
Predicting Antibody Responses to Type V
GBS-TT Conjugate Vaccine Using Computational

Modelling

Matheus R. Ribeiro1, Bárbara de M. Quintela2[0000−0002−5320−4109], Ruy F.
Reis2[0000−0001−5215−3744], Rodrigo W. dos Santos2[0000−0002−0633−1391], and

Marcelo Lobosco2[0000−0002−7205−9509]

1 Computational Engineering, Federal University of Juiz de Fora, Juiz de Fora,
36038-330, Brazil

matheus.reis@estudante.ufjf.br
2 Graduate Program in Computational Modelling, Federal University of Juiz de Fora,

Juiz de Fora, 36038-330, Brazil
{barbara.quintela,ruy.reis,rodrigo.weber,marcelo.lobosco}@ufjf.br

Abstract. Group B Streptococcus (GBS) remains a leading cause of
neonatal mortality, underscoring the need for effective vaccination strate-
gies. This study introduces a novel adaptation of an ODE-based immuno-
logical model to simulate the response to a Type V GBS-TT conjugate
vaccine, with model calibration and validation performed against clinical
data. Utilizing Differential Evolution, we accurately estimated immuno-
logical parameters across various dosages, revealing mechanistic differ-
ences between conjugated and unconjugated formulations. Our numerical
results show that key parameters — specifically, the antigen-presenting
cell maturation rate and the antibody-mediated vaccine clearance rate —
were 93-fold and 1,700-fold higher, respectively, in conjugated vaccines
compared to unconjugated formulations. These findings underscore the
adjuvant effect of tetanus toxoid and demonstrate the model’s capacity
for guiding rational vaccine design and optimization.

Keywords: Computational Immunology · Computational Vaccinology
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1 Introduction

Group B Streptococcus (GBS), scientifically known as Streptococcus agalactiae,
is a bacterium commonly found in the gastrointestinal and genital tracts of
healthy individuals. Although typically asymptomatic in adults, GBS can cause
severe infections, particularly in newborns and immunocompromised individuals.
It remains a leading cause of neonatal morbidity and mortality [11]. In newborns,
GBS infections often result in life-threatening conditions such as sepsis, pneu-
monia, and meningitis. Early-onset disease (EOD), which manifests within the
first 6 days of life, accounts for approximately 60–70% of neonatal GBS cases,
usually transmitted vertically during childbirth via aspiration of infected fluids.
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Globally, approximately 18% [17] to 23% [8] of pregnant women are GBS carri-
ers. In contrast, late-onset disease (LOD), occurring between the first week and
up to 90 days of life, is associated with alternative transmission routes, such as
breast milk, nosocomial exposure, or community exposure [12]. Annually, GBS
infections are estimated to cause 410,000 cases worldwide, leading to 147,000
stillbirths and infant deaths, with the highest burden observed in Africa [18].

In adults, GBS infections can manifest as urinary tract infections, skin and
soft tissue infections, and, less frequently, bloodstream infections and meningi-
tis, with higher risks among individuals with predisposing conditions such as
diabetes or chronic kidney disease.

The most widely used strategy to prevent GBS disease involves screening
pregnant women between 35 and 37 weeks of gestation for GBS colonization,
followed by administering intravenous antimicrobial prophylaxis (IAP) during
labour [12]. Additionally, the transplacental transfer of immunoglobulin G (IgG)
antibodies specific to S. agalactiae renders maternal vaccination a promising
strategy to protect mothers, fetuses, and newborns. Vaccinating mothers in the
late second or early third trimester could effectively reduce GBS disease in both
mothers and infants [8]. S. agalactiae is classified into ten serotypes [16], with
dominant serotypes varying by region. This variation emphasizes the need for
conjugate vaccines targeting multiple serotypes. The development of the Type
V GBS-TT conjugate vaccine represents a significant milestone in preventing
invasive GBS disease [1], despite challenges in manufacturing and high costs [14].
Nonetheless, critical questions remain regarding the vaccine’s long-term efficacy,
optimal usage strategies, immunogenicity across diverse populations, and safety
profile. For instance, the duration of immunity conferred by the vaccine is not
fully understood, raising concerns about the need for booster doses, particularly
in immunocompromised populations.

