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Abstract. Knowledge of the human nanoscale connectome is crucial for under-

standing brain function in health and disease. However, the data required to con-

struct a complete nanoscale connectome remain unavailable, and the exact num-

bers of circuits forming the connectome and neurons within each circuit are still 

unknown. This study introduces nanoscale morphologic connectomic wireframe 

and geometric models, each comprising three sub-models (straight and enhanced 

with parabolic and cubic branches); provides formulas to estimate their data big-

ness; and assesses required storage. The connectome size/storage estimation 

builds upon prior work on the synaptome (complete synapse set). To account for 

the great variability in neuronal and synaptic counts, two estimates for the total 

number of brain neurons (86 and 100 billion) and three estimates for synapses-

per-neuron (1,000;10,000; and 30,000) are considered across six connectomic 

models, yielding 36 storage estimation cases. The straight wireframe model re-

quires from 8.51PB (for 86 billion neurons, 1,000 synapses-per-neuron) to 297PB 

(for 100 billion neurons, 30,000 synapses-per-neuron). The straight geometric 

model needs from 10.58PB (for 86 billion neurons, 1,000 synapses-per-neuron) 

to 369PB (for 100 billion neurons, 30,000 synapses-per-neuron). Model enhance-

ment significantly increases storage from 22.27PB for the parabolic wireframe 

model (for 86 billion neurons, 1,000 synapses-per-neuron) to 1,569PB for the cu-

bic geometric model (for 100 billion neurons, 30,000 synapses-per-neuron). The 

storage required for the complete human nanoscale connectome, as estimated for 

six models and 36 cases, exceeds the capacity of today’s most powerful super-

computers. This work is the first providing the bigness data estimation for repre-

senting the entire human nanoscale connectome. 

Keywords: Human Brain, Modeling, Storage, Connectome, Synaptome, Neu-

ron, Synapse, Big Data, Nanoscale, Complex systems. 

1 Introduction 

The human brain is the most complex spatiotemporal system in the known universe. Its 

spatial scale ranges from nanometers to centimeters, encompassing molecules, synap-

ses, neurons, circuits, nuclei, tracts, lobes, and the entire brain. The temporal scale spans 

from milliseconds to millions of years, involving processes such as neurotransmission, 

synaptic connectivity, neural plasticity, brain development, disease progression, aging, 

and evolutionary changes. Despite significant advancements in neuroscience, there is 
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presently no technology capable of investigating the human brain across all these 

scales. 

To elucidate brain structure and function there has been an enormous global explo-

sion of human brain-related advanced and big projects in the last few years, such as The 

BRAIN Initiative (Brain Research through Advancing Innovate Neurotechnologies) to 

develop technology to advance neuroscience discovery; The Human Connectome Pro-

ject to map structural and functional connections to investigate the relationship between 

brain circuits and behavior; The Allen Brain Atlas to map gene expression; The Human 

Brain Project to create a research infrastructure to decipher the human brain, recon-

struct its multiscale organization, and develop brain-inspired technology; The Big Brain 

to acquire ultra-high resolution neuroimages; the CONNECT project combining macro- 

and micro-structure; the Brainnetome to understand the brain and its disorders, develop 

methods for multi-scale brain network analysis, and create the Brainnetome atlas; The 

Blue Brain Project to simulate neocortical micro-circuitry; the Chinese Color Nest Pro-

ject to study human connectomics across the life span; the Japanese Brain/MINDS 

(Brain Mapping by Integrating Neurotechnologies for Disease Studies) project to better 

understand the human brain and neuropsychiatric disorders through ‘translatable’ bi-

omarkers; and SYNAPSE (Synchrotron for Neuroscience – an Asia-Pacific Strategic 

Enterprise) to map the entire human brain at sub-cellular level by employing synchro-

tron tomography [1]. These projects, along with other brain-related efforts, have re-

sulted in the acquisition of big data and the development of diverse brain maps and 

atlases [2]. 

