
MTL-FECAM: Bridging the stability-plasticity
tradeoff in Exemplar-free Continual Learning

Sakshi Ranjan1[0000−0002−1740−8366], Niraj Kumar1[0009−0008−6722−323X], Jatin
Kumar2[0009−0004−3359−0948], and Sanjay Kumar Singh1[0000−0002−9061−6313]

1 Indian Institute of Technology (BHU), Varanasi, India-221005
2 Vellore Institute of Technology, Vellore, India-632014

sakshiranjan.rs.cse21@itbhu.ac.in, nirajkumar.rs.cse22@itbhu.ac.in,
jatin.kumar2022@vitstudent.ac.in, sks.cse@iitbhu.ac.in

Abstract. Exemplar-Free Class Incremental Learning (EFCIL) is a spe-
cialized form of Class Incremental Learning (CIL), where a model sequen-
tially learns new classes without storing past data. As a subset of Contin-
ual Learning (CL), EFCIL presents greater challenges due to its height-
ened susceptibility to Catastrophic Forgetting (CF), stability-plasticity
tradeoff, and feature drift. A recent trend in CIL for pre-trained models
involves freezing the feature extractor after the first task and incremen-
tally learning the classifier, attracting considerable attention. To address
the research gap of the prototypical network for CIL leveraging new
molecular class prototypes that can be generated using a frozen feature
extractor, we propose a novel Multi-Task Learner (MTL) using Elas-
tic Weight Consolidation (EWC) and Feature Covariance Aware Metric
(FECAM) in ChemBERTa model named MTL-FECAM. The proposed
framework uses the Mahalanobis metric for CIL setting for three molec-
ular datasets BBBP, bitter, and sweet. The empirical analysis show-
cases that modeling feature covariance relationships outperform previous
methods that sample features from normal distributions train the MTL
and balance stability-plasticity tradeoff and minimum CF (Accuracy -
90.89%, 92.62%, 91.95% and Forgetting Measure (FM) - 0.27, 0.0, 0.0
on BBBP, Bitter, and Sweet datasets respectively). The proposed frame-
work is adaptable to various molecular datasets for both Few-Shot CIL
(FSCIL) and Many-Shot CIL (MSCIL), setting it apart from existing ap-
proaches. Remarkably, MTL-FECAM achieves state-of-the-art results on
multiple standard CL benchmarks. Code link : https://github.com/sran07/
MTLFECAM.
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1 Introduction

In CL, a model must continuously acquire knowledge from an evolving stream of
tasks while only accessing data from the current task. This constraint makes it
highly susceptible to CF, where previously learned information is lost. This chal-
lenge is particularly significant in CIL, where the goal is to incrementally learn
new classes while maintaining high accuracy for all encountered classes without
task labels indicating the origin of the evaluated samples [1]. A straightforward
approach to mitigate forgetting involves storing exemplars of each class. How-
ever, this is impractical in scenarios where storage is limited, or data privacy is a
concern, such as in medical imaging. Consequently, research has shifted towards
EFCIL methods, which aim to distinguish between old and new classes without
retaining past data. Existing EFCIL strategies handle this challenge in two pri-
mary ways. Some methods prioritize plasticity by training in new classes while
preserving past knowledge via knowledge distillation. Others focus on stability,
freezing the feature extractor after the first task and incrementally updating only
the classifier [2]. However, a major drawback of freezing the feature extractor is
its inability to learn new representations (Fig.1).

To address this, CIL methods, inspired by transfer learning, aim to maxi-
mize the utility of pre-trained representations while continuously adapting the
classifier to new tasks. Feature-based approaches (e.g., Prototypes, Mahalanobis
Classifier [6], Nearest-Class Mean (NCM) [4]) that store statistical summaries
instead of data points. Architectural modifications (e.g., Expansion-based mod-
els) that add new neurons or layers for each task. These approaches leverage
transformer models pre-trained on large-scale molecular datasets such as ZINC,
HIV, etc., and primarily focus on refining the classifier while keeping the fea-
ture extractor frozen (Fig. 2). For task-wise incremental learning in Molecular
property Prediction (MP): Train on BBBP (Task 1) implies learning features
and storing feature representations; train on Bitter (Task 2) implies avoiding
forgetting BBBP knowledge; train on Sweet (Task 3) implies avoiding forgetting
both BBBP and Bitter while learning sweet [3].

