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Abstract. Accurate prediction of enzyme thermostability is crucial for
bioengineering applications. This paper proposes a novel ensemble learn-
ing framework for predicting protein thermostability. The proposed en-
semble learning framework combines XGBoost, a potent gradient boost-
ing technique, with a Bidirectional Long Short-Term Memory (BiLSTM)
network, which captures complex sequence-based features. The proposed
framework attained the RMSE, MAE, R2 score, and Spearman Correla-
tion coefficient of 0.37, 0.68, 0.72, and 0.76 respectively. Its performance
is also evaluated against other machine-learning models and performs no-
ticeably better than all of them. Furthermore, we leveraged Explainable
Machine Learning (XML) techniques like SHAP (SHapley Additive Val-
ues), LIME (Local Interpretable Model Explainer), ELI5 and QLattice
to enhance model interpretability.

Keywords: Artificial intelligence · Ensemble modelling · Protein stabil-
ity prediction · Thermostability.

1 Introduction

Stability is a critical property of molecules, and when it comes to proteins, de-
termining their stability has been accomplished through various experimental
techniques such as calorimetry, denaturation studies, and optical spectroscopy.
Although the number of known protein sequences is increasing, characterizing
their stability lags significantly behind. Protein stability is a critical property [1]
that influences various biological and industrial processes [2]. Among these, ther-
mal stability stands out due to its significance in maintaining protein function-
ality under varying environmental conditions, especially in biotechnological and
food science applications [3]. Thermodynamic stability, often assessed through
parameters such as the free energy of stabilization and the melting temperature
(Tm), which indicates the temperature at which 50% of the protein unfolds, plays
a pivotal role in these considerations [4]. Protein thermal stability is based on a
variety of concepts, including amino acid sequences [5], physicochemical features
[6], protein chain lengths [7], temperature-dependent statistical potentials [8],
microorganisms’ natural temperature and salt bridges [9], and numerous other
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features. More advanced methods have incorporated decision trees and neural
networks (NN) [6] and adaptive network-fuzzy inference systems (ANFIS) [5].
While significant progress has been made in understanding protein stability,
there remains a gap in effectively predicting it. The prediction methods are hin-
dered by limited experimental data, leading to tools based on small datasets,
which negatively impacts their performance due to the complexity of stability,
which is influenced by various features.

Protein stability predictors are classified into two types: those that predict
the stability of entire proteins and those that forecast the influence of sequence
changes on protein stability [10]. In this context, we focus on predictors targeting
entire protein stabilities. A variety of prediction techniques have been developed,
such as length of sequences, sequence composition [5] surface and physiochem-
ical features [11] the temperature at which organism lives and salt bridges [9],
various statistical and sequence potentials [12], and different protein properties
[13]. A thorough explanation of the different features and characteristics can
be seen used in model training [13]. While computational methods have be-
come increasingly important in addressing the challenge of limited experimental
data, they have faced hurdles related to dataset size and bias [13]. Recent efforts
have shifted towards larger training datasets; however, the over-representation
of dominant species in these datasets may limit their applicability across di-
verse protein characteristics and properties. Furthermore, available algorithms
for thermal stability prediction differ in their approaches. Some, like DeepTP [14]
and BertThermo [15], focus on classification problems, distinguishing between
thermostable and thermolabile proteins, without predicting Tm values directly.
While the predictors that are based on classification have shown impressive per-
formance, they ease the process by categorizing proteins into discrete stability
classes, whereas regression-based models account for the continuous nature of
Tm values.