The nervous system is made up of neurons that communicate via synapses and the 

neural connections form a connectome. One of the key challenges in neuroscience is to 

build the human nanoscale connectome and to develop the corresponding connectomic 

brain atlas. Knowledge of the connectome is critical for understanding how neural cir-

cuits encode information and how the brain functions in health and disease [3]. So far, 

the full nanoscale connectomes have only been completed for the nematode Caeno-

rhabditis elegans (C.elegans) [4], larva Ciona intestinalis [5], and Drosophila [6]. 

These animals have very small brains; namely, Ciona intestinalis 177 neurons and 

about 6,600 connections, C.elegans 302 neurons (a constant number) and about 7,000 

connections, and Drosophila about 100-130 thousand neurons and millions of connec-

tions. The human connectome has only been created at the macroscale by providing 

anatomical and functional connectivity [7,8]. However, the complete human nanoscale 

connectome has not yet been developed. What is presently available is the first large, 

nanoscale human brain tissue sample of 1 mm3 [9]. This sample was surgically acquired 

from the temporal lobe, embedded in resin, cut into ~30 nm thick sections, and scanned 

using electron microscopy, resulting in a volume of 1.4 petabytes of data comprising 

57,000 cells and 150 million synapses. 

The most critical obstacles in mapping the complete human nanoscale connectome 

are the prohibitively long overall time necessary to acquire data and the immense com-

putational resources required for storing and processing such huge data [10,11,12]. For 

instance, imaging the entire human brain at the nanoscale resolution is estimated to 

require 17 million years [11] when applying the same brain imaging protocol as was 

employed for Drosophila [6]. Fortunately, due to the progress in imaging, the acquisi-

tion time continually decreases. In particular, synchrotron X-ray tomography is a prom-

ising imaging modality offering to decrease the whole human brain acquisition time at 
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the sub-cellular level to a few years or even less [13]. Its advantages include nanoscale 

resolution, high-depth penetration, whole-brain imaging without sectioning, and high-

speed 3D imaging. 

In anticipation of the future availability of a whole human brain nanoscale volume 

suitable for processing, modeling, and atlasing, my current efforts focus on the estima-

tion of computational resources needed for undertaking this monumental endeavor. At 

the ICCS 2023 conference, I proposed a dedicated nano neuronal (nN) data file format 

to describe neuron morphology at the nanoscale [14]. This format comprises the com-

plete dendritic and axonal trees without any simplification or reductionist encoding and 

includes the dendritic and axonal terminals determining the location and size of synap-

ses. The nN format was subsequently extended to embed gross neuroanatomy to facil-

itate atlas-enabled navigation and exploration of the brain model at the nanoscale [15]. 

At the ICCS 2023, I also introduced four geometric neuronal morphology models at the 

nanoscale: straight wireframe, enhanced wireframe, straight polygonal, and enhanced 

polygonal. Subsequently, I estimated storage requirements for these geometric models 

and additionally a volumetric neuronal model [16]. Then, the human nanoscale synap-

tome morphology was modeled and its storage requirements were estimated [17]. 

This study stems from these previous works and tackles the problem of big data 

estimation in the human connectome at the nanoscale. The problem is challenging not 

only because such data are not yet available but also because both the exact number of 

circuits forming the connectome and the number of neurons within each circuit remain 

unknown. I tackle this problem here by deriving the connectome storage estimation 

from the previously computed estimates for the synaptome [17]. 

This work aims to 1) introduce two groups of nanoscale morphology connectomic 

models: wireframe (skeletal) by combining the synaptic point model [17] with the neu-

ronal wireframe model [16] and geometric by merging the synaptic geometric model 

[17] with the neuronal polygonal model [16], each group comprising 3 sub-groups 

(straight and enhanced with parabolic and cubic branches); 2) provide formulas for data 

bigness estimation of the human nanoscale connectome for various connectomic mod-

els; and 3) estimate storage requirements for these connectomic models. 

To account for a wide range of variations in the numbers of neurons and synapses 

reported in the literature, two cases of the total number of neurons in the human brain 

(86 and 100 billion) and three cases of the average number of synapses per neuron 

(1,000;10,000; and 30,000) are considered across six connectomic models resulting in 

total 36 cases of storage estimation. To the best of my knowledge, this is the first com-

prehensive big data study providing a quantitative estimation of the storage require-

ments for the human nanoscale connectome. 

