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Abstract. This study proposes a deep Convolutional Neural Network
(CNN) for automated recognition and classification of five WBC types
from microscopic images. Various network structures, filter sizes, num-
bers of hidden layers, and different learning algorithms were evaluated to
achieve high accuracy. In this way, 18 network variants, including differ-
ent learning algorithms, were tested. Several of them achieved very high
accuracy in recognizing and scoring 5 types of WBCs. The efficiency of
the proposed models can be used to help medical professionals, offering
potential support in enhancing diagnostic efficiency and blood analysis.
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1 Introduction

The blood system delivers oxygen and nutrients while transporting immune cells,
mainly white blood cells (WBCs), which originate in the hematopoietic system
[7, 12]. WBCs circulate in the blood and lymphatic system, playing key roles in
immune defense, inflammation, allergic responses, and cancer protection. Their
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2 G. Dralus et al.

differentiation helps assess cell proportions, deficiencies, excesses, and atypical
forms [7].

WBCs are classified as granulocytes (neutrophils, eosinophils, basophils) with
segmented nuclei and agranulocytes (lymphocytes, monocytes) with spherical
nuclei [46]. Traditional smear analysis is time-consuming and operator-dependent
[5], while automated systems offer higher accuracy and speed [48]. This study
develops and evaluates CNN-based models for classifying five WBC types.

Several automated leukocyte classification systems exist [45, 6], but their high
cost is due to complex acquisition and classification processes. They rely on
segmentation, feature extraction, and pattern recognition, with segmentation
strongly affecting accuracy [32, 24, 3, 19].

Feature extraction also influences performance [35, 33]. Deep learning, par-
ticularly CNNs, overcomes these limitations and excels in image classification
[39, 10, 20, 26].

For the purpose of image recognition numerous standard structures of these
models known as, for example, Alexnet [21], GoogleNet [37], ResNet [22], YOLO
[17] and many others, as well as designing their own structures for this purpose
are being applied [30, 2]. Many algorithms have been used for leukocyte classifica-
tion, including artificial neural networks (ANN) [25, 36], support vector machine
(SVM) [28], or naive Bayes classifier [27].

High classification performance depends on image processing, segmentation,
and feature selection, especially for shallow models. Some studies focus on nu-
cleus segmentation, others include both nucleus and cytoplasm. Cao et al. [43]
used component filtering for fast nucleus segmentation, while [42] applied satu-
ration analysis with OTSU thresholding.

Na Dong et al. developed an adaptive segmentation method for unevenly lit
blood smears, using CART and PSO-SVM for high-accuracy WBC classification
[8]. Advances in AI, including CNNs, support early disease diagnosis. Luis et
al. applied CNN-based transfer learning with SVM for leukemia detection [38],
while Qin et al. used a deep residual network to classify 40 cell types [29].

A classification system for six types of WBCs, including abnormal cells, us-
ing data augmentation techniques in a deep learning approach with CNNs was
presented [14].

Shahin et al. used CNNs for WBC classification, comparing AlexNet (91.2%
accuracy) and LeNet-5, with their custom CNN achieving 96% accuracy [34].
Khan et al. employed AlexNet-based CNNs with feature selection (FS) and Ex-
treme Learning Machine (ELM), developing MLANET-FS-ELM, which achieved
high accuracy [17]. Wang et al. [41] proposed a CNN-based WBC classification
system without segmentation, treating leukocyte recognition as object detection
using SSD and YOLOv3, identifying 11 WBC categories with high accuracy.
Acevedo et al. [1] trained VGG-16 and InceptionV3 CNNs for classifying eight
blood cell types, including five WBC classes. Their models used transfer learn-
ing with SVM classification or direct fine-tuning on peripheral blood images for
comprehensive classification.
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2 CNNs and Learning Techniques

Convolutional Neural Networks (CNNs) are widely used for image and speech
recognition, effectively handling nonlinear patterns. They mimic human vision
by automatically extracting key features, replacing the need for manual, less
accurate methods [11].

Convolution layers identify object features in an image by applying filters of
specified sizes (e.g., 3×3, 5×5, 7×7) to scan and process pixels. Each surrounding
pixel contributes with a weight, stored in a mask, influencing the new pixel
value. Filters consider neighboring values to enhance feature extraction, with
odd-sized masks ensuring a central reference pixel. The mathematical definition
of convolution filters is given with the below equation (1) [13]:

output[i][j] =
∑

input[a][b] ∗ filter[i−a][j−b], (1)

where:
output – filtered image, input – original image,
filter – convolution kernel applied to the input image,
i and j – rows and columns of the output image,
a and b – rows and columns of the input image.