Fig. 1: Feature representations in EFCIL settings.
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Drug discovery integrates genomic, proteomic, chemical, clinical trials, and
experimental data, forming a framework for CL in Artificial Intelligence (AI)
research. CL enhances model accuracy by seamlessly incorporating diverse data
over time, supporting personalized medicine with continuous updates for indi-
vidualized treatment recommendations [38]. Integrating diverse data types can
be time-consuming and error-prone. Cost and time constraints exist when vali-
dating new drugs. ML methods leverage complex molecular interactions, build
predictive, efficient, and scalable models, integrate multi-modal data with fea-
ture selection and optimization, and generalize to unseen molecules to address
the issue [36,37]. Furthermore, MSCIL occurs when an ML model receives a sub-
stantial number of labeled samples per class while learning new classes, allowing
it to establish well-defined decision boundaries. For instance, in case of having
thousands of SMILES molecules labeled as BBBP+ (1) or BBBP- (0), it is a
MSCIL scenario. Each new molecular property (e.g., Bitter, Sweet) is learned
with many examples per class in the incremental phase [39, 40]. In FSCIL, the
Machine Learning (ML) model receives very few labeled samples per new class
in the incremental phase, and it must generalize from limited examples, often
using meta-learning, prototypes, or feature adaptation techniques. For instance,
to introduce a new property like "Toxicity" with only 5–10 molecules labeled
for each class (Toxic/Non-Toxic), the model must learn to classify Toxicity with
minimal data while retaining knowledge of previously learned properties [5].

Fig. 2: Illustration of distances for SMILES input

MSCIL faces semantic drift as new tasks arrive, often mitigated by knowledge
distillation or regularization, though these require storing past data—impractical
for privacy-sensitive applications. We adopt an alternative that freezes the fea-
ture extractor after the first task, training only the classifier for new classes [8].
FSCIL, in contrast, deals with limited samples per class, often using meta-
learning or variational inference for adaptation. Most methods average feature
embeddings to form class prototypes, classifying via Euclidean distance. We ex-
plore prototype-based learning in both MSCIL and FSCIL for molecular prop-
erty prediction, leveraging Mahalanobis distance for improved feature distribu-
tion modeling in cross-domain CL [7, 35]. We propose MTL-FECAM, a novel
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MTL model that integrates FECAM (for stability-plasticity tradeoff and se-
mantic drift mitigation), Mahalanobis metric, and a regularization approach -
EWC (mitigating CF) in ChemBERTa model. FECAM leverages feature co-
variance normalization and a Bayes classifier for optimal decision boundaries
learning by considering covariance-adjusted feature distributions, while EWC
preserves key parameters using Fisher information. This approach enables scal-
able, privacy-preserving incremental learning for MP. The contributions of this
work are summarized as follows :

– This study depicts a quantifiable association between stability and plasticity,
a significant obstacle in CL for MP, which has not been tackled in bioinfor-
matics. To overcome CF, we propose a novel model, MTL-FECAM, which
uses an optimal Bayes classifier in the ChemBERTa model by modeling the
covariance relations and molecular class prototypes to boost the model’s
performance.

– This framework models the feature covariance connections using a Maha-
lanobis metric to learn better non-linear decision boundaries for new classes
of three molecular datasets - BBBP, bitter, and sweet.

– This framework is easily implementable and is used for both MSCIL and FS-
CIL approaches and depicts better learning of optimal decision boundaries.
We calculate the covariance matrix for molecular classes using feature em-
beddings from the training samples and apply correlation normalization to
standardize variances across class representations, ensuring reliable distance
comparisons.

– Furthermore, the performance of the proposed model outperforms the base-
line models upon comparison by conducting extensive empirical analysis and
visualization through continuous retraining on the learned tasks.

The arrangement of this study is split into four sections. Section 2 explains
the methodology used. Section 3 introduces the experimental analysis. Section
4 highlights the conclusion of the work.