Furthermore, determining the optimal timing for vaccination during preg-
nancy to ensure maximal neonatal protection is essential. Additional research is
also required to assess whether the GBS-TT conjugate vaccine can be safely and
effectively co-administered with other vaccines in both single-dose and multi-
dose regimens. Addressing these gaps is vital to fully harnessing the benefits of
the Type V GBS-TT conjugate vaccine.

Computational models have emerged as valuable tools in vaccine research by
simulating disease dynamics, immune responses, and vaccine effects in a con-
trolled virtual environment. These models, which employ mathematical equa-
tions, statistical methods, and computer simulations, replicate biological pro-
cesses and predict vaccine performance under various conditions. They can sup-
plement, or in some cases replace, traditional clinical trials when ethical, practi-
cal, or financial constraints limit conventional testing. Specifically, computational
models enable rapid exploration of multiple scenarios—such as evaluating dif-
ferent vaccine dosages, schedules, or combinations—without the time and cost
associated with clinical trials, thereby allowing researchers to test hypotheses
and refine protocols before advancing to animal or human studies [4].
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This study presents results from an in silico dose-response experiment de-
signed to reproduce cohort data reported by Baker et al. [1]. A pre-existing
immune response model [3] was adapted using Differential Evolution to adjust
initial conditions and key constants to fit the cohort data for a single dose of the
GBS-TT conjugate vaccine [1]. The model was then validated using data from
subsequent doses, demonstrating accurate replication across different vaccine
dosages.

This paper is organized as follows: Section 2 provides background information
on the immune system and the Type V GBS-TT vaccine. Section 3 briefly reviews
the relevant literature. Section 4 details the method, including the mathematical
model used to simulate the immune response to the GBS-TT conjugate vaccine
and the adjustments made to fit the cohort data. Section 5 presents and discusses
the numerical results. Finally, Section 6 concludes the study with a summary
and suggestions for future research.

2 Background

Once in the body, the innate immune system provides the first line of defence
against GBS. Upon infection, pattern recognition receptors (PRRs), such as
Toll-like receptors (TLRs) and NOD-like receptors, detect pathogen-associated
molecular patterns (PAMPs) on GBS. This recognition triggers the activation of
immune cells like neutrophils and macrophages, which phagocytose and destroy
the bacteria [20]. Additionally, the innate immune response involves the pro-
duction of pro-inflammatory cytokines and chemokines, which recruit additional
immune cells to the site of infection [20].

The adaptive immune system is activated following the innate response, pro-
viding a more targeted defence against GBS. B cells produce specific antibodies
against GBS antigens, primarily targeting the polysaccharide capsule, a signifi-
cant virulence factor of the bacterium. These antibodies facilitate opsonization,
thereby enhancing phagocytosis by immune cells [20]. T cells, particularly CD4+
helper T cells, are critical in orchestrating the immune response by secreting cy-
tokines that further activate B cells and macrophages [20].

The immune response elicited by vaccination mimics the natural infection
process but in a controlled and safe manner. Vaccines introduce antigens de-
rived from the pathogen, which stimulate the immune system to generate a
memory response without causing disease. Upon subsequent exposure to the
same pathogen, the immune system can mount a faster and more robust re-
sponse, preventing infection. GBS has nine capsular polysaccharide serotypes
(CPS), Ia, Ib, and II-VIII, each with varying global prevalence [1]. This neces-
sitates a polyvalent GBS conjugate vaccine formulated with the most prevalent
serotypes in a specific population to provide broad protection.