2 Method and material 

2.1 Method 

A neuron consists of a soma (cell body) and its projections, known as neurites (neuronal 

processes), which include dendrites and a single axon [18]. The dendrites receive im-

pulses from other neurons and transmit them to the soma. The axon acts as a neuron’s 

projector and relays impulses to other cells. The dendrites form a set of dendritic trunks, 
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each with a dendritic tree. Each tree comprises branches along which the dendritic 

spines with postsynaptic terminals (postsynaptic densities) are located. The proximal 

segment of the axonal neurite contains the hillock, which is the soma-axon connector, 

and distally continues as the axon proper terminating as an arborized axonal tree with 

multiple branches comprising presynaptic terminals (presynaptic active zones or den-

sities). The neurons connected through the synapses form neuronal circuits and the en-

tirety of these circuits constitutes the connectome. 

A direct approach of calculating the size of the connectomic big data and the corre-

sponding storage required for keeping them is to execute the following algorithm 

 

For every neuronal circuit 

For every neuron in the neuronal circuit 

Calculate storage for the neuron 

Accumulate neurons’ storage 

 

The problem with this algorithm is that the numbers of neuronal circuits, neurons 

within each circuit, dendritic trees within each neuron, and branches within the den-

dritic and axonal trees remain unavailable even for the average human brain. 

The approach I propose here is to estimate the connectomic big data from the syn-

aptome. The synaptome is the set of all the synapses. The connectome is formed by the 

synaptome and all its presynaptic and postsynaptic neurons without their presynaptic 

and postsynaptic terminals. Each connecting neuron comprises the soma, the dendritic 

trunks with the trees without their postsynaptic terminals, and the hillock and axon with 

the axonal tree without its presynaptic terminals. Then, the connectome is defined as 

 

 (1) 

Formally, the above summation is over all the presynaptic and postsynaptic neurons. 

However, since each neuron is likely to participate in multiple circuits, summing over 

all neurons is sufficient, thereby avoiding duplication in neuron counting. Hence, 

 (2) 

The human nanoscale synaptome was modeled and its data bigness estimated earlier 

[17]. Namely, a synapse is formed by two neurons meaning the following pair of pairs 

[(presynaptic neuron),(presynaptic axonal terminal);(postsynaptic neuron),(postsynap-

tic dendritic terminal)]. Let i and j be a presynaptic neuron and a postsynaptic neuron 

with identifiers Ni and Nj, and m and n the axonal terminal Aim and the dendritic terminal 

Djn of neurons i and j, respectively. Moreover, let (x,y,z) determine terminal coordinates 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒 = 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒

+   𝑠𝑜𝑚𝑎 + 𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐 𝑡𝑟𝑢𝑛𝑘𝑠 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑒𝑠
𝑁𝑒𝑢𝑟𝑜𝑛𝑠 𝑓𝑜𝑟𝑚𝑖𝑛𝑔

 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒

+ ℎ𝑖𝑙𝑙𝑜𝑐𝑘, 𝑎𝑥𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑥𝑜𝑛𝑎𝑙 𝑡𝑟𝑒𝑒  

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒 = 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒

+   𝑠𝑜𝑚𝑎 + 𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐 𝑡𝑟𝑢𝑛𝑘𝑠 𝑤𝑖𝑡ℎ 𝑡𝑟𝑒𝑒𝑠 + ℎ𝑖𝑙𝑙𝑜𝑐𝑘, 𝑎𝑥𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎𝑥𝑜𝑛𝑎𝑙 𝑡𝑟𝑒𝑒 
𝐴𝑙𝑙

𝑛𝑒𝑢𝑟𝑜𝑛𝑠

 

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_21

https://dx.doi.org/10.1007/978-3-031-97554-7_21
https://dx.doi.org/10.1007/978-3-031-97554-7_21


Human nanoscale connectome 

and r terminal radius. Then, the synapse between the neurons i and j is defined as a pair 

of quadruples [Ni,Aim,(xim,yim,zim),rim;Nj,Djn,(xjn,yjn,zjn),rjn]. A synapse has three compo-

nents, topology (the neuron and terminal identifiers), location (the coordinates of the 

terminal centers), and geometry (the terminal radii by approximating the fundi of the 

terminals with the circular shape). Consequently, I earlier introduced three synaptic 

morphology models with diverse sizes, content, and potential applications; namely, the 

topologic model with topology, the point model with topology and location, and the 

geometric model with topology, location, and geometry [17]. The complete synaptome 

is defined as a set of all the synapses {[Ni,Aim,(xim,yim,zim),rim;Nj,Djn,(xjn,yjn,zjn),rjn]} for 

all the presynaptic and the corresponding postsynaptic neurons. 

