, respectively. Similarly, ρb, cb, and ωb represent the blood’s
density, specific heat, and perfusion rate, respectively. Lastly, Qm accounts for
the generation of metabolic heat, while Qr represents the heat produced by
magnetic nanoparticles.

Heat generation from magnetic nanoparticles can be modeled using data
from an in vivo experiment on rat hind limbs [28], which provides a method
for estimating the specific absorption rate (SAR) near the injection site, based
on the properties of a ferromagnetic fluid with 0.1, 0.2 or 0.3 cc injected. Heat

generation is expressed as Qr(x) =
∑N

i=1 Aie
−r2i /r

2
0,i , where N denotes the num-

ber of nanoparticle injections, Ai is the maximum heat generation rate for the
i-th injection, ri is the distance from the i-th injection point, and r0,i is the
hyperthermia coverage radius for the i-th injection.

Finally, the well-posed problem, including appropriate boundary and initial
conditions, is formulated as follows:


ρc

∂T

∂t
= ∇ · k∇T + ωbρbcb(Ta − T ) +Qm +Qr in Ω× I,

k∇T · n = 0 in ∂Ω× I,

T (·, 0) = 37, 0 in Ω,

(2)

where Ω ⊂ R3 represents the spatial domain, I ⊂ R+ denotes the time domain,
and T : Ω× I → R+ is the tissue temperature field.

2.2 Numerical Scheme

The finite difference method (FDM) is applied to solve Eq. (2), making it a
suitable approach for addressing this bioheat transfer problem. The heteroge-
neous medium is defined within a closed domain Ω, which is discretized into a
uniform grid of points {(xi); i = 0, 1, . . . , Nx}, where Nx represents the number
of intervals in the spatial dimension x, with a spacing of h. This discretization
process is extended to other spatial dimensions. Similarly, the time domain I
is divided into Nt intervals of equal size ht, resulting in a time grid denoted as
SI = {(tn);n = 0, 1, . . . , Nt}. The governing equation is then discretized using a
Forward Time Centered Space (FTCS) scheme.

The explicit FDM formulation is expressed as:

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_31

https://dx.doi.org/10.1007/978-3-031-97554-7_31
https://dx.doi.org/10.1007/978-3-031-97554-7_31


UQ of Thermal Damage in Hyperthermia ... 5

Tn+1
x,y,z =

ht

ρc

[
kx+1/2,y,z(T

n
x+1,y,z − Tn

x,y,z)− kx−1/2,y,z(T
n
x,y,z − Tn

x−1,y,z)

h2
+

kx,y+1/2,z(T
n
x,y+1,z − Tn

x,y,z)− kx,y−1/2,z(T
n
x,y,z − Tn

x,y−1,z)

h2
+

kx,y,z+1/2(T
n
x,y,z+1 − Tn

x,y,z)− kx,y,z−1/2(T
n
x,y,z − Tn

x,y,z−1)

h2
+

ρbcbωb(Ta − Tn
x,y,z) +Qm +Qr

]
+ Tn

x,y,z,

(3)

where this scheme has linear convergence, O(ht), in time and quadratic conver-
gence, O(h2), in space.

In the FDM framework, the thermal conductivity k varies across the domain
Ω, making its evaluation at cell interfaces, such as ki+1/2,j,k, crucial for accurate
heat flux calculations, especially in heterogeneous media with abrupt changes
in thermal properties. To address this, the harmonic mean is employed to com-
pute the thermal conductivity at cell interfaces, ensuring flux continuity and
capturing correct heat transfer behavior in piecewise homogeneous media. For
the x-axis, this is expressed as ki+1/2,j,k ≈ 2ki,j,kki+1,j,k/(ki,j,k + ki+1,j,k), with
the same approach applied for all other midpoints in the computational domain.
Additionally, the stability condition outlined in our previous work [25] is used
to determine the time step ht.

2.3 Thermal Damage

To assess the extent of thermal damage in both tumor and healthy regions,
the Arrhenius model, expressed in Eq. 4, is applied. This model integrates the
local temperature history to estimate tissue viability, considering the biochemical
reactions triggered by heat exposure. The damage integral quantifies the fraction
of cells affected, dependent on both exposure time and temperature intensity:

ΩA(x, y, z, t) = ln

(
C(0)

C(t)

)
=

∫ t

0

Ae
−Ea

RuT (x,y,z,τ) dτ. (4)

In this equation, A is the frequency factor, indicating the probability of
molecular collisions that lead to irreversible damage. The activation energy Ea

represents the minimum energy required to initiate the damage process. The
universal gas constant Ru establishes a relationship between energy and tem-
perature. The temperature T (x, y, z, τ) defines the absolute tissue temperature
at a specific location over time, while τ corresponds to the duration of exposure.
The concentrations C(0) and C(t) denote the initial and remaining viable cell
populations, respectively, allowing an estimation of the progression of thermal
damage.
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The computed damage parameter ΩA provides a measure of cumulative tissue
injury, where higher values indicate significant and irreversible cell loss. An Ar-
rhenius damage parameter of 1.0 correlates with approximately 63.2% cell death,
whereas a value of 4 suggests nearly 98.2% cell death [9]. Studies indicate that
values exceeding 10 lack physical significance [22], and a range of 4 ≤ ΩA ≤ 10
is commonly accepted as a criterion for complete tumor ablation [24].