A previous study in the literature [1] evaluated the immunogenicity and re-
actogenicity of Type V GBS-TT conjugate vaccine at different dosages in cohort
of healthy adults. The vaccine is prepared with GBS type V stain CBJ111. After
growing in a culture, the capsular polysaccharides (CPS) of the bacterium were
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removed by base extraction followed by chemical treatment [1]. In the case of the
Type V GBS-TT conjugate vaccine, CPS is conjugated with tetanus toxoid to
increase the immunogenicity of the Type V GBS vaccine. No other adjuvant was
used in this process. The study demonstrated that the vaccine effectively elicited
a dose-dependent immune response, with higher doses correlating to increased
production of specific antibodies against GBS type V polysaccharides as Fig. 1
shows. Moreover, the study reported that the vaccine was well-tolerated, with
mild and transient adverse reactions such as injection site pain and low-grade
fever. These findings highlight the potential of the Type V GBS-TT vaccine as
a preventive strategy against invasive GBS disease.

Fig. 1. Production of antibodies for different doses and types of GBS vaccines. The
figure shows the sum of the geometric mean concentrations (GMC) of IgG, IgM, and
IgA for the V CPS and V–TT vaccines. V CPS is a vaccine that protects against
type V GBS using the type V capsular polysaccharide (CPS). V–TT is a conjugate
vaccine that combines tetanus toxoid (TT) with CPS. For the V–TT vaccine, different
combinations of CPS and TT were used [1].

3 Literature Review

Mathematical and computational modelling are essential tools for analysing the
complex dynamics of vaccine-induced immune responses. These approaches inte-
grate immunological mechanisms with population-level effects to predict vaccine
efficacy, optimize dosing strategies, and inform clinical trial design [2, 4–6].
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Different modelling paradigms offer distinct advantages. Discrete agent-based
models (ABMs) can capture heterogeneity in immune responses by simulating
individual immune cell interactions [7]. An ABM [15] predicted that the citrus-
derived compound neohesperidin could enhance the immune response to a vac-
cine against human papillomavirus.

Recent advances employ machine learning (ML) techniques to predict im-
munogenicity from vaccine formulation parameters [10]. ML approaches identify
B and T cell epitopes and correlates of protection, potentially improving vaccine
target selection [5]. The SIMON automated ML system, capable of handling in-
complete datasets, has revealed previously unrecognized CD4+ and CD8+ T cell
subsets that are strongly associated with robust antibody responses to influenza
antigens [22].

Ordinary differential equation (ODE) models are widely employed to de-
scribe the temporal dynamics of immune cell populations, antigen levels, and
pathogen load following vaccination [3, 9, 23]. These models, typically formulated
as systems of nonlinear differential equations, provide a simplified yet informa-
tive representation of the immune response. A recent study employed an ODE
model to compare antibody dynamics after administering inactivated, mRNA,
and attenuated vaccines, highlighted the crucial role of booster shots [23].

While ABMs offer detailed cell-level resolution and ML pipelines can uncover
non-obvious correlates of protection, ODE models strike an optimal balance be-
tween interpretability and computational efficiency. By enabling direct mapping
of clinical time-course data onto mechanistic parameters, they facilitate clear hy-
pothesis testing and rapid in silico exploration of dosing regimens. In this study,
we extend an established ODE model [3] to the Type V GBS-TT conjugate vac-
cine context, thereby integrating rigorous mechanistic insight with quantitative
calibration against phase 1 cohort data.

Parameter estimation is crucial for calibrating ODE models to experimen-
tal data. Various methods exist, ranging from gradient-based optimization tech-
niques, which require sensitivity analysis (like adjoint methods, efficient for large
systems), to Bayesian approaches like Markov Chain Monte Carlo (MCMC) that
provide uncertainty quantification but can be computationally intensive. ML
methods are also emerging for parameter inference in complex systems. Differ-
ential Evolution (DE), used in this study, is a stochastic, population-based global
optimization heuristic. While perhaps simpler to implement than gradient-based
or complex Bayesian methods (as it doesn’t require derivative information), DE
has proven effective for complex, multi-modal optimization problems common
in biological systems. Its application here allows for robust exploration of the
parameter space to fit the ODE model to the available clinical data, offering a
practical alternative for calibrating this specific immunological model.