I also proposed four neuronal geometric models: straight wireframe, enhanced 

wireframe, straight polygonal, and enhanced polygonal [16]. The straight wireframe 

neuronal model is the simplest with the soma represented as a center point, the neuronal 

branches as straight-line segments with the start and end points being bifurcations, and 

the presynaptic and postsynaptic terminals as points. The enhanced wireframe neuronal 

model is obtained from the straight wireframe model by using additional intermediate 

points placed on neurite branches to enhance their shape. Then, a branch forms a pol-

yline segment; alternatively, by connecting the branch points by cardinal splines a 

curved branch is obtained. A single intermediate point results in a parabolic branch and 

two points produce a cubic branch. In the straight polygonal neuronal, the soma, den-

drites, and axons are modeled as polygonal surfaces. The soma can have a predefined 

shape, such as a sphere or pyramid, or a free shape. The dendritic and axonal branches 

are modeled as cylinders or truncated cones, so this tubular model requires the 

knowledge of radii at the bifurcations and terminals. Finally, the enhanced polygonal 

neuronal model requires the determination of intermediate points along each branch 

treated as the centers of cross-sections, each associated with a corresponding radius. 

Let us estimate the data necessary to handle a single neuron without its terminals in 

the straight wireframe neuronal model. In general, the data size is spatial resolution-

dependent, and the data sampling resolution shall be sufficient to distinguish the syn-

apses. There are two types of synapses: chemical with the synaptic gap (cleft) of 20-

30/20-40 nm [19,20] and electrical with the 2-4 nm gap [19]. To distinguish the synap-

ses, the acquired data shall be sampled sufficiently dense. Propel sampling is critical 

since axonal terminals (boutons) are adjacent to several possible synaptic targets [21]. 

According to the Nyquist sampling theorem, the spatial sampling resolution shall be no 

lower than 10 nm to handle the chemical synapses and 1 nm for the electrical synapses. 

Then, for the spatial resolutions either of 10 nm (108 = 226.6) or 1 nm (109 = 229.9), 4B 

are required. To store the soma, its 3 center point coordinates are needed, meaning 12 

B, which can be neglected in comparison to big data of the dendritic and axonal threes. 

Let us assume that the dendritic and axonal neurites form perfect binary trees. In the 

perfect binary tree n = 2l –1, where n is the number of nodes (including the leaves) and 

l is the number of leaves. Hence, the number of bifurcations for a high number of ter-

minals approximately equals that of terminals. Moreover, every node in the perfect bi-

nary tree, excluding the terminals, generates two branches b, so b = 2(n – l). Therefore, 

taking into account that n = 2l –1, the number of branches is b = 2l – 2, meaning that 

for a high number of terminals, the number of branches approximately doubles that of 

terminals. The nN format does not store the branches, but only their endpoints (nodes), 
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each with 3 coordinates and an index. Three coordinates require 12 B and an index of 

2 B is sufficient to distinguish up to 65,000 objects (which number is smaller than the 

number of synapses per neuron reported in the literature, see below). Moreover, the 

additional 2B are required to provide the index of a neighboring node in the neuronal 

tree to which the considered node is connected. Therefore, a single node needs 16 B of 

data without considering its geometry. By including geometry, i.e., a node radius, 20 B 

of data are required per node. As the number of nodes approximately equals that of 

terminals, so for the nanoscale resolutions of 1 nm and 10 nm, the wireframe connec-

tome, i.e., that with node and terminal locations but without its geometry, approxi-

mately requires the following amount of data 

(3) 

and when including geometry 

 (4) 

Note that “Synaptome” in Eq. 3 corresponds to the point synaptic model and that in Eq. 