Formula (2) for calculating the size of the convolution layer:

Wout =
Win − F + 2P

S
+ 1 , Hout =

Hin − F + 2P

S
+ 1, (2)

where:
Win – the height of the image,
Hin – the width of the image,
F – the width and height of the filter,
S – the convolution stride,
P – the padding.

The output size is calculated for each channel separately.
Pooling layers reduce the feature map size by combining neighboring pix-

els, typically using max or average pooling within a square matrix. This makes
representations invariant to small changes, crucial for object recognition, where
location matters less than presence. Average Pooling, applied after convolution
layers, reduces image size while enhancing robustness to scale changes and shifts,
allowing the network to focus on essential features rather than minor details [4].

The Dropout layer randomly deactivates some neurons during training to
prevent overfitting, ensuring that the model does not rely too much on initial
training samples [40].

The Dense layer (fully connected layer) links each neuron to each neuron
in the next layer through individual weights. It transforms data representations,
which is essential for complex tasks like image classification, fashion recognition,
and NLP. Often used as the final layer, it maps the input data to the network
output. The complete connection layer formulas are provided with the equation
(3) below [40, 16]:

yi = ρ(W1x1 + ...+Wmxm). (3)
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The loss function results from the softmax function in the classifier. In the
classification layer, the loss function on the values of the softmax function assigns
each input white blood cell to one of the mutually exclusive classes using the
cross-entropy function for the coding scheme (4) [15]:

J(θ) = − 1

N

N∑
n=1

K∑
i=1

θitni ln (yni) , (4)

where:
N is the number of samples,
K is the number of classes,
θi is the class weight,
tni is an indicator that the nth sample belongs to the ith class,
yni is the output of sample n from class i, which in this case is the value of the
softmax function.

2.1 Optimization Strategies in CNN Training

Gradient descent is a way to minimize the objective function J(θ) of the model
parameters θ ∈ Rd by updating the parameters in the opposite direction of the
gradient of the objective function ∇θJ(θ) due to the parameters. The learning
rate η determines the size of the steps we take to reach a (local) minimum.
The three gradient descent variants differ in data usage for gradient calculation,
balancing update accuracy, and computation time.

The standard Batch Gradient Descent (BGD) calculates the gradient of
the cost function against the θ parameters for the entire training data set (5):

θ = θ − η∇θJ(θ). (5)

Batch gradient descent is slow as it computes gradients for the entire dataset
per update, making it memory-intensive and unsuitable for online updates.
Stochastic Gradient Descent (SGD) calculates the parameter gradient us-
ing only one training example, for example, for a pair of x(i) and y(i) from the
training set expressed with the (6):

θ = θ − η∇θJ(θ;x(i), y(i)), (6)

Adadelta [47] is an extension of Adagrad [44] that aims to reduce its aggres-
sive, monotonically decreasing learning rate. Instead of accumulating all past
quadratic gradients, Adadelta limits the window of accumulated past gradients
to a fixed size w. The moving average E[g2]t at time tthen depends only on the
previous average and the current gradient (7):

E
[
g2
]
t
= γE

[
g2
]
t−1

+ (1− γ)g2t (7)

We set the γ to a similar value as the momentum term, around 0.9. Parameter
vector update formulas ∆θt (8) and (8):

∆θt = −η · gt, (8)
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θt+1 = θt +∆θt (9)

Adadelta’s algorithm in the denominator includes the distribution of averages
in previous quadratic gradients E[g2]t (see: (10)):

∆θt = − η√
E[g2]t + ϵ

· gt. (10)

The RMSProp algorithm [49] also has an adaptive learning rate. It was
developed from the need to solve the radically decreasing learning rates of Ada-
grad. The RMSProp algorithm is, in fact, identical to the first Adadelta update
vector described above (11) and (12):

E[g2]t = 0.9E[g2]t−1 + 0.1g2t , (11)

θt+1 = θt −
η√

E[g2]t + ϵ
· gt. (12)

RMSProp adjusts the learning rate by dividing it by the exponentially decay-
ing mean of squared gradients, with recommended values γ = 0.9 and η = 0.001
[49].