The following sections detail the specific ODE model adaptation, the DE
method used for parameter calibration against cohort data, and the subsequent
validation experiments.
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4 Methods

4.1 Mathematical Model

The system of ordinary differential equations (ODEs) used to model the im-
mune response to CPS/GBS-TT vaccines was adapted from an earlier study [3].
These equations describe the interactions among vaccine particles (V p), antigen-
presenting cells (naive, Ap, and mature, Apm), lymphocytes (Thn, The, Tkn,
Tke, B, Bm, Ps, and Pl), and antibodies (A). The complete system of equations
is reproduced here for clarity.

Vaccine Particles: The dynamics of the vaccine population (V p) are given
by:

d

dt
V p = −

(
cv1V p

cv2 + V p

)
− kv1V pA− kv2V pTke, (1)

where the first term represents a saturating elimination of vaccine particles,
the second term corresponds to vaccine neutralization by antibodies (with rate
kv1), and the third term accounts for elimination by effector killer T cells (with
rate kv2). Although the second term simplifies the biological process known as
opsonization, it is important to note that antibodies mark the vaccine particles
for elimination rather than directly eliminating them.

Immature Antigen-Presenting Cells: The dynamics of immature antigen-
presenting cells (Ap) are modeled by:

d

dt
Ap = αap(Ap0 −Ap)− βapAp

(
cap1V p

cap2 + V p

)
, (2)

where Ap0 denotes the homeostatic concentration of immature APCs, αap is the
rate at which homeostasis is achieved, and βap characterizes the maturation of
naive APCs upon encountering vaccine particles.

Mature Antigen-Presenting Cells: The dynamics of mature APCs (Apm)
are described by:

d

dt
Apm = βapAp

(
cap1V p

cap2 + V p

)
− δapmApm, (3)

with the first term representing the maturation of APCs from their immature
precursors and the second term accounting for the natural decay of mature APCs
at rate δapm.

Naive Helper T Cells: The dynamics of naive helper T cells (Thn) are
given by:

d

dt
Thn = αth(Thn0 − Thn)− βthApmThn, (4)

where Thn0 is the homeostatic level of naive helper T cells, αth is the homeostasis
rate, and βth represents their activation by mature APCs.

Effector Helper T Cells: The dynamics of effector helper T cells (The)
are described by:

d

dt
The = βthApmThn+ πthApmThe− δthThe, (5)
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where the first term represents the activation of helper T cells, the second term
models their replication at rate πth, and the third term accounts for their decay
at rate δth.

Naive Killer T Cells: The dynamics of naive killer T cells (Tkn) are de-
scribed by:

d

dt
Tkn = αtk(Tkn0 − Tkn)− βtkApmTkn, (6)

with Tkn0 representing the homeostatic level of naive killer T cells, αtk the
homeostasis rate, and βtk their activation rate by mature APCs.

Effector Killer T Cells: The dynamics of effector killer T cells (Tke) are
given by:

d

dt
Tke = βtkApmTkn+ πtkApmTke− δtkTke, (7)

where the first term represents the activation of naive killer T cells, the second
term models their replication at rate πtk, and the third term describes their
decay at rate δtk.

B Lymphocytes: The population of B lymphocytes (B) is modeled as:

d

dt
B = αb(B0 −B) + πb2TheB − βpsApmB − βplTheB − βbmTheB, (8)

where B0 is the homeostatic level of B cells, αb is the homeostasis rate, πb2TheB
represents B cell proliferation stimulated by effector helper T cells, and the terms
βpsApmB, βplTheB, and βbmTheB model the differentiation of B cells into
short-lived plasmocytes, long-lived plasmocytes, and memory B cells, respec-
tively.