4 to the geometric synaptic model. The total number of synapses (TNS) can be approx-

imated as 

(5) 

(note that as a synapse is formed by two neurons, half of the total number of neurons is 

taken in Eq. 5 to avoid synapse duplication). 

The neuronal model enhancement consists in the insertion of additional intermediate 

points (or cross-sections for the geometrical tubular models) at the neurite branches 

[16]. One additional point along with the indices of the endpoints of the branch it be-

longs to requires the storage of (12 + 4) B x 2 x number of terminals (synapses per 

neuron). Hence, 

 (6) 

and two additional points double the amount of these data 

 (7) 

The enhanced geometric model requires one additional point with two indices and the 

cross-section radius resulting in the amount of (16 + 4) B x 2 x number of terminals 

data 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒_𝑤𝑖𝑟𝑒𝑓𝑟𝑎𝑚𝑒 = 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒 + 16 ∗ 𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠   

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒 + 20 ∗ 𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠  

𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠

= 0.5 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠_𝑝𝑒𝑟_𝑛𝑒𝑢𝑟𝑜𝑛 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑤𝑖𝑟𝑒𝑓𝑟𝑎𝑚𝑒_𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐

= 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒 + (16 + 32) ∗ 𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑤𝑖𝑟𝑒𝑓𝑟𝑎𝑚𝑒_𝑐𝑢𝑏𝑖𝑐

= 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒 + (16 + 2 ∗ 32) ∗ 𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠 
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 (8) 

and two additional points double the amount of these data 

 (9) 

2.2 Material 

The numbers of neurons, all synapses, and synapses per neuron required in Eqs. (3) – 

(9) are taken here from the literature studies. Because of the immense complexity and 

variability of the human brain, the exact numbers of both its neurons and synapses are 

challenging to precisely determine. For instance, the number of neurons in the entire 

human brain varies from 30 billion [22] to 125 billion [23]. Numerous textbooks, orig-

inal articles, and reviews give the total number of neurons in the human brain one hun-

dred billion [24-29]. This affirmation is also present in the textbook by Kandel et al. 

[25], a commonly used textbook in neuroscience authored by a Nobel Prize laureate in 

physiology or medicine in the year 2000. This textbook knowledge has been challenged 

by more robust methods of neuron counting providing an estimate of 86.1 billion neu-

rons [30]. 

Therefore, for the storage estimation, we take 2 values, 86 billion and 100 billion 

neurons in the whole human brain. 

The number of synapses per neuron is also highly variable. Kandel et al. estimate 

that there are around 100 trillion synapses in the average adult human brain [25] (mean-

ing 1,000 synapses per neuron). According to a reference book [31], the average neuron 

has 1,000 synapses with other neurons. Ten thousand connections per neuron are re-

ported in [28]. Some sources estimate that a single neuron can have between 1,000–

15,000 synaptic connections [32]. DeFelipe demonstrated that the number of synapses 

per neuron is cortical layer-dependent with the average number of synapses per neuron 

being 29,642 (100,042 in layer I, 17,046 in layer II, 37,066 in layer IIIa, 56,521 in layer 

IIIb, 15,989 in layer IV, 29,965 in layer V, and 28,224 in layer VI) [33]. 

Hence, for the storage estimation, we take 3 average values, 1,000, 10,000, and 

30,000 synapses per neuron. 

3 Results 

The storage required for the human connectome at the nanoscale is estimated for 5 

neuroanatomical parameters (86 and 100 billion neurons and 1,000, 10,000 and 30,000 

average synapses per neuron) and 2 groups of connectomic models (wireframe and ge-

ometric) with 3 models each (straight and enhanced parabolic and cubic) resulting in 

36 cases of storage estimation. 