The ADAM (Adaptive Moment Estimation) algorithm [18] computes adap-
tive learning rates by tracking both the average of past gradients and squared
gradients, similar to momentum-based methods. The first and second moment
estimates, mt and vt, are calculated as follows (13):

mt = β1mt−1 + (1− β1)gt , vt = β2mt−1 + (1− β2)g
2
t (13)

Since mt and vt tend to tend toward zero, first and second moment estimates
are calculated to counteract this, and then to update the parameters (14) and
(15):

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(14)

θt+1 = θt −
η√

v̂t + ϵ
· m̂t (15)

The authors suggest default values of 0.9 for β1 , 0.999 for β2 , and 10−8 for
ϵ .

The Adamax algorithm used the possibility of replacing the L2 norm with
the L∞ norm, which generally also shows stable behavior. For this reason, the
Adamax authors propose and show that the vt factor of L∞ converges to a
stable value. To distinguish this algorithm from the Adam, ut is used to denote
vt bounded by the infinity norm (16) [18]:

ut = β∞
2 vt−1 + (1− β∞

2 ) |gt|∞ = max (β2 · vt−1, |gt|) (16)

If we replace the expression
√
v̂t + ϵ with ut we get the Adamax update rule

(17):
θt+1 = θt −

η

ut
· m̂t. (17)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_29

https://dx.doi.org/10.1007/978-3-031-97554-7_29
https://dx.doi.org/10.1007/978-3-031-97554-7_29


6 G. Dralus et al.

It should be added that ut, based on the MAX operation, does not go quickly
to zero is like mt and vt in ADAM. Default values of the algorithm η = 0.002,
β1 = 0.9 and β2 = 0.999. The Nesterov-accelerated Adaptive Moment Estima-
tion (Nadam) [9] extends Adam by incorporating Nesterov momentum, improv-
ing optimization performance. By combining Adam’s equations with Nesterov
momentum and applying simplifications, the final Nadam update rule is derived
with the (18):

θt+1 = θt −
η√

v̂t + ϵ
·
(
β1m̂t +

(1− β1)

1− βt
1

gt

)
(18)

The algorithm has Nesterov momentum, which replaces the bias-corrected
estimate of the momentum vector from the previous time step m̂t−1 with the
error-corrected estimate of the current momentum vector m̂t.

3 Medical aspect of the work

White blood cells, essential to the immune system, are classified as granulocytes
or agranulocytes based on cytoplasmic granules. Neutrophils fight pathogens
[23], eosinophils target parasites, and basophils trigger inflammation. Monocytes
indicate chronic inflammation, while lymphocytes increase during viral infections
(see Fig. 1).

Fig. 1. Cells: Neutrophil (a), Lymphocyte (b).

4 CNN Architectures and Model Variants

Classification accuracy was used as the primary metric, calculated as the ratio
of correctly identified cells to actual cells. Gradient updates were based on error
function results.

A total of 18 models were designed, varying in architecture, hidden layers,
and filter sizes (Tables 1 and 2). Some models share a fixed structure, differing
only in learning algorithms.
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Table 1. Structure of the first 9 CNN Models.
Model

Layers I II III IV V VI VII VIII IX
Conv2 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3
Conv2 - - - 32,3x3 - - - - -
MaxP 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Conv2 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3
MaxP 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Conv2 - 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3 32,3x3
MaxP - 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2
Conv2 - - 32,3x3 32,3x3 - - - - -
MaxP - - 2x2 2x2 - - - - -
Flatten YES YES YES YES YES YES YES YES YES
Dense 32 32 32 32 32 32 32 32 32
Optim. Adadelta Adadelta Adadelta Adadelta Adagrad Adam Adamax Nadam RMSprop