2.4 Uncertainty Quantification

Uncertainty Quantification (UQ) [31] is a critical tool for assessing the sensitivity
and reliability of computational models. By incorporating uncertainties in input
parameters, UQ evaluates their impact on model outputs, thereby enhancing the
credibility of predictions and supporting informed decision-making in complex
systems. This approach systematically elucidates how input variability influences
simulation results, ultimately improving model reliability.

Among UQ techniques, the Monte Carlo (MC) method is widely employed to
address complex problems involving parameter interactions [31]. By using ran-
dom sampling based on probability density functions (PDFs), MC simulations
systematically explore the system’s response under varying inputs. This method
captures a broad range of scenarios and provides insights into central tenden-
cies, variability, and the likelihood of specific outcomes. In this work, the MC
method is applied to quantify uncertainties arising from inaccuracies in injection
positioning during hyperthermia-based treatments for non-specific cancers.

Additionally, the MC method is used to quantify uncertainties associated
with the two empirical parameters in the Arrhenius model. Experimental ob-
servations reveal a mutual correlation between the frequency factor A and the
activation energy Ea, as expressed by Eq. (5) and Eq. (6) [7, 8]:

Ea ≈ 2.63× 103ln(A) + 2.46× 104, (5)

ln(A) = 3.832× 10−4Ea − 10.042. (6)

Extensive research has documented a wide range for these parameters, with
the frequency factor A spanning from Amin = 7.39 × 1039 to Amax = 3.10 ×
1098, and the activation energy Ea ranging from Eamin

= 2.577× 105 J/mol to
Eamax

= 6.030× 105 J/mol [21,32]. These variations underscore the complexity
of accurately modeling thermal damage in biological tissues and highlight the
importance of selecting parameter values that reflect experimental conditions
and tissue properties.

To evaluate the impact of the empirically observed variability in Ea and A,
we perform hyperthermia treatment simulations by sampling values within their
respective ranges. The activation energy Ea is sampled from a defined PDF, en-
suring a comprehensive exploration of its variability. The empirical correlation
between Ea and A is then used to determine the corresponding values of A.
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This method systematically assesses the uncertainties in these critical parame-
ters, thereby providing a more robust understanding of treatment reliability and
safety. The parameters are obtained via Eq. 7:{

Eau
= W ∼ U(Eamin

, Eamax
),

A = e3.832×10−4Ea−10.042,
(7)

and alternatively, the process can be performed in reverse using Eq. 8:{
Au = W ∼ U(Amin, Amax),

Ea = 2.63× 103 ln(Au) + 2.46× 104.
(8)

Here, W ∼ U(Eamin , Eamax) denotes a uniform distribution between Eamin

and Eamax , while W ∼ U(Amin, Amax) represents a uniform distribution be-
tween Amin and Amax. These unbiased sampling strategies facilitate a thorough
analysis of how parameter-driven variations affect treatment outcomes.

3 Numerical Results

3.1 Computational Environment

The numerical solver was implemented in CUDA and compiled using nvcc ver-
sion 12.6 with the -O3 optimization flag, as described in Section 2.2. Moreover,
the Monte Carlo (MC) algorithm described in Section 2.4 was implemented in
the C programming language.

All computational experiments were performed on a system equipped with
a 3.67 GHz AMD® EPYCTM 7713 CPU running Linux kernel version 4.18.0-
477.15.1.el8 8.x86 64. The CPU features 128 physical cores. For CUDA acceler-
ation, an NVIDIA A100 GPU based on the Ampere architecture was utilized,
which provides 8,192 CUDA cores and 80 GB of HBM2e memory.

3.2 Simulation Scenario

This study examines the impact of the frequency factor (A) and the activation
energy (Ea) on the calculation of the damage parameter ΩA, which quantifies
tissue damage induced by the hyperthermia process. The results are presented
as the 95% confidence interval and the mean temperature after 50 minutes of
hyperthermia therapy. A total of 1, 000 Monte Carlo samples were used to quan-
tify the uncertainty in each parameter. For nanoparticle injections, a ferrofluid
volume of 0.3 cc was considered, with a gel concentration of 0.5% and an infusion
flow rate of 3µL/min.