Let us consider the straight wireframe and geometric connectomic models for 100 

billion neurons. For 1,000 synapses per neuron, the point synaptic model requires 1.9 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐_𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐

= 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒 + (20 + 40) ∗ 𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑚𝑒_𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑_𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐_𝑐𝑢𝑏𝑖𝑐

= 𝑆𝑦𝑛𝑎𝑝𝑡𝑜𝑚𝑒 + (20 + 2 ∗ 40) ∗ 𝑇𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑦𝑛𝑎𝑝𝑠𝑒𝑠 
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PB and the geometric synaptic model 2.3 PB [17]. The total number of synapses TNS 

= 100 billion x 0.5 x 1,000 = 500 billion (0.5 PB), see (Eq. 5). By applying Eq. 3, the 

straight wireframe connectomic model requires 1.9 PB + 16 x 0.5 PB = 9.9 PB and 

from Eq. 4 the straight geometric connectomic model needs 2.3 PB + 20 x 0.5 PB = 

12.3 PB. For 10,000 synapses per neuron, the point synaptic model requires 19 PB and 

the geometric synaptic model needs 23 PB, whereas for 30,000 synapses per neuron the 

point synaptic model requires 57 PB and the geometric synaptic model needs 69 PB 

[17]. The TNS equals 5 PB and 15 PB for 10,000 and 30,000 synapses per neuron, 

respectively. Then, for 10,000 synapses per neuron, the straight wireframe connectomic 

model requires 19 PB + 16 x 5 PB = 99 PB and the straight geometric connectomic 

model needs 23 PB + 20 x 5 PB = 123 PB. For 30,000 synapses per neuron, the straight 

wireframe connectomic model requires 57 PB + 16 x 15 PB = 297 PB and the straight 

geometric connectomic model needs 69 PB + 20 x 15 PB = 369 PB. 

Let us consider the enhanced connectomic models for 100 billion neurons. For 1,000 

synapses per neuron, the enhanced wireframe connectome requires 1.9 PB + 48 x 0.5 

PB = 25.9 PB for the parabolic model (Eq. 6) and 1.9 PB + 80 x 0.5 PB = 41.9 PB for 

the cubic model (Eq. 7). Whereas the enhanced geometric connectome needs 2.3 PB + 

60 x 0.5 PB = 32.3 PB for the parabolic model (Eq. 8) and 2.3 PB + 100 x 0.5 PB = 

52.3 PB for the cubic model (Eq. 9). For 10,000 synapses per neuron, the enhanced 

wireframe connectome requires 19 PB + 48 x 5 PB = 259 PB for the parabolic model 

(Eq. 6) and 19 PB + 80 x 5 PB = 419 PB for the cubic model (Eq. 7). Whereas the 

enhanced geometric connectome needs 23 PB + 60 x 5 PB = 323 PB for the parabolic 

model (Eq. 8) and 23 PB + 100 x 5 PB = 523 PB for the cubic model (Eq. 9). For 30,000 

synapses per neuron, the enhanced wireframe connectome requires 57 PB + 48 x 15 PB 

= 777 PB for the parabolic model (Eq. 6) and 57 PB + 80 x 15 PB = 1,257 PB for the 

cubic model (Eq. 7). Whereas the enhanced geometric connectome needs 69 PB + 60 x 

15 PB = 969 PB for the parabolic model (Eq. 8) and 69 PB + 100 x 15 PB = 1,569 PB 

for the cubic model (Eq. 9).  

Let us consider the cases corresponding to 86 billion neurons. Then, the point syn-

aptic model requires 1.63 PB, 16.34 PB, and 49.02 PB for 1,000, 10,000, and 30,000 

synapses per neuron, respectively; whereas the geometric synaptic model needs 1.98 

PB, 19.78 PB, and 59.34 PB for 1,000, 10,000, and 30,000 synapses per neuron, re-

spectively [17]. The TNS equals 86 billion x 0.5 x 1,000 = 430 billion corresponding to 

0.43 PB for 1,000 synapses per neuron, 4.3 PB for 10,000 synapses per neuron, and 

12.9 PB for 30,000 synapses per neuron. Then, for 1,000 synapses per neuron, the 

straight wireframe connectomic model requires 1.63 PB + 16 x 0.43 PB = 8.51 PB 

whereas the straight geometric connectomic model needs 1.98 PB + 20 x 0.43 PB = 

10.58 PB. For 10,000 synapses per neuron, the straight wireframe connectomic model 

requires 16.34 PB + 16 x 4.3 PB = 85.14 PB whereas the straight geometric connec-

tomic model needs 19.78 PB + 20 x 4.3 PB = 105.78 PB. For 30,000 synapses per 

neuron, the straight wireframe connectomic model requires 49.02 PB + 16 x 12.9 PB = 

