
A Computational Immune Approach for
Modeling Different Levels of Severity in

COVID-19 Infections

Laura Polverari e Silva1[0009−0004−2016−4093] Marcelo
Lobosco1,2[0000−0002−7205−9509] and Ruy Freitas Reis1,2⋆[0000−0001−5215−3744]

1 Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora,
Brazil

2 Pós-Graduação em Modelagem Computacional, Universidade Federal de Juiz de
Fora, Brazil

ruy.reis@ufjf.br

Abstract. This study introduces a computational model designed to
simulate the human immune response to SARS-CoV-2, validated against
data from multiple clinical studies. The model captures the temporal dy-
namics of mature CD4+ T cells, mature CD8+ T cells, viral load, and
antibody levels across three COVID-19 severity profiles: mild, severe,
and critical. In all simulated scenarios, the model-generated trajectories
remained primarily within the confidence intervals of empirical data,
demonstrating its capacity to qualitatively reproduce key trends in im-
mune responses across varying disease severities.
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1 Introduction

COVID-19 is caused by SARS-CoV-2, first identified in Wuhan, China, in De-
cember 2019 [6]. Following its global spread, the WHO declared a pandemic on
March 11, 2020 [6]. As of February 2025, the disease has resulted in over 777
million cases and 7 million deaths worldwide [6], alongside significant economic
and societal disruptions [1].

Mathematical models have been widely used to understand COVID-19 patho-
genesis. A notable model by Reis et al. [4] employed 15 ODEs to simulate viral
and immune dynamics but only validated a subset of its equations against cohort
data. Zhang et al. [8] analyzed immune responses by disease severity, offering in-
sights into CD4+ and CD8+ T cells and cytokines. Xavier et al. [7] validated a
reduced model using ChAdOx1 nCoV-19 vaccine data.

This study adapts the previously proposed model [4] to simulate disease
severity (mild, severe, critical) by calibrating it with differential evolution and
validating it against data on CD4+ and CD8+ T cells, viral load, and antibodies
following symptom onset.

⋆ corresponding author

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_28

https://dx.doi.org/10.1007/978-3-031-97554-7_28
https://dx.doi.org/10.1007/978-3-031-97554-7_28


2 Silva et al.

2 Methods

2.1 Mathematical Model

The model consists of twelve ordinary differential equations (ODEs) representing
key components of the immune response to SARS-CoV-2 infection. The first
equation (Eq. (1)) describes viral dynamics (V ). The virus replicates at rate πv,
is eliminated by the innate immune system at a saturable rate cv1V

cv2+V [3], and

by the adaptive immune system via antibody binding (kv1V A) and CD8+ T cell
action (kv2V Tke).

d

dt
V = πvV − cv1V

cv2 + V
− kv1V A− kv2V Tke. (1)

Immature antigen-presenting cells (APCs, Ap) follow Eq.(2), maintained
through homeostasis and activated in response to viral load. These activated
cells (Apm), governed by Eq.(3), decay at rate δapm.

d

dt
Ap = αap(Ap0 −Ap)− βapAp

cap1V

cap2 + V
(2)

d

dt
Apm = βapAp

cap1V

cap2 + V
− δapmApm (3)

Eqs. (4) and (5) describe näıve (Thn) and effector (The) CD4+ T cells. Home-
ostasis and activation are modeled for Thn, while The dynamics include activa-
tion, proliferation, and decay.

d

dt
Thn = αth(Thn0 − Thn)− βthApmThn (4)

d

dt
The = βthApmThn + πthApmThe − δthThe (5)

Eqs. (6) and (7) represent näıve (Tkn) and effector (Tke) CD8+ T cells, in-
cluding homeostatic maintenance, activation, proliferation, and decay processes.

d

dt
Tkn = αtk(Tkn0 − Tkn)− βtkApmTkn (6)

d

dt
Tke = βtkApmTkn + πtkApmTke − δtkTke (7)

Eq. (8) models B cell dynamics (B), incorporating homeostasis and prolif-
eration via T-independent and T-dependent mechanisms. Differentiation into
plasma and memory B cells occurs via interactions with APCs and CD4+ T
cells.