Table 2. Structure of the new 9 CNN Models.
Model

Layers X XI XII XIII XIV XV XIV XVII XVIII
Conv2 32,3x3 16,3x3 64,3x3 128,3x3 32,3x3 32,5x5 32,3x3 32,3x3 32,3x3
Conv2 - - - - - - - - -
MaxP 2x2 2x2 2x2 2x2 2x2 2x2 3x3 2x2 2x2
Conv2 32,3x3 16,3x3 64,3x3 128,3x3 64,3x3 32,5x5 32,3x3 32,3x3 32,3x3
MaxP 2x2 2x2 2x2 2x2 2x2 2x2 3x3 2x2 2x2
Conv2 32,3x3 16,3x3 64,3x3 128,3x3 128,3x3 32,5x5 32,3x3 32,3x3 32,3x3
MaxP 2x2 2x2 2x2 2x2 2x2 2x2 3x3 2x2 2x2
Conv2 - - - - - - - - -
MaxP - - - - - - - - -
Flatten YES YES YES YES YES YES YES YES YES
Dense 32 32 32 32 32 32 32 32 32
Dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - -
Dense 5 5 5 5 5 5 5 5 32
Dense - - - - - - - - 5
Optim. SGD Adadelta Adadelta Adadelta Adadelta Adadelta Adadelta Adadelta Adadelta

4.1 Implementation and Data Preprocessing

The CNN model implementation for training and testing was written in Python,
using TensorFlow, Keras, SciPy, and Scikit-Learn. The WBC classes (basophil,
eosinophil, lymphocyte, monocyte, neutrophil) were assigned numerical labels
[0, 1, 2, 3, 4] for automated recognition and counting.

Images were taken from the LISC database [31] and preprocessed by resizing,
splitting, and rotating each image by 5◦ increments to generate 72 variants.
Manually filtered images with cropped cells were removed to avoid classification
errors.

To speed up training, image sizes were reduced from 720× 576 to 180× 144
pixels. The dataset was split into 13, 000 training images (2, 600 per class) and
3, 250 test images (650 per class).
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4.2 Model evaluation

Model verification involved (1) monitoring error and accuracy during training,
and (2) final evaluation on test data to confirm effectiveness. This process was
also implemented in the application. Precision and Recall measure the ratio of
correctly classified samples to all predicted and actual class samples, respectively
(19):

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(19)

The F1-Score is weighted average of Precision and Recall, and the classi-
fication accuracy is the number of properly recognized cells in relation to the
number of all cells (20) and (21):

F1Score =
2 ∗ precision ∗ recall
precision+ recall

(20)

Accuracy =
TP + TN

TP + FN + TN + FN
100% (21)

5 Model Performance and Accuracy

Table 3 shows the classification accuracy and classification loss for the learning
and testing sets. Depending on the parameter changes applied, different accuracy
and loss values were obtained.

Table 3. Classification Accuracy and Loss of CNN Models.

Learning Testing
Model Acc (%) Loss (%) Acc (%) Loss (%)
I 94.50 0.1630 95.66 0.1296
II 96.56 0.1069 97.20 0.0825
III 97.36 0.0891 98.03 0.0426
IV 97.99 0.0785 97.38 0.0695
V 95.88 0.1243 96.06 0.1116
VI 79.86 0.4846 86.83 0.3214
VII 94.45 0.1283 98.12 0.0659
VIII 19.95 1.609 20.00 1.609
IX 92.89 0.3747 95.91 0.1223
X 79.77 0.5515 83.54 0.4875
XI 94.36 0.1682 96.25 0.1051
XII 96.29 0.1077 86.40 0.5160
XIII 78.81 0.4922 71.20 0.7710
XIV 98.32 0.0791 98.06 0.0522
XV 96.22 0.1696 98.37 0.0487
XVI 93.33 0.2072 97.85 0.0874
XVII 98.43 0.0680 97.48 0.0703
XVIII 99.53 0.0208 98.03 0.0732

Model I consists of two Conv2D and two MaxPooling layers, followed by
Flatten, Dense, and Dropout layers, achieving 94.50% accuracy on training data
and 95.66% on test data.
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Model II, an extended version of Model I with three Conv2D-MaxPooling
pairs, improves accuracy to 96.56% (training) and 97.20% (testing).

Model III includes four Conv2D-MaxPooling pairs, further enhancing accu-
racy to 97.36% (training) and 98.03% (testing), with classification losses below
0.1.

Model IV features five convolutional and four max pooling layers, with
modifications in pooling placement. It achieves 97.99% accuracy on training and
97.35% on test data.