2 Methodology

In this section, Fig. 1 shows the proposed methodology of the MTL-FECAM
model, which is described below :

1. Dataset and Featurization The datasets used in this study are gath-
ered from the MolecularNet [26] for the classification tasks. The pre-processing
techniques used are - canonicalization, padding and truncation, and encodings.
Molecules can have multiple valid SMILES notations (e.g., C1=CC=CC =C1
vs. c1ccccc1 for benzene). BBBP dataset (DATASET-I) is designed for modeling
whether the compound will penetrate the blood-brain barrier. It comprised 2049
compounds with four attributes: Name, SMILES, Label, and Reference. For the
bitter (DATASET-II) and sweet (DATASET-III) datasets, after pre-processing,
i.e., eliminating the molecules that didn’t contain the exact details about the bit-
ter and sweet tastes or presenting some conflicting, unavailable facts, datasets
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Fig. 3: Proposed Methodology

comprised 1698 bitter and 2860 non-bitter (sweet/tasteless) compounds and 2411
sweet and 2147 non-sweet (bitter/tasteless) compounds.

2. MTL-FECAM Model - In MP, feature representations derived from
Deep Learning (DL) models play a crucial role in classification tasks. For CIL
on molecular datasets - BBBP, Bitter, and Sweet, it is essential to determine how
to assign molecules, represented as SMILES, to their respective classes. Tradi-
tional classification methods, such as the NCM classifier, employ the squared
Mahalanobis distance DM instead of the Euclidean distance to assign a given
sample x to the closest class mean µy:

y∗ = arg min
y=1,...,Y

DM (x, µy), DM (x, µy) = (x− µy)
TM(x− µy) (1)
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where Y is the number of molecular property classes (e.g., BBBP, Bitter,
Sweet), and M is a positive definite matrix. The class mean µy is computed as
the average of feature representations of all molecules belonging to class y. With
the shift toward deep molecular representations, where a neural network ϕ : X →
RD extracts feature vectors from molecular SMILES, learning the Mahalanobis
metric M may no longer be necessary. Instead, the isotropic Euclidean distance
is often used for classification:

y∗ = arg min
y=1,...,Y

DE(ϕ(x), µy), DE(ϕ(x), µy) = (ϕ(x)− µy)
T (ϕ(x)− µy) (2)

where ϕ(x) represents the learned molecular feature vector, and µy is the class
prototype (average feature vector of class y). In Euclidean space, M = I, where
I is the identity matrix. The effectiveness of the NCM classifier with Euclidean
distance has been widely adopted in CIL settings. In EFCIL with molecular data,
feature representations evolve incrementally, making Euclidean distance less ef-
fective. We compare Euclidean and Mahalanobis distances in a CL model trained
on Bitter and BBBP molecules and later extended to Sweet. While Euclidean
distance performs well on old classes, it struggles with new ones. Mahalanobis
distance, however, consistently improves classification by better handling het-
erogeneous molecular feature distributions

Given that feature distributions follow a multivariate normal distribution
N(µy, Σy), the probability of a molecular feature x belonging to class y for
ChemBERTa model is given by:

P (x|C = y) ≈ exp

(
−1

2
(x− µy)

TΣ−1
y (x− µy)

)
(3)

This corresponds to the optimal Bayesian classifier, where classification is
performed based on the posterior probability:

argmax
y

P (Y |X) = argmax
y

P (X|Y )P (Y ) = argmax
y

P (X|Y ) (4)

Since applying the logarithm preserves the ordering, the decision boundary
can be rewritten in terms of the squared Mahalanobis distance:

argmax
y

logP (X|Y ) = argmin
y

DM (x, µy) (5)

DM (x, µy) = (x− µy)
TΣ−1

y (x− µy). (6)

Feature Representation with ChemBERTa - We extract molecular rep-
resentations from SMILES using ChemBERTa, denoted as ϕ(x), where ϕ : X →
RD maps input SMILES sequences to a D-dimensional feature space. These fea-
tures serve as the basis for classifying molecular properties in a MTL framework.

Covariance Matrix Approximation - estimating the covariance matrices
from ChemBERTa’s feature space to model feature distributions include:

1. Common Covariance Matrix (Σ1:t) - It is incrementally updated as
the mean covariance across all MP tasks seen up to task t:
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Σ1:t = Σ1:t−1 ·
|Y1:t−1|
|Y1:t|

+Σt ·
|Y1:t| − |Y1:t−1|

|Y1:t|
(7)

where Σt represents the covariance matrix of new molecular classes intro-
duced in task t.