Memory B Cells: The dynamics of memory B cells (Bm) are represented
by:

d

dt
Bm = βbmTheB + πbm1Bm

(
1− Bm

πbm2

)
− γbmBm, (9)

where the first term represents the generation of memory B cells from B lym-
phocytes (mediated by effector helper T cells), the second term models memory
B cell replication at rate πbm1 (with a maximum capacity πbm2), and the final
term describes their differentiation into long-lived plasmocytes upon re-exposure
to the pathogen.

Short-Lived Plasmocytes: The dynamics of short-lived plasmocytes (Ps)
are described by:

d

dt
Ps = βpsApmB − δpsPs, (10)

where βpsApmB represents the production of short-lived plasmocytes from B
cells and δps is their decay rate.

Long-Lived Plasmocytes: Long-lived plasmocytes (Pl) are modeled by:

d

dt
P l = βplTheB − δplPl + γbmBm, (11)
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where the first term represents production from B cells, the second term accounts
for natural decay at rate δpl, and the third term represents the production of
long-lived plasmocytes from memory B cells (at rate γbm).

Antibody Production: Finally, antibody production (A) is modeled by:

d

dt
A = πASPs+ πALPl − δAA, (12)

where πAS and πAL are the rates of antibody production by short- and long-lived
plasmocytes, respectively, and δA is the natural decay rate of antibodies.

Table 1 presents the units for all constants used in our model (time is given
in days).

Table 1. Units of the model constants (time is expressed in days).

Constant Unit
cv1, αAp, βAp, δApm, c11, c14, αTn, δte, αB , δS , δL, γM , kbm1, δA day−1

cv2, kap2 µg/mL
kv1

mL
µg·day

kv2, c12, c13, πT , kte1, βS , βL, βBm
mL

cells·day
kap1 Dimensionless
πB1

mL
µg·day

πB2
mL

cells·day
πAS , πAL

µg
cells·day

kbm2 cells/mL

4.2 Cohort Data

The cohort data were extracted from a phase 1, open-label, dose-escalation trial
that evaluated the immunogenicity and reactogenicity of a type V GBS cap-
sular polysaccharide-tetanus toxoid (TT) conjugate vaccine (V–TT). This was
compared to an unconjugated type V capsular polysaccharide (V CPS) vaccine.
The study included healthy men and non-pregnant women aged 18-50 years [1].
Sixty participants were randomly assigned to one of four vaccine groups, each
receiving a single intramuscular dose:

– Unconjugated CPS: 37µg
– V–TT: 2.4µg CPS / 1.1µg TT
– V–TT: 9.6µg CPS / 4.3µg TT
– V–TT: 38.5µg CPS / 17.0µg TT

Blood samples were collected at baseline (pre-immunization) and at 4, 8,
26, and 52 weeks post-vaccination to assess humoral immune responses. Type V
CPS-specific antibodies (IgG, IgA, and IgM) in serum samples were quantified
using enzyme-linked immunosorbent assay (ELISA).
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4.3 Differential Evolution

Differential Evolution (DE) is an evolutionary algorithm introduced by Storn
and Price in 1997 [21], renowned for its simplicity and efficiency in optimizing
real-valued, multi-dimensional functions. As a population-based algorithm, DE
employs mechanisms inspired by natural selection to iteratively refine candidate
solutions. In our application, DE evolves a population of candidate solutions
over successive generations to minimize an objective function, that is, the er-
ror between the antigen levels observed in the cohort data and those produced
numerically.

Each candidate solution (or individual) is represented as a vector containing
the adjustable parameter values within the search space. The core steps of the
DE algorithm are mutation, crossover, and selection. Initially, a population of
candidate solutions is generated randomly. For each candidate, a mutant vector
is generated by combining three randomly selected individuals using differential
mutation. Subsequently, a trial vector is formed by combining the mutant vector
with the current candidate via a crossover operation. The trial vector replaces
the current solution if it results in a lower objective function value, i.e., if it
reduces the relative error between the antigen levels observed in the cohort data
and those produced numerically. This relative error is computed using the L2
norm as follows:

RE(A, Â) = ∥A(t)− Â(t)∥2, (13)

where A(t) represents the sum of IgM, IgG, and IgA levels from the cohort data,
and Â(t) denotes the corresponding numerical value.