AI based frameworks have been employed earlier in different bioinformatics
related works [16]. In this paper, we propose a novel hybrid approach combin-
ing BiLSTM [17] and XGBoost [18] for predicting protein thermostability, and
further compare it with other machine learning models. Our goal is to con-
tribute to the growing body of knowledge in this field, with potential appli-
cations in protein engineering, drug discovery, and beyond. The pipelines im-
plemented include BiLSTM network, Extreme Gradient Boosting (XGBoost),
Random Forests [19], Support Vector Regressor (SVR) [20] and other baseline
linear regression techniques including Ridge, Lasso, and standard Linear regres-
sion. To gain deeper insights into the proposed ensemble model’s predictions
and enhance interpretability for protein stability analysis, we employed Explain-
able Machine Learning (XML) techniques. This approach is crucial for domain
experts who require a comprehensive understanding of the rationale behind indi-
vidual predictions. In this study, we utilized SHAP, LIME, ELI5 and QLattice,
to provide a more interpretable view of the model’s decision-making process.
The main contributions of this paper are as follows:
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1. Proposed a BiLSTM-XGBoost ensemble model to capture complex protein
sequence features and leverage the power of ensemble learning.

2. Conducted a comparative analysis with established machine learning models
like Random Forest, SVR, linear regression techniques (Ridge and Lasso),
and standard Linear regression.

3. Incorporated XML techniques like SHAP, LIME, ELI5 and QLattice to en-
hance model interpretability.

2 Materials and methods

This section explores various techniques and algorithms employed for protein
thermostability as depicted in Fig. 1. We conducted a comparative analysis
among eight regression models including BiLSTM-XGBoost, BiLSTM, XGBoost,
Random Forest, SVR, Ridge and Lasso regressions, and Linear regression. The
BiLSTM-XGBoost ensemble model proved to be the best algorithm among all
the other methods.

Fig. 1: The overall process flow for protein thermostability prediction

2.1 Dataset description

This research utilised the dataset from the Novozymes enzyme challenge [21].
Encompassing 31,390 protein sequences drawn from published studies and di-
verse sources, it offers a powerful resource for our investigation. The dataset
is provided in CSV format and includes following key elements for predicting
thermostability:

– Protein sequences: The primary structural information of proteins, essen-
tial for determining their properties and behavior.

– pH value: Environmental conditions under which the protein operates, in-
fluencing its stability.
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– Melting temperature (Tm): The target variable indicating thermosta-
bility, where higher values reflect greater thermal stability (see Fig. 2 for
distribution).

– Rich feature set: Beyond sequences, we employed feature engineering tech-
niques to enrich the dataset with additional features relevant to protein sta-
bility. This includes amino acid composition (excluding uncommon residues):
Alanine (Ala, A), Arginine (Arg, R), Asparagine (Asn, N), Aspartic acid
(Asp, D), Cysteine (Cys, C), Glutamic acid (Glu, E), Glutamine (Gln, Q),
Glycine (Gly, G), Histidine (His, H), Isoleucine (Ile, I), Leucine (Leu, L), Ly-
sine (Lys, K), Methionine (Met, M), Phenylalanine (Phe, F), Proline (Pro,
P), Serine (Ser, S), Threonine (Thr, T), Tryptophan (Trp, W), Tyrosine
(Tyr, Y), Valine (Val, V); and a comprehensive array of physiochemical
properties such as aromaticity, hydrophobicity, isoelectric point, instability
index, molecular weight, and net charge.

Fig. 2: Range of temperature (Tm) in the data

2.2 Preprocessing

To ensure data quality and relevance, we meticulously removed duplicates, im-
puted missing pH values using the mean, and calculated amino acid frequencies.
Protein sequences were filtered based on length, retaining only those with a max-
imum length of <= 221, which covers the majority of the dataset and ensures
model consistency. Sequences were encoded using one-hot encoding. Addition-
ally, outlier checks were performed on the pH values, and any entries with pH
> 14 were removed, as they fall outside the valid biological range. This resulted
in a total of 30,965 protein sequences with a balanced training set (80%), val-
idation set (10%), and test set (10%), each containing 24,772, 3096, and 3097
diverse protein sequences respectively. This curated dataset forms the basis for
predicting protein thermostability.

2.3 Model development

In this section, we detail the implementation of our proposed model for pro-
tein thermostability. We also show the development of other models based on
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the state-of-the-art bagging and boosting techniques that were considered while
building our model.