All models I–IV use Adadelta as the optimizer.
Model V shares Model II’s structure but uses Adagrad, resulting in lower

accuracy since Adadelta (Model II) is an improved version of Adagrad. Model
VI (same as Model II) uses Adam, reducing accuracy to 79.86% (training) and
86.83% (testing). Model VII (same as Model II) uses Adamax, improving
classification to 94.45% (training) and 98.12% (testing), outperforming Adam.
Model VIII (same as Model II) uses Nadam, but performs worse than Model
VI (Adam), as Nadam is derived from it. Model IX (same as Model II) uses
RMSprop, achieving 92.89% (training) and 95.91% (testing) accuracy. Model
X (similar to Model II) with SGD results in lower accuracy. Among Models
V–X, Adadelta (Model II) provided the best accuracy, except for Model VII
(Adamax), which performed similarly. Future models will use Adadelta. Model
XI (based on Model II) reduces Conv2D filters from 32 to 16, lowering accu-
racy to 94.36% (training) and 96.25% (testing). Model XII (same as Model II)
increases filters to 64, achieving 96.29% (training) but only 86.4% (testing), sug-
gesting overfitting. Model XIII (based on Model II) increased Conv2D filters
to 128, leading to overfitting with 87.25% accuracy (training) but only 55.94%
(testing), likely due to insufficient training time. Model XIV progressively in-
creased filters (32 → 64 → 128) across layers, achieving 98.32% (training) and
98.06% (testing), showing strong performance. Model XV increased filter size
from 3× 3 to 5× 5, improving accuracy to 96.22% (training) and 98.37% (test-
ing). However, training time doubled, increasing computational costs. Model
XVI increased max pooling filter size (2 × 2 → 3 × 3), decreasing training ac-
curacy (93.33%) but improving test accuracy (97.85%). Model XVII (without
Dropout) achieved 98.43% (training) and 97.48% (testing), as Dropout artifi-
cially hinders learning but is inactive during testing. Model XVIII removed
Dropout and added an extra Dense layer (32 neurons), enhancing feature learn-
ing. It achieved the highest accuracy: 99.53% (training) and 98.02% (testing),
improving classification precision.

5.1 Model Comparisons and Interpretations

This study evaluates the impact of model structure, filter size/number, and
optimizer choice on classification accuracy, using Model II as the baseline. Addi-
tional Conv2D and MaxPooling layers improved accuracy (Model III) but ex-
cessive layers reduced performance (Model IV). Removing Dropout and adding
a Dense layer increased accuracy (Model XVIII).
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Reducing filters lowered accuracy, while gradually increasing them across
layers (Model XIV) matched Model III’s performance. Larger convolution
filters improved test accuracy (Model XV), while larger max pooling filters
slightly improved test accuracy but reduced training accuracy.

Most optimizers performed worse than Adadelta, except Adamax, which im-
proved test accuracy but reduced training accuracy (Model VII). Adadelta was
optimal, especially in Models III, XIV, and XVIII, which used fewer convo-
lutional and max pooling layers than architectures like ResNet101, VGG16, and
MobileNetV2.

Fig. 2 presents the best classification accuracies from all models across three
test runs.

Fig. 2. Classification accuracy for the test set for all models.

The highest classification accuracy for the learning data was achieved by
Model XVIII but for the test data by Model XV. However, in Model XV,
the accuracy for test data is more than two percentage points higher than for
learning data, not an anomaly in a sense, so Model XV will not be considered
the best. In addition to these two, Models III and XIV achieved very high levels
of WBC classification accuracy for both training and testing data. Analyzing the
results obtained, it can be seen that in some models the classification accuracy
for the test set is higher than for the training set.

These differences are generally small and may result from random errors,
initial parameter values, optimization strategy, or the fixed 20-epoch training
limit. Since most models show higher accuracy on training than test data, the
dataset split appears appropriate and representative, supporting the validity of
the results.
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5.2 Validation and Model Generalization

The best-trained models can be used to identify and count WBCs. Based on
classification accuracy and loss, the top models are III, XIV, and XVIII, with
Model III chosen for detailed testing. This section presents its classification
results for five WBC classes using a confusion matrix (Table 4) and a text report
(Table 5), showing Precision, Recall, and F1-score.

Model III classifies Basophils and Eosinophils with the highest precision,
while Lymphocytes and Neutrophils have the highest Recall. Overall, Neutrophils
are identified most accurately (F1-score). The Macro avg. represents the average
of all metrics (Table 5). The main classification error occurs with Monocytes,
where 613 were correctly identified, but 37 were misclassified as Lymphocytes.

Table 4. Detailed Confusion Matrix for trained Model III.

WBC’s True/Target class
Predicted Baso Eosi Lymp Mono Neut
Basophil 636 0 0 0 0
Eosinophile 0 638 0 0 0
Lymphocyte 0 1 649 37 0
Monocyte 13 8 1 613 0
Neutrophil 1 3 0 0 650

Table 5. Textual classification report of Model III.

