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Abstract. The increasing accessibility of next-generation sequencing
(NGS) techniques has significantly expanded transcriptomics research.
Consequently this leads to major computational challenges as the amount
of generated data grows. BioSkel is a framework designed to facilitate
the development of bioinformatics workflows for transcriptomics, offering
both flexibility and parallelization for shared-memory and distributed-
memory architectures. BioSkel allows bioinformaticians to tailor data
processing pipelines by integrating custom code while abstracting par-
allelization complexities. This paper presents new experimental results
demonstrating BioSkel applicability to real-world clinical transcriptomic
studies.
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1 Introduction

Through the last decade, cost reductions of new-generation sequencing tech-
niques made nucleic acid-based OMICS experiments more accessible. OMICS
refers to studies that identify and quantify entire families of biomolecules (e.g.,
DNA, RNA, proteins) within biological samples. For example, transcriptomics
focus on the full RNA population produced via transcription from DNA. While
studying entire transcriptomes has enabled new discoveries, it has also signifi-
cantly increased the computational demands of processing the resulting large-
scale datasets.

RNA-seq is a widely used transcriptomic technique for quantifying transcript
(RNA) abundance. To generate meaningful results, large multi-sample datasets
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across different conditions must be pre-processed. This involves finding the posi-
tion of short sequences (i.e reads) in a reference genome using an indexed version
of the sequence to perform a search. This location determines which features (i.e.
genes) are overlapped by the read. A feature counter then tallies how many reads
map to each feature across samples. The resulting counts are used for differential
expression analysis (DA), comparing conditions regrouping different samples.

These pre-processing tools are often connected into a workflow manager, a
high-level language solution such as Nextflow[5] which will handle the execution
and exchange between the different tools and scripts. Workflow managers offer
modularity, scalability, and reproducibility, but they have two main drawbacks:
they often require learning a new language, and most do not support distributed-
memory architectures.

In [4], BioSkel is presented as a framework for developing customizable tran-
scriptomic data preprocessing workflows. It provides flexible programming skele-
tons that let bioinformaticians adjust parameters or integrate custom code tai-
lored to the nature of the data. To handle large datasets, BioSkel also automat-
ically build parallel programs optimized for multicore machines or HPC clusters
without the bioinformatician needing to know the technical details.

This paper presents results from the use BioSkel in a real-world transcrip-
tomic study on the effects of cannabidiol (CBD) in long-term suppressed HIV-1
adults. It demonstrates BioSkel’s customizability, alignment accuracy compara-
ble to state-of-the-art tools, and scalability on distributed architectures.

2 The BioSkel Framework

In transcriptomics, input data consists of files containing RNA sequences, each
file representing a sample (e.g., a patient, a collection date, or a drug treatment).
The biological analysis involves comparing how these samples are expressed
across genes of a reference genome. This analysis requires data pre-processing,
which consists of three computational steps: sequence alignment against a refer-
ence, feature counting, and differential expression analysis across samples. This
pre-processing is computationally expensive due to the large number of RNA
sequences and the high cost of the alignment step.

The BioSkel framework for transcriptomic applications is illustrated Fig. 1.
It follows a predefined workflow consisting of three steps: alignment, feature
counting, and differential expression analysis. The alignment step is implemented
as a programming skeleton. Our approach consists of selecting up to one position
per strand in the reference, from which an exact alignment score is computed
to assess the relevance of these positions. To determine the best positions, the
sequence is divided into small overlapping segments (called seeds) of size n1,
starting from its center, with an overlap of n2. The alignment positions of each
seed are then searched within the reference. This search is optimized using a
state-of-the-art library (AWFM)[2], which is reported to be twice as fast for
short-read searches compared to the seqan3 library [8]. From all these generated
positions, up to three candidates are selected per strand. This selection mainly
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Fig. 1. The predefined workflow of the BioSkel Framework for transcriptomic analysis.

depends on data quality. Our skeleton offers three customizable sections, allowing
users to tailor the selection process to their own needs. The first two sections,H1

and H2, are heuristics. H1 is responsible for assessing the quality of a seed
based on its set of alignment positions. H2 evaluates the quality of the entire
set of positions generated from the seeds. H2 estimates the likelihood of finding
three suitable candidate positions; if the probability is too low, it can trigger
a re-seeding step with optimized n1 and n2 values. The last user-configurable
section is the selection algorithm, which determines up to two candidate positions
used for pairwise comparisons with the reference sequence. Finally, a score is
computed based on the exact alignment of the full sequence against the reference
at the candidate positions. Among the candidates, we retain the position with
the highest score. However, if the best score falls below a predefined threshold
T , the alignment is considered unsuccessful.