Bidirectional LSTM The proposed model integrates a BiLSTM network to
effectively capture contextual dependencies within protein sequences while incor-
porating additional non-sequential features for improved predictive performance.
Fig. 3 illustrates the architecture of the model. The specific hyperparameters
used in this work are detailed in Table 1. The architecture comprises three dis-
tinct input pathways: (i) a sequence input processed through an embedding layer
followed by two stacked BiLSTM layers to encode the sequential dependencies,
(ii) a feature-based input processed via dense layers to extract high-dimensional
representations of supplementary attributes, and (iii) an amino acid count input
passed through dense layers to capture specific feature interactions. Each branch
applies intermediate layers of batch normalization to improve training stability
and convergence. The outputs from the three branches are concatenated to form
a unified representation, which is subsequently refined through additional dense
layers. The final dense layer produces a scalar output, making the model well-
suited for regression tasks such as predicting protein-related properties. This
multi-input, multi-branch design enables the model to enhance its predictive
performance.

Fig. 3: The architecture of Bidirectional LSTM Model

XGBoost For Tm prediction, we developed a specific model based on the XG-
Boost algorithm. We created five distinct XGBoost models by varying the ran-
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dom seed values used in dataset creation, resulting in unique subsets for training
and validation. This approach allowed us to explore the robustness of our XG-
Boost model across various dataset instances. For the training of the XGBoost
models, we configured specific hyperparameters, including a learning rate of 0.1,
a maximum depth of 20, and 250 estimators, as detailed in Table 1. After training
each XGBoost model, we evaluated their accuracy through validation and test-
ing on independent test data. Fig. 4 illustrates the architecture of our XGBoost
ensemble model.

Fig. 4: XGBoost Model

Table 1: Hyperparameters of the models
Model Hyperparameter
BiLSTM ’loss’: mse, ’n_epochs’: 200, ’batch_size’:

256, ’LSTM_units: 64,32, ’regularisation’:
L1(1e-5), L2(1e-4), ’optimizer’: adam, ’ac-
tivation_funtion’: selu, tanh, ’metrics’:
RMSE

XGBoost ’learning_rate’: 0.1, ’max_depth’: 20,
’n_estimators’: 250, ’tree_method’:
’gpu_hist’

Random Forest ’n_estimators’: 1024, ’max_depth’:
256, ’min_samples_split’: 20,
’min_samples_leaf’: 1, ’max_features’:
sqrt

SVR ’C’: 1.0, ’kernel_function’: ’RBF’
Lasso Regression ’alpha’: 1.0
Ridge Regression ’alpha’: 1.0
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Ensemble Model (BiLSTM & XGBoost) We constructed an ensemble
model combining BiLSTM and XGBoost to leverage the strengths of both se-
quential and gradient boosting approaches, as shown in Fig. 5a. BiLSTM cap-
tures long-range dependencies in protein sequences, essential for thermal stabil-
ity, while XGBoost, a powerful gradient boosting algorithm, provides robustness.
We used an ensemble of five XGBoost models to generate diverse training and
validation sets, improving performance across varying data distributions. The
final prediction was obtained by computing a weighted average of BiLSTM and
XGBoost outputs, each assigned a weight of 0.5. This integration balances both
models, improving accuracy and generalizability in protein Tm prediction.

(a)

(b)

Fig. 5: (a) BiLSTM-XGBoost Ensemble Model (b) Random Forest Model

Random forest In addition to gradient boosting models, we explored the appli-
cation of a Random Forest model within our enzyme stability prediction frame-
work. Random Forest is a robust ensemble learning technique that constructs a
collection of decision trees, each with a random subset of the features and data
used for training. The hyperparameters of the model are shown in Table 1. Fig.
5b illustrates the architecture of our Random Forest model.