WBC’s Precision Recall F1-score Support
Basophil 1.00 0.98 0.99 650
Eosinophile 1.00 0.98 0.99 650
Lymphocyte 0.94 1.00 0.97 650
Monocyte 0.97 0.94 0.95 650
Neutrophil 0.99 1.00 1.00 650
Macro avg 0.98 0.98 0.98 3250

Granulocytes are easier to classify due to their lobed nuclei, while agranulo-
cytes (Monocytes and Lymphocytes) have less distinct features, making classi-
fication harder. Monocytes typically have kidney-shaped nuclei, but similarities
with lymphocytes’ oval nuclei can cause confusion. Model performance is evalu-
ated using a confusion matrix (Table 4), which provides the basis for calculating
classification metrics and identifying errors, with cell labels defined in Table 3.

6 Summary and Discussion

To evaluate our approach, we used standard accuracy metrics and compared
results with previous WBC classification studies. Some methods targeted more

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_29

https://dx.doi.org/10.1007/978-3-031-97554-7_29
https://dx.doi.org/10.1007/978-3-031-97554-7_29


12 G. Dralus et al.

Table 6. Comparison of classification results of five types of WBCs with selected
method in terms of accuracy.

Author Method Baso Eosi Lymp Mono Neut mean number
Rezatofighi SVM+LBP 89.69 100.00 93.10 95.83 96.43 96.20 251
Wang YOLOv3 99.30 99.90 93.70 91.20 95.50 95.92 1120
Reena AlexNet 100.00 100.00 98.87 99.24 99.62 98.87 257
Acevedo Vgg-16 94.33 99.61 96.84 95.31 99.61 96.76 1919
Khan MLANET-FS-ELM - 97.42 100.00 99.68 99.35 99.12 2487
Our Model III CNN 97.84 98.15 99.85 94.31 100.00 98.03 3250

than five WBC types and used deep learning, hybrid, or image processing tech-
niques. Rezatofighi et al. [31] applied image segmentation and LBP features
with an SVM classifier on 251 LISC images. Acevedo et al. [2] used VGG-16
CNNs, also on the LISC dataset. Reena and Ameer [30] combined semantic seg-
mentation with AlexNet for classification. Wang et al. [43] employed YOLOv3
for classifying 11 WBC categories. Khan et al. [17] used AlexNet-based CNNs
with feature selection and an extreme learning machine, achieving 95.72˘97.79%
accuracy depending on the FS method used (see: Fig. 3).

Fig. 3. Classification accuracy for learning and test data set across experiments.

A comparison of the classification accuracy of each of the five WBC classes
considered, as well as the average accuracy of their classification, with the results
obtained by other authors is shown in Table 6.

To highlight the robustness of our method, Table 6 includes the number of
test images used in each study. Our test set is the largest, suggesting greater
reliability due to its representativeness. The proposed approach achieves high
classification accuracy across all WBC classes. Model III classifies Neutrophils
with 100% accuracy, outperforming other methods. Its lowest result is for Mono-
cytes (94.31%), though other approaches show similar or worse performance for
this class. Basophils, eosinophils, and lymphocytes are classified with accuracy
comparable to other methods. Overall, our method yields a higher mean clas-
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sification accuracy than most others—surpassed only by the approaches in [30]
and [17].

Khan et al. [17] achieved high accuracy but classified only four WBC types,
excluding Basophils, simplifying the model. Recent studies show slightly better
accuracy using advanced DL or hybrid networks.

The models presented in this study show high accuracy in automatic clas-
sification and counting of WBCs using CNNs. This research explored various
network configurations, revealing the impact of layer depth, filter size, and op-
timization algorithms on classification accuracy.

Analysis results show that similar CNN performance can be achieved with
different network configurations, yet finding the best one often requires numer-
ous tests. The developed models demonstrate the potential of CNNs use in au-
tomated medical diagnostics, showing reasonable accuracy in automated blood
cell analysis.

Future work may focus on expanding the dataset with more diverse and
clinically varied samples to improve generalization. Incorporating explainable
AI techniques could also enhance model transparency, making results more in-
terpretable for medical professionals. Additionally, integrating the model into
a real-time diagnostic support system would allow for practical validation in
clinical settings.
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