2. Class-Specific Covariance Matrices (Σy) - maintains separate covari-
ance matrices for each molecular class y by storing one covariance matrix per
class, providing a more flexible representation of feature distributions:

Σy =
1

|Xy|
∑
x∈Xy

(ϕ(x)− µy)(ϕ(x)− µy)
T . (8)

Normalization of Covariance Matrices - Covariance matrices are nor-
malized using the correlation matrix to ensure comparability:

Σ̂y(i, j) =
Σy(i, j)

σy(i)σy(j)
, (9)

where σy(i) =
√
Σy(i, i) and σy(j) =

√
Σy(j, j) are the standard deviations

along feature dimensions.
Covariance Shrinkage - is used where the feature dimensionality is large,

the covariance matrix may be non-invertible due to a limited number of training
samples per molecular class:

Σs = Σ + γ1V1I + γ2V2(1− I), (10)

where V1 is average diagonal variance, V2 is average off-diagonal covariance,
and I is identity matrix.

Tukey’s Ladder of Powers Transformation - It reduces feature skewness
and enforces a more Gaussian-like distribution:

ϕ̃(x) =

{
ϕ(x)λ, if λ ̸= 0,

log(ϕ(x)), if λ = 0.
(11)

where λ is a transformation parameter (set to 0.5 in our experiments). Nor-
malized features ϕ̃(x) are then used for covariance matrix estimation.

Final Prediction - Using transformed features and class-specific covariance
matrices, the classification decision is made as:

y∗ = arg min
y=1,...,Y

DM (ϕ̃(x), µỹ), (12)

DM (ϕ̃(x), µỹ) = (ϕ̃(x)− µỹ)
T Σ̂−1

y (ϕ̃(x)− µỹ) (13)

and Σ̂−1
y denotes the inverse of the covariance matrix after shrinkage and

normalization.
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3 Experimental Analysis and Discussions

The empirical analysis outcomes are described in four aspects. Models are trained
and tested on a T4 GPU with 52GB RAM and coded in Python; training for
3000 epochs with a patience value of 1000 using performance metrics are Test Ac-
curacy (TA), Forgetting Measure (FM), and Anytime Average Accuracy (AAA).

3.1 Comparison of the Model’s Performance

MTL-FECAM achieves the highest accuracy across all three datasets at all in-
cremental tasks, FM = 0.0, indicating no CF. This suggests that MTL-FECAM
effectively preserves past knowledge while learning new tasks. This is because
MTL learns a shared representation across multiple MP tasks and prevents task
interference by optimizing task-invariant and task-specific features together. The
covariance matrix models the covariance between different feature dimensions. It
helps in the consolidation of important features by preserving not only individual
weight importance but also feature relationships. Additionally, the Mahalanobis
metric considers feature distributions and class prototypes, ensuring better sep-
aration between classes. In contrast, oEWC and LwF-MC show strong accuracy
but still suffer some forgetting (FM > 0.0). DeeSIL, MUC, SDC, FeTrIL, and
SSRE exhibit low accuracy and high FM, implying they struggle with knowledge
retention. PASS and IL2A perform well but still exhibit minor forgetting. These
methods fail because they train models sequentially without retaining prior task
knowledge and constrain weight updates but do not actively promote knowledge
transfer (Table 1 and Table 2).

Table 1: Incremental test accuracy and forgetting measure in exemplar-free
MSCIL with different incremental tasks.