Linear Regression We additionally investigated the use of linear regression for
protein thermostability prediction. This method establishes a linear relationship
between protein features and Tm. While linear regression offers simplicity and
interpretability, it might not capture the complex non-linear relationships often
present in protein sequence-structure-stability relationships. The results from
the linear regression model served as a baseline for comparison with the more
complex models.
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Lasso Regression We further explored LASSO (Least Absolute Shrinkage and
Selector Operator) regression for protein Tm prediction. By adding a penalty
term, LASSO shrinks some feature coefficients to zero, enabling feature selection
and improving interpretability by highlighting key contributors to thermostabil-
ity. Hyperparameters are listed in Table 1.

Ridge Regression While similar to linear regression, Ridge regression applies
an L2 penalty during training. This penalty shrinks the coefficients of all features,
but to a lesser extent than the L1 penalty in Lasso regression. This can help
address the issue of multicollinearity, where features are highly correlated, by
preventing overly large coefficients and potentially improving model stability.
The hyperparameters of the model are shown in Table 1.

Support Vector Regressor We also evaluated a Support Vector Regressor
(SVR) for protein thermostability prediction. SVRs are effective at modeling
non-linear relationships using high-dimensional feature spaces. We used an ra-
dial basis function (RBF) kernel to capture non-linear patterns between protein
features and Tm, and optimized the model via grid search. Hyperparameters are
listed in Table 1.

3 Results

3.1 Experimental setup

All the algorithms were implemented in Python (v.3.10.8). The model was trained
and tested on a compute node with 2.2 GHz Intel-Xeon 2 vCPUs with 13GB
RAM and NVIDIA Tesla K80 with 12GB RAM. To visualize data, Plotly and
the Plotly.NET library (v.3.0.0) [22] were used. We have used XGBoost (v.1.7.4),
LightGBM (v.3.3.5) and CatBoost (v.1.2) in our framework.

3.2 Performance metrics

We evaluated our model using performance metrics, including root mean squared
error (RMSE), mean absolute error (MAE), R-squared (R2) score, and Spearman
correlation.

1. Root Mean Squared Error (RMSE): The square root of the average of
the squared differences between predicted and actual values. A lower RMSE
indicates better predictive accuracy.

RMSE =
√∑n

i=1
(yi−ŷi)2

n

2. Mean Absolute Error (MAE): It computes the average absolute differ-
ences between predicted and actual values. A lower MAE signifies better
model performance.
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MAE =
∑n

i=1
∥yi−ŷi∥
n

3. R-squared (R²) Score: The proportion of the variance in the dependent
variable is explained by the independent variables in a regression model. It
ranges between 0 and 1, where higher values indicate better performance.

R² = 1−
∑n

i=1
(yi−ŷi)

2∑n

i=1
(yi−y)2

4. Spearman Correlation Coefficient: It evaluates the strength and direc-
tion of a monotonic relationship between two variables. It captures non-linear
relationships and is suitable for assessing associations between non-normally

distributed variables. ρ =

∑n

i=1
(si−si)(ti−ti)√∑n

i=1
(si−si)2

∑n

i=1
(ti−ti)2

where; n is the number of samples, y_i is the actual value of the i-th sample,
ŷi is the predicted value of the i-th sample, y is the mean of the actual values,
s_i is the rank of the i-th actual value, t_i is the rank of the i-th predicted
value, si is the mean of the ranks of the actual values, and ti is the mean of
the ranks of the predicted values.

Lower RMSE and MAE indicate greater accuracy, while higher R2 and Spearman
coefficients signify a stronger correlation between predicted and actual values.

3.3 Comparative analysis

To thoroughly assess our approach, we conducted a detailed comparative analysis
with all the models using multiple evaluation metrics including RMSE, MAE,
R2 score and Spearman Correlation coefficient. There is no previous work that
has worked on the same dataset. Therefore, a direct comparison with previous
works is not possible, given the different inputs and goals. The performance of