The parameters for solving the Pennes bioheat equation are provided in Ta-
bles 1 and 2, with values adopted from the literature. The computational domain
is modeled as a semi-sphere with a radius of 0.07 m, divided into seven concentric
tissue layers of varying thicknesses. The outermost layer represents the epidermis
(0.0001m thick), followed by the papillary dermis (0.0007m) and the reticular
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dermis (0.0008m). Next is the fat layer (0.005m thick), followed by glandular tis-
sue (0.0434m), and finally muscle, which has a thickness of 0.015m. The tumor
is modeled as a sphere located at T (0.065, 0.065, 0.050) with a radius of 0.005m
(see Figure 2). The spatial domain is uniformly discretized with Nx = Ny = 256
grid points in the x and y directions and Nz = 128 grid points in the z direction,
while the time discretization is set to ht = 0.1.

Two scenarios were considered to assess the significance of A and Ea in the
evaluation of ΩA. In the first scenario, A was randomly selected from the range
reported in the literature using uniform distribution , and Ea was then computed
using the corresponding empirical equation (Eq. (8)). In the second scenario, Ea

was sampled from a uniform distribution based on scientific literature, and A
was subsequently determined using the same empirical relationship (Eq. (7)).

Table 1. Parameter values used to solve Eq. (2) for the tissues. All parameter values
were adapted from the literature [3].

Tissue
Thickness k ρ c Qm wb

(mm) (W/m◦C) (Kg/m3) (J/Kg◦C) (W/m3) (s−1)

Epidermis 0.1 0.235 1200.0 3589.0 0.0 0.0002
Papillary Dermis 0.7 0.445 1200.0 3300.0 368.1 0.0013
Reticular Dermis 0.8 0.445 1200.0 3300.0 368.1 0.0013
Fat 5.0 0.210 930.0 2770.0 400.0 0.0013
Gland 43.4 0.480 1050.0 3770.0 700.0 0.0013
Muscle 15.0 0.480 1100.0 3800.0 700.0 0.0013
Tumor 10.0 0.480 1050.0 3852.0 5000.0 0.0013

Table 2. Parameter values used to solve SAR equation. All parameter values were
adapted from the literature [27].

Parameters Values Unit

A 774.47× 103 W/m3

r0 5.09× 10−3 m

3.3 Experiments

The solution of Eq. (2) is shown in Figure 3 and represents the temperature
distribution at the end of the experiment (i.e., at t = 50min).

The analysis of thermal damage via the Arrhenius model is presented in Fig-
ures 4 and 5. Figures 4 show the scenario in which the uncertainty is characterized
by A (using Eq. (8)), while Figures 5 correspond to the scenario where Ea is
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Fig. 2. Schematic representation of the computational domain for the hyperthermia
simulation. The domain is modeled as a semi-sphere with a 0.07m radius, subdi-
vided into seven concentric tissue layers representing the epidermis (0.0001m), pap-
illary dermis (0.0007m), reticular dermis (0.0008m), fat (0.005m), glandular tissue
(0.0434m), and muscle (0.015m). A spherical tumor (radius 0.005m) is positioned at
T (0.065, 0.065, 0.050). The spatial grid is uniformly discretized with Nx = Ny = 256
and Nz = 128 points.

Fig. 3. Temperature distribution computed from the bioheat equation (Eq. (2)) at
t = 50min. The solid green line delineates the tumor boundary.

treated as the uncertain parameter (using Eq. (7)). For both scenarios, the mean
and 95% confidence intervals of ΩA were evaluated at 5 minutes (Figures 4A and
5A), 10 minutes (Figures 4B and 5B), and at the end of the treatment (50 min-
utes; Figures 4C and 5C). In each figure, the left panel displays a cross-sectional
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view along the xy-plane with ΩA values scaled between 0 and 10, while the right
panel provides a zoomed-in view of the tumor area.

In the scenario where A is the uncertain parameter, after 5 minutes of hy-
perthermia treatment, the region where ΩA ≥ 4 is confined to the center of
the tumor (see Figure 4A). As the treatment progresses beyond 10 minutes (see
Figure 4B), this threshold region expands, approaching the tumor boundary. Fi-
nally, after 50 minutes (see Figure 4C), the tumor exhibits ΩA values exceeding
10, indicating significant tissue damage.

In the second scenario, the progression of ΩA toward the target value is
slower. As shown in Figure 5A, after 5 minutes of simulation, only the upper
bound of the 95% confidence interval exhibits ΩA values exceeding 4, while
both the mean and the lower bound remain below this threshold, indicating
minimal damage. In Figure 5B, the mean ΩA value across 1,000 MC experiments
reaches the target value, with the upper bound extending nearly to the tumor
edge; however, the lower bound still falls below the threshold. Finally, Figure 5C
demonstrates that at the end of the hyperthermia treatment (50 minutes), ΩA

reaches 10 or higher throughout the tumor region, signifying substantial tissue
damage.