CIL
METHODS

BBBP BITTER SWEET
ACCURACY FM ACCURACY FM ACCURACY FMT=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

oEWC [12] 85.80 83.71 90.80 0.0 86.52 85.26 89.97 0.0 84.20 87.42 88.74 0.0
LwF-MC [18] 86.20 86.44 86.54 0.0 86.55 89.05 92.14 0.0 82.54 88.24 91.09 0.0
DeeSIL [14] 47.71 65.61 58.15 0.125 42.26 40.65 41.11 0.011 49.46 47.23 49.92 0.499
MUC [15] 74.73 72.29 76.10 0.125 61.79 59.57 64.50 0.002 58.59 64.87 57.45 0.307
SDC [16] 68.63 58.20 65.61 0.064 49.98 61.89 63.14 0.208 64.69 56.40 61.16 0.223
PASS [10] 84.97 86.63 84.76 0.005 84.19 86.60 86.11 0.010 82.29 84.90 85.59 0.019
IL2A [11] 76.10 23.56 39.66 0.627 43.93 45.36 41.84 0.140 47.29 49.71 57.36 0.284
SSRE [17] 54.83 51.07 47.32 0.199 63.52 54.59 53.30 0.252 47.46 58.49 58.30 0.346
FeTrIL [9] 23.56 23.56 45.07 0.444 34.31 38.15 38.15 0.064 52.73 48.46 48.33 0.470

Eucl-NCM [4] 77.12 53.02 60.68 0.167 63.73 56.28 62.77 0.186 63.83 61.51 62.89 0.148
MTL-FECAM 89.32 86.24 90.89 0.272 85.63 89.78 92.62 0.0 84.95 86.75 91.95 0.0

The key observations from Table 3 are as follows: MTL-FECAM outperforms
other methods by effectively balancing learning stability, task adaptability, and
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Table 2: Anytime average accuracy in exemplar-free MSCIL with different in-
cremental tasks.

CIL
METHODS

BBBP BITTER SWEET
T=5 T=10 T=20 T=5 T=10 T=20 T=5 T=10 T=20

oEWC [12] 86.88 85.85 87.67 85.17 86.81 88.13 84.86 88.57 90.08
LwF-MC [18] 89.80 90.34 90.88 85.34 85.79 87.21 84.84 86.34 87.91
DeeSIL [14] 74.05 74.49 74.73 49.35 51.06 50.52 40.22 40.39 42.60
MUC [15] 70.93 66.12 57.46 61.60 61.74 62.32 58.01 60.45 59.21
SDC [16] 76.29 69.71 66.62 55.05 55.11 55.35 63.83 60.43 60.68
PASS [10] 89.51 89.08 89.12 84.19 85.24 85.53 89.29 83.59 84.26
IL2A [11] 89.00 88.63 88.36 87.30 87..62 88.18 84.00 86.07 86.41
SSRE [17] 63.27 58.68 56.47 62.45 62.20 62.44 66.88 61.84 63.65
FeTrIL [9] 55.26 54.71 45.20 61.14 64.85 61.12 54.26 58.66 56.14

Eucl-NCM [4] 64.88 64.88 64.88 72.24 72.24 72.24 73.68 73.68 73.68
MTL-FECAM 90.17 90.67 91.11 89.41 90.22 90.93 88.61 89.57 90.41

memory efficiency while preventing catastrophic forgetting. It leverages a multi-
task framework and memory consolidation to enhance feature discrimination
across tasks. In contrast, methods like CoIL, WA, BiC, FOSTER, DER, and
MEMO exhibit negative FM values, indicating a decline in accuracy due to
inadequate knowledge retention. PODNet and iCaRL struggle with task adap-
tation as they rely on fixed feature extractors or rigid distillation constraints,
limiting flexibility. WA and BiC underperform due to simple feature alignment,
which fails to generalize to evolving molecular representations. DER and MEMO
suffer from overfitting and inefficient memory utilization, leading to poor gener-
alization.

Table 3: Comparison of the proposed method with exemplar-based methods
storing 2000 exemplars for #P parameters.

CIL
METHODS #P BBBP BITTER SWEET

TA AAA FM TA AAA FM TA AAA FM
iCaRL [18] 11.17 64.88 64.88 0.00 72.24 72.24 0.00 73.68 73.68 0.00

PODNet [19] 11.17 87.41 86.72 0.00 80.83 80.09 0.00 79.89 79.66 0.00
CoiL [20] 11.17 90.00 89.20 -0.0141 83.77 82.50 -0.0127 84.27 82.87 -0.0163
WA [21] 11.17 89.46 86.08 -0.0449 84.84 83.51 -0.0196 83.52 82.75 -0.0194
BiC [22] 11.17 89.80 88.46 -0.0312 84.67 83.64 -0.0211 83.06 81.99 -0.0250