Table 2: Performance of all models on the test set
Model RMSE MAE R2 Spearman
Ensemble Model (BiLSTM-XGBoost) 0.37 0.68 0.72 0.76
Bidirectional LSTM 0.46 0.81 0.69 0.73
XGBoost 1.02 1.25 0.64 0.69
Random Forest 3.75 4.31 0.41 0.44
Linear Regression 5.12 5.33 0.36 0.39
Support Vector Regressor 5.27 5.46 0.36 0.38
Ridge Regression 5.33 5.81 0.34 0.35
Lasso Regression 5.96 6.13 0.33 0.35

all models on the test set is summarized in Table 2. BiLSTM-XGBoost ensemble
model achieved the best overall performance with an RMSE of 0.37 and MAE
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of 0.68. Fig. 6a indicates the loss curve, and Fig. 6b indicates the actual vs.
predicted values.

In terms of RMSE, BiLSTM-XGBoost ensemble model achieved the best
performance, with a RMSE of 0.37, followed by BiLSTM with an RMSE of
0.46. The Random Forest model had a RMSE of 3.75, significantly higher than
the previous models. The performance of the SVR, Ridge Regression, Lasso
Regression, and Linear Regression were all similar, with RMSEs ranging from
5.12 to 5.96.

Focusing on the MAE scores, we observe a similar trend to the RMSE analy-
sis. BiLSTM-XGBoost achieved the best MAE of 0.68. BiLSTM followed closely
with an MAE of 0.81, proving its ability to capture relevant sequence informa-
tion. XGBoost has 1.25 MAE followed by Random Forest. The linear regression
models (MAE: 5.33 - 6.13) exhibited significantly higher MAE values.

Examining the R2 scores, BiLSTM-XGBoost model achieved the highest R2
score (0.72). BiLSTM also showed a strong performance (0.69), while XGBoost
achieved (0.64) R2 score. Linear regression models (0.36 - 0.33) exhibited lower
R2 values, capturing a smaller proportion of the variance in melting tempera-
tures.

The Spearman Correlation coefficients in Table 2 further reinforce the per-
formance trends. BiLSTM-XGBoost ensemble model achieved the highest value
(0.76), closely followed by BiLSTM and XGBoost. The other models like Ran-
dom Forest (0.44) and linear regression approaches (0.39 - 0.35) displayed lower
Spearman Correlation values, implying a weaker ability to capture the monotonic
trends in protein thermostability.

(a)
(b)

Fig. 6: (a) Loss Curve for BiLSTM-XGBoost Ensemble Model. (b) Scatter plot
of predicted vs. actual protein temperatures for BiLSTM-XGBoost Ensemble
Model.
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3.4 Explainable artificial intelligence

We incorporated XAI techniques to enhance the interpretability of our model’s
decision-making process. This allows us to gain deeper insights into the factors
influencing the model’s predictions and fosters trust in its reliability. We have de-
ployed tools like LIME, SHAP, ELI5, and Qlattice on our best pipeline: ensemble
of BiLSTM & XGBoost.

Local interpretable model-agnostic explanations LIME provides inter-
pretable explanations by locally approximating a complex model’s behavior us-
ing a simple surrogate. We applied LIME to the XGBoost component of our en-
semble, leveraging its suitability for tabular features. A linear regression model
was used as the surrogate, and local fidelity was validated by ensuring close
alignment between its predictions and those of XGBoost on perturbed samples.
Orange and blue colours denote positive and negative feature impacts, respec-
tively. Fig. 7a illustrates a local prediction for protein Tm. The plot 7b, depicts
feature contributions to the prediction. Bar sizes represent influence magnitude,
with green indicating positive and red negative contributions.

(a)
(b)

Fig. 7: (a) Prediction probability chart (b) Individual parameter contribution
plot of a sample protein sequence

SHapley additive explanations (SHAP) SHAP values offer a game-theoretic
method to explain individual predictions and feature importance in the model.
The visualizations provide insights into feature contributions for specific data
points and global feature importance across the dataset.

– SHAP Beeswarm Plot: It provides an overview of each feature’s impact on
the target variable, with features ranked by average SHAP value. Each dot
represents a protein sequence, colored red for high and blue for low feature
values. Fig. 8a shows that Hydrophobicity, Molecular Weight, and Isoelec-
tric Point have the greatest influence. Higher Hydrophobicity and Isoelectric
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Point increase SHAP values, while higher Molecular Weight decreases them.