d

dt
B = αb(B0 −B) + πb1V B + πb2TheB − βpsApmB − βplTheB − βbmTheB (8)
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Short- and long-lived plasma cells are modeled in Eqs. (9) and (10), re-
spectively. Both arise from B cell differentiation and decay naturally; long-lived
plasma cells also receive contributions from memory B cells.

d

dt
Ps = βpsApmB − δpsPs (9)

d

dt
Pl = βplTheB − δplPl + γbmBm (10)

Memory B cells (Bm), governed by Eq. (11), form through differentiation
and expand via logistic growth. They can also revert to long-lived plasma cells.

d

dt
Bm = βbmTheB + πbm1Bm

(
1− Bm

πbm2

)
− γbmBm (11)

Finally, Eq. (12) represents antibody production (A), which depends on the
activity of both short- and long-lived plasma cells and includes a decay term.

d

dt
A = πpsPs + πplPl − δaA (12)

More details about these equations can be obtained in the original work of
Reis et al. [4].

2.2 Differential Evolution

In this work, Differential Evolution (DE) [5] is applied to optimize a set of
parameters p so that the model’s numerical results best fit experimental data
describing the populations of mature CD4+ T cells, CD8+ T cells, viruses, and
antibodies.

The objective function, defined in Eq. (13), quantifies the weighted relative
error between simulated outputs (The, Tke, V , A) and experimental data (The,
Tke, V , A):

min O(p) = ωThe

∥The − The∥2
∥The∥2

+ ωTke

∥Tke − Tke∥2
∥Tke∥2

+ ωV
∥V − V ∥2

∥V ∥2
+ ωA

∥A−A∥2
∥A∥2

,

(13)

Additionally, each ω∗ represents the weight assigned to the error associated
with each of these populations (The, Tke, V , and A).

3 Numerical Results

The mathematical model was implemented in C++ using the CVODE package
to solve systems of ordinary differential equations. CVODE integrated the ODE
system using the Backward Differentiation Formula (BDF) [2]. Additionally, a
library implementing the DE algorithm was utilized 3. GCC (GNU Compiler

3 https://github.com/ruyfreis/differential_evolution.git
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Collection) version 13.2.0 compiled the source code. The model results’ graphs
were produced using the Python 3.12.3 and the Matplotlib library.

Three clinical scenarios—mild, severe, and critical—are considered for simu-
lations, based on CD4+ and CD8+ T cell population data from the literature [8].
Each scenario uses distinct lymphocyte data, while virus concentration and an-
tibody levels come from a single shared dataset. Table 2 presents the initial
conditions and parameter values used in each scenario and the parameters opti-
mized via DE and their bounds. In addition to the values available in the tables,
we consider, for all cases, parameters cv1 = 1.1258 × 10−9, cv2 = 6.0 × 10−1,
αth = 2.17 × 10−1, αb = 3.58 × 102, πb1 = 8.98 × 10−5, πb2 = 1.27 × 10−8,
βps = 6.0×10−6, βpl = 5.0×10−6, βbm = 1.0×10−6, δps = 2.5, δpl = 3.5×10−1,
γbm = 9.75 × 10−4, πbm1 8.1117, πbm2 = 3.7965 × 103, and πps = 4.0041 × 104.
Moreover, for the initial conditions, we consider Ap0 = 1.0 × 106, Apm0 = 0.0,
Thn0 = 1.0 × 106, The0 = 0.0, Tkn0 = 5.0 × 105, Tke0 = 0.0, B0 = 2.5 × 105,
Ps0 = 0.0, Pl0 = 0.0, Bm0 = 0.0, A0 = 0.0, and Tab. 2 shows V0 for each
scenario.

Model results for CD4+ and CD8+ T cells, viruses, and antibodies are plot-
ted alongside literature data. Virus and antibody levels are shown on log10 and
log2 scales, respectively. Literature data reflect measurements taken after hospi-
talization; thus, data points do not align with simulation day zero. Orange dots
represent medians (or means for the virus), with bars denoting confidence inter-
vals or standard deviations. In all scenarios, Eq. (13) uses weights ωThe

= 0.26,
ωTke

= 0.38, ωV = 0.23, and ωA = 0.13, normalized to sum to 1.