FOSTER [23] 11.17 89.07 88.20 -0.0146 85.34 82.37 -0.0578 84.69 82.79 -0.0346
DER [24] 67.02 90.00 88.28 -0.0293 85.92 84.15 -0.0363 84.54 82.62 -0.0338

MEMO [25] 53.14 88.05 88.05 0.0015 86.38 84.80 -0.0386 84.54 82.33 -0.0434
MTL-FECAM 11.17 92.44 91.11 0.00 94.49 90.93 0.00 94.64 90.41 0.00
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3.2 Comparison with Baselines

Table 4 shows MTL-FECAM achieves the best accuracy across all datasets, out-
performing baseline models. The MTL enables shared feature representations
across tasks, leading to better generalization, while the FECAM stabilizes fea-
ture importance over different molecular representations, reducing the risk of fea-
ture drift. Additionally, the Mahalanobis metric improves class separation, lead-
ing to better discrimination of molecular properties in all datasets. Graph-based
SSL models struggle with forgetting, leading to lower performance. Transformer-
based models are strong but lack explicit continual learning mechanisms. Weave
and MoMu perform well on specific datasets but fail to generalize. Traditional
graph-based SSL methods struggle with CF and generalization, leading to signif-
icantly lower performance, while transformer-based models are strong, they lack
effective feature stability mechanisms, making them less robust in incremental
molecular learning

Table 4: Comparative analysis of test accuracy for baselines.
Model Sweet ToxCast SIDER Bitter COCONUT

MoMu [27] 77.60±0.56 66.23±0.66 56.50±0.88 73.90±0.36 85.00±0.25
Mole-BERT [28] 81.80±0.25 67.30±0.47 56.80±0.85 76.90±0.40 84.00±0.56
InfoGraph [29] 51.00±0.15 64.52±0.45 55.59±1.25 67.00±0.57 86.00±0.15
GPTGNN [30] 54.00±0.22 63.80±1.25 56.63±0.66 63.45±0.59 87.00±0.41

DGI [31] 54.80±0.62 64.20±1.36 56.12±0.55 64.00±0.68 87.49±2.10
MGSSL [32] 55.50±0.34 65.56±0.37 55.91±0.49 65.00±0.22 89.00±0.68

Transformer [33] 81.00±0.50 66.00±0.14 56.00±0.34 82.00±0.49 87.00±0.30
Weave [34] 80.50±0.42 64.00±0.42 54.00±0.34 81.00±0.29 84.00±0.47

MTL-FECAM 91.95±0.63 68.55±0.16 66.71±0.29 92.62±0.36 91.07±0.15

3.3 Ablation Study

Table 5 shows that the best performance is achieved with Mahalanobis distance
when Turkey’s equation, shrinkage estimation, and normalization are applied
together, reinforcing the importance of feature correlation and distribution ad-
justments in MP tasks. In this study, Mahalanobis considers feature correlations,
making it better suited for high-dimensional molecular data. Furthermore, the
covariance matrix allows Mahalanobis distance to account for feature correla-
tions, improving discriminability. Additionally, adding Turkey’s and Shrinkage’s
equation further boosts accuracy by refining feature distribution adjustment,
leading to better class separation, and helps stabilize covariance estimation, es-
pecially when sample sizes are small. The aggregation of these equations depicts
a synergistic effect, reducing distortions caused by correlated features, where
each component refines Mahalanobis distance, making it more robust.
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3.4 Graphical Analysis

In Fig. 4, MTL-FECAM effectively balances stability and plasticity in CL, mak-
ing it a strong candidate for MP in exemplar-free, privacy-preserving settings.
It maintains higher accuracy as the number of incremental sessions increases,
demonstrating superior resistance to CF and better learning of new tasks. The
performance gap increases over time, highlighting its better long-term stabil-
ity and ensures optimal decision boundaries by adjusting class feature distribu-
tions. BBBP shows the steepest decline in accuracy, suggesting that retaining
prior knowledge for this dataset is more challenging, while in Bitter and Sweet
datasets performance degrades more gradually, indicating better feature sepa-
rability and incremental adaptation. In Fig. 5, MTL-FECAM has the slowest
decline in accuracy compared to other methods, suggesting superior knowledge
retention and plasticity-stability balance. IL2A and FeTrIL show competitive
results, indicating that their strategies for feature adaptation and incremental
learning are effective. PASS and SSRE rely on distillation, and fail to maintain
knowledge over time. DeeDIL and MUC perform slightly better but still experi-
ence significant CF. In Fig. 6 ensures better feature alignment and better feature
space organization, preserving key parameters using Turkey’s transformation.