The feature counting step is fully implemented in our framework. Success-
ful positions are compared to the set of reference features (genes of interest in
Fig. 1) to increment the corresponding feature counter. Feature counts are then
aggregated for the final differential expression analysis (DA). Bioskel is designed
to process bulk RNA barcoding and sequencing datasets (BRB-seq) [1], a 3-end
only sequencing method which limits the number of splicing sites. Support for
spliced transcripts will be implemented in later version.

DA is a method used to identify genes or transcripts that exhibit significant
differences in expression levels between two or more conditions. This analysis
typically involves statistical testing to determine which genes are upregulated
or downregulated in one condition compared to another. The results provide
insights into biological processes, disease mechanisms, and potential therapeutic
targets. This step can vary significantly depending on the user’s needs. In our
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framework, it must be implemented by the user. BioSkel facilitates the integra-
tion of external codes for this purpose.

To customize the workflow, BioSkel proposes a test mode that runs the com-
putation on a limited number of sequences per file. It also generates logs from
various parts of the aligner to help the user fine-tune parameters and adapt code
components in the BioSkel skeleton. This avoids running unsuitable configura-
tions on the full dataset and saves time.

The BioSkel framework uses FastFlow [1] to execute its predefined workflows
efficiently across both shared- and distributed-memory environments [9]. For full
implementation details, we refer the reader to [4].

3 BioSkel on a clinical study

The transcriptomic dataset used for the experiments is a balanced subset of 18
samples of a BRB-seq dataset. This dataset was produced within the scope of
a randomized, placebo-controlled, clinical trial assessing the effects of a phar-
maceutical grade full-spectrum cannabidiol (CBD) oil at 1 mg/kg twice a day
on various biological pathways (i.e. inflammation, autophagy) and gene expres-
sion in immune cells of long-term suppressed HIV-1 adults. Trial design and
treatment are detailed in [3]. Samples are sorted into three cellular subsets :
monocytes (MC), T4 and T8 lymphocytes (T4 and T8) and two time stamps
: month 0 (M0) and month 3 (M3). Total RNA extraction from blood samples
were sent to a third-party contractor (Alithea Genomics, SA, Épalinges, Switzer-
land) for library preparation and BRB-seq. The sequencing yielded 2,336,488,125
single-end reads (sequences) of 90 nucleotides, for a total of around 630 Go.

The pre-defined BioSkel workflow customization consists in setting the pa-
rameters n1 and n2 for seed size, and T as the alignment score threshold. We
must also give the implementation of the heuristics H1 and H2, along with a
seed selection strategy to define three candidates for alignment. Finally, the DA
step must be provided.

AWFM index parameters were set as recommended by the library authors
[2]. We used n1 = 18 and n2 = 6 (one-third of n1). Scoring parameters were:
match = 0, mismatch = –6, gap open = –5, gap extension = –3, with T =
−60. Heuristic H1 flags each seed based on the number of matching positions:
empty if none, overflowed if above 10,000. Heuristic H2 interprets these flags
and triggers reseeding when necessary. If fewer than 3 seeds are unflagged, or if
most are empty, reseeding occurs with n1− 6 and n2− 4. If most are overflowed,
reseeding uses n1 + 6 to reduce the number of hits. Candidate selection uses
adjacency filtering [10] (see Fig. 2). Among the three seeds with the fewest
matches, the one with the fewest positions is chosen as the anchor, the others
as comparators. Anchor positions are kept if they have close neighbors within
a distance of 200. The anchor with the most neighbors is selected. In case of a
tie, the first position in the list is kept. If the anchor has only one position, it is
used directly. The DA step compares two user-selected samples (columns in the
feature count table). It produces: (1) the raw count table for QC, clustering, and
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accuracy checks; (2) a row-wise ratio between the two columns to help biologists
identify features affected by experimental variables (e.g., time, drug). Further
analyses (e.g., statistical testing, functional enrichment) are left to tools such
as R or Python, as they are study-specific and lightweight computationally, and
thus outside the BioSkel scope.

This customization has been done thanks to the test mode available in
BioSkel.

Fig. 2. Principle of our selection algorithm. Comparison tests yield 2 neighboring po-
sitions for the position 1000, one for 1000 but none for position 2000. The selection
returns 2 candidates : positions 1000 and 1500.

4 Experimental Results

In this section, we assess the performance of BioSkel on a HPC cluster using
our custom workflow on subsets of the dataset described in Section 3. Then the
ability of BioSkel to produce biologically meaningful results in comparison with
data from the contractor and another aligner, Bowtie2 [7], is evaluated.

4.1 Performance evaluation

The experiments were carried out on the LETO cluster hosted by the région
Centre-Val-de-Loire. We used between 1 and 4 nodes of LETO which each have
512GB of memory, two AMD Epyc 7702 CPUs running at 2.0GHz for a total
of 128 physical cores. Nodes are connected through Infiniband. The workflow
and its dependency libraries were compiled with GCC 14.2. All distributed tests
presented in this section were executed using the MTCL[6] library and TCP
transport protocol of the FastFlow library.