255.42 PB whereas the straight geometric connectomic model needs 59.34 PB + 20 x 

12.9 PB = 317.34 PB.  

Consider the enhanced connectomic models for 86 billion neurons. For 1,000 syn-

apses per neuron, the enhanced wireframe connectome requires 1.63 PB + 48 x 0.43 

PB = 22.27 PB for the parabolic model (Eq. 6) and 1.63 PB + 80 x 0.43 PB = 36.03 PB 

for the cubic model (Eq. 7). Whereas the enhanced geometric connectome needs 1.98 
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PB + 60 x 0.43 PB = 27.78 PB for the parabolic model (Eq. 8) and 1.98 PB + 100 x 

0.43 PB = 44.98 PB for the cubic model (Eq. 9). For 10,000 synapses per neuron, the 

enhanced wireframe connectome requires 16.34 PB + 48 x 4.3 PB = 222.74 PB for the 

parabolic model (Eq. 6) and 16.34 PB + 80 x 4.3 PB = 360.34 PB for the cubic model 

(Eq. 7). Whereas the enhanced geometric connectome needs 19.78 PB + 60 x 4.3 PB = 

277.78 PB for the parabolic model (Eq. 8) and 19.78 PB + 100 x 4.3 PB = 449.78 PB 

for the cubic model (Eq. 9). For 30,000 synapses per neuron, the enhanced wireframe 

connectome requires 49.02 PB + 48 x 12.9 PB = 668.22 PB for the parabolic model 

(Eq. 6) and 49.02 PB + 80 x 12.9 PB = 1,081.02 PB for the cubic model (Eq. 7). 

Whereas the enhanced geometric connectome needs 59.34 PB + 60 x 12.9 PB = 833.34 

PB for the parabolic model (Eq. 8) and 59.34 PB + 100 x 12.9 PB = 1,349.34 PB for 

the cubic model (Eq. 9). 

These results are summarized in Table 1 and are also visually presented in Figure 1. 
 

Table 1. Storage in PB required for the complete human nanoscale connectome for the 

given number of neurons (86 and 100 billion) and synapses per neuron (1,000; 10,000; and 

30,000) estimated for the wireframe and geometric groups of connectomic models (each com-

prising straight, parabolic, and cubic models). 

Type of 
connectomic 

model 

Number of neurons and synapses per neuron 

1,000 10,000 30,000 
86 

billion 
100 

billion 
86 

billion 
100 

billion 
86 

billion 
100 

billion 
Straight wireframe   8.51   9.90   85.14   99.00   255.42   297.00 

Enhanced 
wireframe 

Parabolic 22.27 25.90 222.74 259.00   668.22   777.00 

Cubic 36.03 41.90 360.34 419.00 1,081.02 1,257.00 

Straight geometric 10.58 12.30 105.78 123.00   317.34   369.00 

Enhanced 
geometric 

Parabolic 27.78 32.30 277.78 323.00   833.34   969.00 

Cubic 44.98 52.30 449.78 523.00 1,349.34 1,569.00 

 

Fig. 1. The results summarized diagrammatically, where the ellipses denote the connectomic 

models and the rectangles comprise the model data size in PB (the first 3 rows correspond to 

1,000, 10,000 and 30,000 synapses per neuron for 86 billion neurons (86B) and the next 3 rows 

for 100 billion neurons (100B)). 
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4 Discussion 

One of the primary challenges in connectomics today is the continuous advancement 

of cutting-edge technology enabling the acquisition of increasingly high-quality con-

nectomic data with the ever-growing spatial resolution, spanning from macroscopic 

(using, e.g., magnetic resonance imaging) to mesoscopic (applying, e.g., optical mi-

croscopy) to microscopic (employing, e.g., electron microscopy) and to nanoscopic 

(through, e.g., volume electron microscopy); ranging from very small brains like these 

of C.elegans and Drosophila to those of rodents, non-human primates, and human; and 

from small tissue samples to the whole brain. Moreover, advanced imaging techniques 

are integrated with molecular, genetic, and physiological approaches to enhance syn-

aptic contact identification in order to understand synaptic organization and connectiv-

ity [33]. These developments grow the field of nanoneuroanatomy, leading to the crea-

tion of diverse nanomaps and preliminary nanoscale brain atlases. Although a complete 

human brain dataset at the nanoscale resolution remains yet to be acquired (and only a 

1 mm3 sample is available today), such data are likely to be available in the next few 

(perhaps even three) years. 