To further assess the impact of inaccuracies caused by variations in A and
Ea, the mean temperature in both healthy and tumor tissues was evaluated
every 5 minutes during the simulated treatment, as illustrated in Figures 6A
and 6B. The results indicated that the minimum mean ΩA in the tumor tissue
exceeds 4, confirming that the entire tumor experiences significant damage, while
the healthy tissue remains largely unaffected. Notably, Figure 6A shows that
variations in A yield only minor differences, with a slight deviation observed at
the 10-minute mark. In contrast, Figure 6B revels more pronounced variability
during the first 30 minutes, with the damage region eventually converging such
that 100% of the tumor tissue reaches the target ΩA threshold.

4 Discussion

This work aimed to analyze how the Arrhenius model for thermal damage quan-
tification responds to different parameter values reported in the literature. In our
simulations, the damage parameter ΩA reached the critical threshold (ΩA ≥ 4)
in the tumor region, indicating effective tissue damage, while healthy tissue ex-
perienced minimal side effects.

The numerical results revealed several important observations. First, even
though the frequency factor A spans a vast range — from 1039 to 1098 — the
outputs in Figure 4 show that both the mean values and the confidence inter-
vals remain very close, even upon close inspection. This is further reinforced by
Figure 6, which indicates almost no uncertainty in the outputs over time when
A is treated as the uncertain parameter.

In contrast, variability in the activation energy Ea significantly impacts the
Arrhenius model outputs. As shown in Figure 5, after 5 minutes the lower bound
(2.5th percentile) and the mean ΩA values are not visible because ΩA remains
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C

B

A

Fig. 4. Simulation results for the scenario with uncertainty in the frequency factor
A. In all panels, the solid green line marks the tumor boundary, the solid white line
delineates the upper and lower limits of the 95% confidence interval for ΩA values at
the threshold of 4, and the solid black line indicates the mean ΩA values exceeding 4.
Panels A, B, and C show the ΩA distribution in the computational mesh after 5, 10,
and 50 minutes of hyperthermia treatment, respectively.

below 4 across the domain. However, as the treatment progresses, ΩA begins to
increase, and the mean value becomes apparent in Figure 6 as ΩA exceeds 4.
Ultimately, Figure 6 demonstrates that all metrics reach ΩA ≥ 10 in the tumor
area. Although there is considerable variability, the results consistently indicate
that sufficient damage is inflicted on the cancerous tissue.
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C

B

A

Fig. 5. Simulation scenario considering the uncertainty in the activation energy (Ea).
In all panels, the solid green line represents the tumor boundary, the solid white line
delineates the upper and lower bounds of the 95% confidence interval for ΩA values
reaching 4, and the solid black line indicates the mean ΩA values exceeding 4.

5 Conclusions and Future Works

This work demonstrates the impact of variations in the frequency factor (A)
and the activation energy (Ea) on the Arrhenius model used to evaluate ther-
mal damage. A three-dimensional breast tissue model was employed to perform
uncertainty quantification via Monte Carlo simulations for hyperthermia cancer
treatment, treating A and Ea as random variables characterized by probability
density functions.
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Fig. 6. Results of the uncertainty quantification caused by variations in A and Ea

for assessing tumor damage during hyperthermia. The solid line represents the mean
percentage of the tumor region where ΩA ≥ 4, while the shaded area indicates the
95% confidence interval based on 1, 000 MC samples. Panel A corresponds to the first
scenario, where Ea is derived from the uncertainty in A. In contrast, Panel B represents
the opposite scenario, where A was calculated from variations in Ea.

Numerical results reveal that variations in the activation energy A have a mi-
nor influence on tissue damage predictions, whereas variations in the activation
energy Ea significantly affect the outcomes. In particular, the wide confidence
intervals observed in the thermal damage outputs indicate that uncertainty in
Ea can result in a rapid rise (approximately 15 minutes) or a slower increase (up
to 35 minutes) to reach the critical damage threshold (ΩA ≥ 4).

In future work, we plan to incorporate Multigrid Monte Carlo (MGMC)
methods to accelerate simulations and improve computational efficiency. Tradi-
tional Monte Carlo methods often suffer from slow convergence and high compu-
tational costs, particularly in high-dimensional problems. In our study, analyz-
ing the influence of A and Ea required approximately 18 hours per simulation.
MGMC addresses these challenges by leveraging a hierarchy of grid levels to
enhance sampling efficiency. Integrating MGMC is expected to reduce compu-
tational time while maintaining accuracy, thereby enabling more complex and
large-scale simulations. Furthermore, we intend to validate the model results
with clinical or experimental data.
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