We assessed the performance and scalability of our workflow using a hy-
brid execution model that combines shared-memory and distributed-memory
parallelism. Our experiments were conducted on the LETO cluster with varying
numbers of nodes N . The size of our clinical study dataset prevented us from con-
ducting performance tests on the entire dataset using the LETO cluster which is
a shared resource. We performed four classes of experiments, processing subsets
of the dataset containing 1, 2, 4, and 8 files, respectively. The files were chosen
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to have different sizes to test load balancing, while also ensuring sequence diver-
sity, as the alignment complexity highly depends on the data (i.e., the number
of seeds and the number of positions per seed). The files correspond to different
participants, sampling times, and cell types.

Our results demonstrate good scalability across different configurations. How-
ever, we noticed that scalability was more favorable in the 4-file experiment
compared to other cases. It illustrates how workload distribution efficiency is
influenced by dataset characteristics. To address this, the module in charge of
reading the data on disk distributes chunks of each file of the dataset using a
round-robin method. On the full dataset, this approach should ensure a well-
balanced workload distribution.

Fig. 3. Distributed-memory performance evaluation of BioSkel on the LETO cluster.
(A) illustrates the execution times and (B) the scalability traces for each dataset size
according to the number of nodes. Ideal scaling is shown by a grey dashed line. Shown
results are averages of 6 run times per conditions. The total number of processed
sequences are in millions and the cumulative file size in Gigabytes.

4.2 Accuracy monitoring

In [4], we compared the accuracy of a basic version of our aligner against Bowtie2
on synthetic dataset and reached comparable results. Here, we monitored the
accuracy of both solutions against a biological dataset. We used the count tables
(feature counter output), which contain informations on how each feature (i.e.
transcript) is represented in each sample. We performed the same tests using
UMI-deduplicated, pre-processed count tables provided by the contractor.

The accuracy test labeled Bowtie2 was executed by aligning with Bowtie2
version 2.4.4. Alignment results were then mapped to featureCounts version
2.0.3 from the Subread package. Accuracy tests were performed with default
parameters for Bowtie2 and FeaturesCounts except for the -g option, which was
set to select "gene" coordinates. Both aligners used the same parameter limits
of -60 for the scoring. The correlation between samples was computed with R
version 4.4.2. and clusterization was done with the complexHeatmap package.
All solutions were aligned against the homo sapiens hg38 human genome.
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Fig. 4. Evaluation of biological relevance of BioSkel output. Each heatmap shows the
clusterization of inter-sample correlation computed using the count tables from BioSkel,
Bowtie2 or provided by the contractor. The first heatmap was generated with specific
cell-marker counts using BioSkel to control the quality of the dataset. The two others
were realized with the whole count tables with 2 different aligners.

We confirmed the quality of the BRB-seq data by regrouping samples using
clusterization by inter-sample correlation with specific cell marker counts. We
used the following markers for the clusterization : CD3G, CD3D, CD3E, CD8A,
CD8B, PRF1, GZMB, GZMA, CD4, CD14, PTPRC, FCGR3A, FCGR3B, CD16,
NCAM1. We obtained a clean separation between all cell types (monocyte, T4
and T8) indicating good data quality, with all three solutions.Unlike synthetic
data, there is no reliable technique to obtain the absolute solution of a bio-
logical dataset. Therefore, the accuracy of BioSkel was measured with a data-
oriented method. Since cell populations have different global expression profiles
(i.e. count table), clusterization by inter-sample correlation using these profiles
tends to regroup similar cell populations. We applied this clusterization to the
profiles obtained using BioSkel, Bowtie2 or provided by the sequencing company.
As shown in Fig. 4, all three methods produced good clustering with minimal
variation, separating monocytes and lymphocytes (T4 and T8). The small vari-
ations between the results are likely due to differences in the internal design of
the aligners.

5 Conclusion

This paper presents the framework BioSkel and how it can be configured to pro-
cess a real case transcriptomic study. We presented experimental results that
assess both the accuracy of the framework and its scalability. These results
demonstrate the potential of the framework for processing large volumes of data
on distributed-memory architectures. They also show the relevance of BioSkel
to design workflows in the OMICS context.

In the context of this clinical study, we plan to run the Bioskel workflow
on the whole dataset using a national computing center to confirm the results
presented in this article. In addition these experiments will help us to develop
better heuristics and search methods to improve speed without compromising
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accuracy. Looking ahead, we seek to make BioSkel even more flexible by intro-
ducing additional customization points within the pre-defined workflow.
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