This process of mutation, crossover, and selection is repeated for a predefined
number of generations or until a satisfactory solution is obtained.

Table 2 presents the adjustable constants and their respective intervals. These
constants were selected based on a prior study, which identified them as the seven
most sensitive parameters in the model [3]. The remaining constants and initial
conditions are the same as in the original work [3].

Table 2. Constant bounds for model calibration.

Constant Range

kv1 [1.0× 10−10, 1.0× 101]
kv2 [1.0× 10−11, 1.0× 104]
δps [1.0× 10−6, 2.0× 101]
αap [1.0× 10−6, 1.0× 100]
βap [1.0× 10−6, 1.0× 102]
δapm [1.0× 10−6, 1.0× 100]
δA [1.0× 10−6, 1.0× 100]
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5 Numerical Experiments

The numerical experiments were performed in two stages. First, we calibrated
seven key constants (presented in Table 2) to cohort data using DE. This cali-
bration was conducted for two vaccines: the unconjugated CPS vaccine and the
V–TT vaccine at a dose of 9.6µg CPS/4.3µg TT.

Next, we simulated the immune response following the administration of the
remaining two GBS vaccine doses. For these simulations, the initial conditions
for vaccine and antibody levels were adjusted to match the values reported in the
literature [1]. In particular, the initial vaccine values were computed based on
an average blood volume of 5 liters. These initial condition values are presented
in Table 3, while all other initial conditions were maintained as reported in the
literature [3]. All other constants were set to the values obtained through DE
calibration for the conjugated vaccine. This section presents the results of the
numerical experiments.

Table 3. Initial conditions adopted in this work. All other conditions were kept the
same as in the literature [3].

Dose V p A

Unconjugated CPS 7.4× 10−3 1.0
V–TT: 2.4µg CPS / 1.1µg TT 7.0× 10−4 1.6
V–TT: 9.6µg CPS / 4.3µg TT 2.7× 10−3 1.3

V–TT: 38.5µg CPS / 17.0µg TT 1.11× 10−2 2.3

5.1 Computational Environment

The computational experiments were conducted on a machine equipped with
dual AMD EPYC 7713 processors, providing a total of 128 physical cores. Each
core features 64 KB of L1 data cache, 64 KB of L1 instruction cache, 512 KB
of unified L2 cache, and shares a 32 MB L3 cache with seven other cores. The
system ran GNU/Linux with kernel version 4.18.0-513.9.1.el8_9.

Despite the availability of many cores, the model was implemented sequen-
tially. Python was used to develop the model, and the system of ODEs was
numerically solved using the odeint function from the scipy.integrate pack-
age [13]. This function automatically selects an appropriate numerical method
based on the characteristics of the ODE system, offering adaptive timesteps and
convergence order. All experiments were performed using Python version 3.13.2.

5.2 Numerical Results and Discussion

The DE algorithm successfully calibrated seven key parameters to fit the model
to the cohort data for both the unconjugated CPS vaccine (37µg) and the con-
jugated V–TT vaccine (9.6µg CPS/4.3µg TT), as shown in Figures 2A–B. The
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calibrated parameter values are presented in Table 4. Notably, significant dif-
ferences were observed between the two vaccine formulations, reflecting their
distinct immunological mechanisms.
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Fig. 2. Numerical results (red line) compared to GMT cohort data (blue dots) for four
different GBS vaccines: (A) Unconjugated CPS: 37µg; (B) V-TT: 9.6µg CPS/4.3µg
TT; (C) V-TT: 2.4µg CPS/1.1µg TT; and (D) V-TT: 38.5µg CPS/17.0µg TT. The
numerical results for vaccines (A) and (B) were obtained after adjusting the seven
model parameters in Table 2 using DE. The constant values obtained via DE (Table 4)
were then used to simulate the other two vaccines (C and D) by modifying only the
initial conditions (Table 3), to account for the distinct vaccine doses.