3.1 Experiments

This section presents the results of parameter adjustments for the mild, severe,
and critical scenarios using DE. Tab. 1 shows the parameters and bounds used
in each case. For the mild and severe cases, 15 parameters (14 model parameters
and one initial condition) are optimized; for the critical case, 12 parameters (11
model parameters and one initial condition) are adjusted.

In the mild scenario, 14 parameters and the initial virus load V0 are opti-
mized. Tab. 1 provides parameter bounds, while Tab. 2 lists the initial condition
value and parameters the optimization determines. Model results are shown in
Fig. 1: virus (A), antibodies (B), CD4+ T cells (C), and CD8+ T cells (D).
The same optimization strategy is applied to 14 parameters and V0 in the severe
case. Tabs 1 and 2 contain bounds, initial conditions, and final parameter values,
respectively. Results are displayed in Fig. 2: virus (A), antibodies (B), CD4+ T
cells (C), and CD8+ T cells (D).

The critical case involves optimizing 11 parameters and V0. Tab. 1 shows
parameter limits; Tab. 2 lists initial conditions and the parameter values. Sim-
ulation outcomes are shown in Fig. 3: virus (A), antibodies (B), CD4+ T cells
(C), and CD8+ T cells (D).

The simulation results align well with the literature and offer insights into
immune dynamics in mild, severe, and critical scenarios. Within each case, com-
parisons of population behavior reveal the interplay between immune response
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Table 1. DE optimization bounds: minimum and maximum search space constraints.

Parameter
Bounds

Mild Severe Critical

V0 [5.7× 104, 1.1× 106] [1.1× 105, 2.1× 106] [6.6× 105, 1.2× 107]
πv [1.5× 10−2, 2.9× 10−1] [9.6× 10−3, 1.8× 10−1] [1.6× 10−4, 3.0× 10−3]
βtk [8.9× 100, 1.7× 102] [6.1× 100, 1.2× 102] [3.1× 100, 5.9× 101]
cap1 - [8.0× 10−2, 1.5× 100] -
kv1 [8.9× 10−8, 1.7× 10−6] - -
kv2 [9.0× 10−8, 1.8× 10−6] [5.1× 10−8, 9.7× 10−7] [6.1× 10−7, 1.2× 10−5]
βap [7.7× 103, 1.5× 105] [8.7× 103, 1.7× 105] [7.9× 104, 1.5× 106]
δapm [3.1× 107, 6.0× 108] [1.0× 107, 1.9× 108] [1.1× 107, 2.1× 108]
πtk [3.4× 100, 6.7× 101] [6.2× 10−1, 1.2× 101] [4.7× 10−2, 8.9× 10−1]
δtk [5.5× 10−3, 1.1× 10−1] [2.3× 10−3, 4.3× 10−2] [2.4× 10−4, 4.7× 10−3]
πpl [1.4× 102, 2.9× 103] - -
cap2 - [1.6× 106, 3.1× 107] -
δa [1.1× 107, 2.2× 108] [1.1× 107, 2.1× 108] [3.8× 107, 7.2× 108]
αtk [6.2× 10−3, 1.2× 10−1] [9.1× 10−4, 1.7× 10−2] [3.6× 102, 6.8× 103]
βth [8.4× 100, 1.7× 102] [2.3× 100, 4.3× 101] -
πth [1.1× 101, 2.3× 102] [2.4× 100, 4.5× 101] [9.9× 10−1, 1.9× 101]
δth [1.5× 10−2, 3.0× 10−1] [4.1× 10−3, 7.8× 10−2] [7.9× 10−3, 1.5× 10−1]
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Fig. 1. Results for the mild case of V , A, The, and Tke population over time.

and disease progression. Cross-scenario comparisons highlight how disease sever-
ity affects these dynamics. In all scenarios, mature CD4+ T cell concentrations
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Table 2. Optimized ODE parameters and initial condition for all cases.