(a) (b)

Fig. 8: (a) Shap Beeswarm Plot (b) Shap Waterfall Plot

– SHAP Waterfall Plot: This plot explains the predicted Tm for a specific
protein by showing how each feature shifts the baseline prediction. Red bars
indicate positive, and blue negative contributions. The Y-axis lists features
with parameter values in grey. Fig. 8b shows Hydrophobicity and Isoelectric
Point as major factors, with Charge and pH contributing slightly but posi-
tively to thermostability.

– SHAP Force Plot: This plot provides a localized explanation of feature
contributions for a specific protein. Red features increase, and blue features
decrease the predicted Tm (50.50), with bar size indicating impact. Fig. 9
highlights Hydrophobicity and Instability Index as major contributors, with
red features contributing to a higher predicted melting temperature.

Fig. 9: SHAP Force Plot displaying how features push the Tm prediction higher
or lower for a single sequence

– SHAP Dependence Plot: This plot shows the relationship between two
features, with the X-axis for feature values, the Y-axis for SHAP values, and
colors representing a second feature. Fig. 10a indicates the relation between
Molecular Weight and Hydrophobicity. Higher Hydrophobicity values cor-
responds to lower Molecular Weight values. Fig. 10b indicates the relation
between Charge and Isoelectric Point, showing that proteins with higher Iso-
electric Points have a positive charge, while those with lower points have a
negative charge.
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(a)
(b)

Fig. 10: SHAP Dependence plots: (a) Indicates the relation between the Molec-
ular Weight and Hydrophobicity (b) Indicates the relation between Charge and
Isoelectric Point.

ELI5 ELI5 is a Python library that helps interpret complex machine learning
models by providing global and local explanations. Fig. 11a shows a visualization
of feature importance, with pH having the strongest influence. Fig. 11b illustrates
a single protein Tm prediction, highlighting Hydrophobicity and Aromaticity as
the most impactful features, while Isoelectric Point has the least effect in this
case.

(a) (b)

Fig. 11: (a) Depicts the feature weights (b) Indicates individual protein-wise
prediction

Qlattice QLattice is a Python-based library used for exploring feature spaces
and selecting optimal models through supervised learning, with support from
the Feyn library. It handles both categorical and numerical data and generates
visualizations that reveal mathematical relationships behind model predictions.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_22

https://dx.doi.org/10.1007/978-3-031-97554-7_22
https://dx.doi.org/10.1007/978-3-031-97554-7_22


14 S.S. Parida

This visual method, known as QGraphs, clarifies the features and operations
used during model development. Fig. 12 shows that Hydrophobicity, Molecular
Weight, and Instability Index are treated as independent inputs, with the model
leveraging their interactions to predict Tm.

Fig. 12: QGraph visualizing selected features and their relationships

4 Conclusion

This study evaluated various machine learning models for protein thermostability
prediction, with the BiLSTM-XGBoost ensemble showing superior performance
across multiple metrics. Our results highlight the importance of amino acid
composition, physiochemical properties, and engineered features in estimating
protein melting temperatures. However, the model’s reliance on sequence-based
features limits its applicability to well-annotated proteins and excludes struc-
tural insights like 3D conformations and spatial interactions—key determinants
of stability. The proposed framework can be practically useful in bioengineering
workflows. For example, it can help prioritize thermostable enzyme candidates
during optimization, reducing the need for extensive lab testing. It may also as-
sist in selecting enzymes that perform reliably at high temperatures for industrial
applications like biocatalysis.

Future work should explore advanced deep learning architectures like trans-
formers and graph neural networks to capture spatial and contextual features.
Incorporating 3D structures, post-translational modifications, and evolutionary
conservation, along with mutation-aware models and transfer learning, could
greatly enhance accuracy and broaden applicability in protein design.
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