Table 5: Ablation study using test accuracy.

DISTANCE Covariance
Matrix

Turkey
Eqn.

Shrinkage
Eqn.

Normalization
Eqn. BBBP BITTER SWEET

Eucledian - × - - 55.77 58.18 59.47
Eucledian - ✓ - - 62.00 59.09 50.27

Mahalanobis Full × × × 60.00 57.99 65.75
Mahalanobis Full ✓ × × 63.12 64.31 50.69
Mahalanobis Full × × ✓ 50.61 61.93 52.67
Mahalanobis Full × ✓ × 62.54 62.77 52.48
Mahalanobis Full ✓ ✓ × 66.44 63.75 64.27
Mahalanobis Full × ✓ ✓ 71.80 62.64 64.52
Mahalanobis Full ✓ ✓ ✓ 73.85 68.04 67.00

Fig. 4: FSCIL methods accuracy of each incremental task for molecular datasets
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Fig. 5: Accuracy of each incremental task for molecular datasets and multiple
MSCIL methods.

Fig. 6: Scatterplots for old & new molecular classes with Turkey’s transformation.

3.5 Key Findings

The key takeaways of this study are described as follows:
1. Superior Incremental Test Accuracy & Forgetting Minimization

- MTL-FECAM consistently outperforms all EFCIL methods in TA across all
incremental tasks. FM is minimal or zero for MTL-FECAM, indicating effective
knowledge retention. Competing methods like oEWC and LwF-MC show some
knowledge retention but struggle with feature stability. Methods such as DeeSIL,
MUC, SDC, FeTrIL, and SSRE exhibit higher CF.

2. Stability-Plasticity tradeoff in Incremental Learning - MTL-FECAM
achieves the highest AAA across incremental tasks, confirming its adaptability
in a CIL setting. Compared to oEWC, LwF-MC, and IL2A, MTL-FECAM bet-
ter balances the stability-plasticity tradeoff, ensuring both knowledge retention
and adaptability to new tasks.

3. Baselines on Molecular Property Prediction - MTL-FECAM achieves
the highest accuracy compared to other state-of-the-art models like MoMu, In-
foGraph, GPTGNN, and Transformer-based methods. This highlights its effec-
tiveness in learning molecular features while preventing CF.

4. Comparison with Exemplar-Based CIL Methods - MTL-FECAM
achieves comparable or superior performance against exemplar-based methods
like iCaRL, PODNet, and DER, even though it operates without storing exem-
plars. The proposed method outperforms FOSTER, MEMO, and other replay-
based methods in terms of AAA and TA while maintaining minimal forgetting.
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4 Conclusion

This study presents MTL-FECAM, a novel MTL framework that integrates FE-
CAM, the Mahalanobis metric, and EWC within ChemBERTa to address CL
challenges in MP tasks and bridge a critical gap in bioinformatics CL. The model
effectively tackles CF and semantic drift while balancing stability and plasticity
- a major limitation in bioinformatics overlooked by researchers. By leveraging
covariance-adjusted feature normalization and an optimal Bayes classifier, MTL-
FECAM improves CIL performance The key takeaway of this study includes -
MTL-FECAM effectively quantifies and mitigates the stability-plasticity trade-
off, improving long-term model performance in bioinformatics CIL. Feature co-
variance modeling enables a more informative and adaptive representation. The
Mahalanobis metric helps learn optimal non-linear boundaries for new molec-
ular classes. MTL-FECAM does not rely on exemplars, making it suitable for
privacy-based biomedical applications. Empirical results and continuous retrain-
ing highlight the model’s robustness and adaptability over time, hence confirming
that MTL-FECAM outperforms existing CL methods. This work lays the foun-
dation for future privacy-preserving, exemplar-free CL models in bioinformatics
and cheminformatics applications.
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