For the conjugated V–TT vaccine, the maturation rate of antigen-presenting
cells (βap) was calibrated to a value 93 times higher than that of the unconjugated
CPS vaccine (9.94×10−1 vs. 9.25×101). This aligns with the known adjuvant
effect of tetanus toxoid, which enhances APC activation by promoting cross-
talk between innate and adaptive immune systems [19]. Similarly, the innate-
mediated vaccine clearance rate (kv1) was approximately 1,700 times higher for
the conjugated vaccine (3.15×100 vs. 1.83×10−3), suggesting that antibodies
generated by the V–TT formulation more effectively neutralize vaccine parti-
cles, a hallmark of robust immunological memory that was also observed in
opsonophagocytosis assays [1].
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The decay rate of short-lived plasmocytes (δps) remained consistent between
the two formulations (approximately 3.39×100 to 3.91×100 day−1), indicat-
ing that short-term antibody production mechanisms are conserved regardless
of conjugation. However, the antibody decay rate (δA) was slightly higher for
the conjugated vaccine (3.41×10−2 vs. 2.47×10−2 day−1), potentially reflecting
faster antibody turnover due to increased immune activity.

Table 4. Constant values found after the calibration of the model.

Constant Value for the Unconjugated CPS Value for the V–TT 9.6µg CPS/4.3µg TT

kv1 1.83× 10−3 3.15× 100

kv2 1.13× 10−1 6.07× 10−1

δps 3.39× 100 3.91× 100

αap 5.92× 10−1 6.18× 10−1

βap 9.94× 10−1 9.25× 101

δapm 8.36× 10−1 1.00× 100

δA 2.47× 10−2 3.41× 10−2

Figure 2 compares simulated antibody titers to cohort data across four vac-
cine doses. The model accurately reproduced the dose-dependent response ob-
served in the clinical trial, with higher CPS doses eliciting stronger and more
sustained antibody levels.

The highest V–TT dose (38.5µg CPS/17.0µg TT) showed near-perfect align-
ment with cohort data, achieving a peak titer of approximately 50µg/mL at 8
weeks (Figure 2D). Lower doses (2.4µg CPS/1.1µg TT) exhibited greater dis-
crepancies when compared with the other dosing regimens, with simulated titers
consistently falling below the geometric mean titers (GMT) at all time points,
albeit remaining within the confidence intervals. Although the model success-
fully replicated the overall dose-response trends, minor deviations at lower doses
suggest opportunities for refinement. Incorporating additional parameters into
the calibration process may further improve the model’s precision.

6 Conclusions and Future Work

This study developed a computational model to simulate the immune response
to the Type V GBS-TT conjugate vaccine, successfully reproducing clinical trial
data across multiple dosages. By calibrating seven key parameters using Dif-
ferential Evolution, the model captured the distinct immunological dynamics of
both conjugated and unconjugated vaccines, providing mechanistic insights into
their dose-dependent efficacy.

Our results, consistent with cohort data from the reference study, demon-
strating that the conjugated V–TT vaccine elicits a more robust and sustained
antibody response than the unconjugated CPS formulation. The numerical out-
comes suggest that enhanced antigen-presenting cell (APC) maturation and ac-
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celerated antibody-mediated clearance—reflecting the adjuvant effect of tetanus
toxoid—are critical factors driving this superior immune response.

Although the model aligned closely with cohort data for higher doses (e.g.,
38.5µg CPS/17.0µg TT), minor discrepancies at lower doses (e.g., 2.4µg CPS/1.1µg
TT) indicate opportunities for further refinement, such as incorporating addi-
tional parameters into the calibration process. Future work should also explore
uncertainty quantification and consider integrating patient-specific immune pro-
files to enable personalized dosing recommendations, particularly for high-risk
populations.
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