Parameter
Value

Unit

Mild Severe Critical

πv 2.8683× 10−2 1.6895× 10−2 5.7001× 10−4 (day−1)

kv1 9.2652× 10−7 8.9368× 10−7 8.9368× 10−5 (day−1 mL
S/CO

)

kv2 7.0636× 10−7 7.5329× 10−7 1.1651× 10−6 (day−1 mL
cells

)

αap 2.5999× 10−1 1.0373× 10−1 5.1378× 10−1 (day−1 mL
pg

)

βap 1.0259× 105 1.2021× 105 1.3548× 106 (day−1 mL
copies

)

cap1 4.0826× 100 1.1797× 10−1 7.2874× 100 (copies/mL)

cap2 4.8549× 105 1.8840× 107 9.2035× 106 (copies/mL)

δapm 4.2412× 108 8.4049× 107 1.8347× 108 (day−1)

βth 1.1144× 102 1.6255× 101 7.6477× 100 (day−1 mL
cells

)

πth 1.2320× 102 4.3853× 101 1.8671× 101 (day−1 mL
cells

)

δth 1.3234× 10−1 6.3894× 10−2 1.0954× 10−1 (day−1)

αtk 7.5835× 10−2 1.2081× 10−2 4.8726× 102 (day−1 mL
pg

)

βtk 1.3030× 102 5.0688× 101 3.4262× 100 (day−1 mL2

pg cells
)

πtk 2.7494× 101 3.8017× 100 6.7469× 10−2 (day−1 mL
cells

)

δtk 4.9948× 10−2 2.3070× 10−2 4.1096× 10−3 (day−1)

πpl 2.5121× 103 2.0041× 103 1.4197× 104 (day−1 mL
cells·(S/CO)

)

δa 1.8720× 108 1.0543× 108 3.8668× 108 (day−1)

V0 3.8447× 105 1.6366× 106 7.2274× 105 (copies/mL)

exceed CD8+ levels throughout the simulation, suggesting stronger CD4+ pro-
liferation during infection. Antibody levels increase rapidly, peak, and stabilize,
while virus levels decline as immune components rise, reflecting typical immune
responses. In the mild case, T cell levels increase sharply until day 30, coinciding
with a significant drop in virus concentration. So, it suggests efficient viral clear-
ance due to sufficient lymphocyte presence. In the severe case, both T cell types
peak around day 30, then decline, with virus levels dropping more slowly than
in the mild case—likely due to the reduced lymphocyte counts post-peak. The
critical case shows only modest T cell increases and delayed viral decline, with
significant reduction occurring after T cell levels peak between days 30 and 60.
Overall, milder cases show higher T cell levels and faster viral clearance, while
critical cases display reduced immune response and prolonged viral presence,
indicating a severity-linked immune dysfunction.

4 Conclusions and Future Works

This study presented a computational model for simulating the immune response
to SARS-CoV-2, validated using experimental data across mild, severe, and criti-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_28

https://dx.doi.org/10.1007/978-3-031-97554-7_28
https://dx.doi.org/10.1007/978-3-031-97554-7_28


A Computational Immune Approach... 7

A

C

B

D

V 
(lo

g 1
0 

(c
op

ie
s/

m
L 

+1
))

Th
e 

(c
el

ls
/m

L)

A 
(lo

g 2
 (S

/C
O

 +
1)

)
Tk

e 
(c

el
ls

/m
L)

Model results
Data

0 10 20 30 40 0 10 20 30 40
Time (days)Time (days)

0

1

2

3

4

5

6

7

1e5 1e6

0

2

4

6

8
8

0

1

2

3

4

5

6

7

1.0

1.2

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Fig. 2. Results for the severe case of V , A, The, and Tke population over time.
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Fig. 3. Results for the critical case of V , A, The, and Tke population over time.

cal cases. Using a consistent dataset, the model captured the dynamics of mature
CD4+ and CD8+ T cells, viruses, and antibodies. In the mild case, all popula-
tion trends closely matched the data. For the severe case, CD4+ T cells, viruses,
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and antibodies aligned well, though CD8+ T cells showed early-stage discrep-
ancies. In the critical case, model predictions were most accurate for CD4+ T
cells and antibodies but diverged notably for CD8+ T cells and viruses. Despite
some deviations, the simulated curves generally remained within the experimen-
tal confidence intervals, demonstrating the model’s qualitative validity.

Future work will incorporate uncertainty quantification, sensitivity analysis,
and high-performance computing to better understand and reduce discrepancies,
as well as to improve the model’s accuracy and efficiency.
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