My contribution to these nanoneuroanatomy efforts is from a computational stand-

point. I have earlier proposed [14], extended [15], and applied [16,17] the nano neu-

ronal (nN) data file format to describe neuron morphology at the nanoscale; introduced 

a volumetric and four geometric neuronal nanoscale morphology models (straight 

wireframe, enhanced wireframe, straight polygonal, and enhanced polygonal) and esti-

mated storage requirements for them [14,16]; designed a nanoscale human brain atlas 

for the brain model exploration at the nanoscale [15]; estimated storage requirements 

for the human nanoscale synaptome [17]; and assessed high-performance computing 

resources for morphology modeling of the entire human brain at the nanoscale [34]. 

This work advances my previous nanoneuroanatomy-related efforts. In this paper, 

despite the lack of precise data on the number of neuronal circuits forming the human 

connectome, the number of neurons within each circuit, the number of dendritic trees 

per neuron, and the number of dendritic and axonal tree terminals per neuron, I propose 

a method to estimate the storage required for the connectome leveraging the previous 

storage assessment of the synaptome. This is feasible by employing formulas (3) - (9) 

because the synaptic model applied contains the indices of its corresponding presynap-

tic and postsynaptic neurons. Here I combine the synaptic point model with the neu-

ronal wireframe models, resulting in the connectomic wireframe (skeletal) models, and 

the synaptic geometric model with the neuronal polygonal models yielding the connec-

tomic geometric models. 

Because of great biological variability across individual human brains and different 

brain regions as well as the diverse cell and synapse counting methods used, the re-

ported numbers of both neurons and synapses per neuron in the human brain and its 

parts vary widely across literature studies. To cope with this variability, two cases of 

the total number of neurons in the human brain (86 and 100 billion) and three cases of 

the average number of synapses per neuron (1,000;10,000; and 30,000) are considered. 

In addition, I introduce six connectomic models forming two groups: wireframe and 

geometric models. These models are potentially useful for various morphometric and 

network-related analyses. The straight wireframe model is the simplest and the most 

compact. The enhanced models offer more realistic shapes of neurite branches, whereas 
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the geometric models provide surface representations enhancing visualization at the 

expense of a substantial increase in the overall size of connectomic data. 

The simplest connectomic model, the straight wireframe model, requires from 8.51 

PB for 86 billion neurons and 1,000 synapses per neuron to 297 PB for 100 billion 

neurons and 30,000 synapses per neuron. The straight geometric connectomic model 

needs from 10.58 PB for 86 billion neurons and 1,000 synapses per neuron to 369 PB 

for 100 billion neurons and 30,000 synapses per neuron. Model enhancement substan-

tially increases the required storage from 22.27 PB for the parabolic wireframe connec-

tomic model with 86 billion neurons and 1,000 synapses per neuron to 1,569 PB for the 

cubic geometric connectomic model with 100 billion neurons and 30,000 synapses per 

neuron. Note that the geometric connectomic models do not account for the data needed 

to store the vertices and normals of the polygons, typically triangles, forming the sur-

face as these polygons can be calculated on the fly based on the model parameters. 

The estimated storage capacity required to represent the human connectome at the 

nanoscale exceeds the capabilities of even the most advanced supercomputers available 

today. Namely, the world’s first exascale and today’s most powerful supercomputer 

Frontier [41], with 9,408 computing nodes each with 4 TB of flash memory offering 

an overall 37 PB memory, is able to handle the straight and parabolic wireframe and 

geometric connectomic models for 86 and 100 billion neurons and the cubic wireframe 

connectomic model for 86 billion neurons provided that the models are limited to 1,000 

synapses per neuron. Another exascale supercomputer Aurora with an aggregate sys-

tem memory of 10.9 PB [42] can only handle the straight wireframe connectomic model 

for 1,000 synapses per neuron. 

Although the storage capacity of today’s most powerful supercomputers remains in-

sufficient to handle the human connectome at the nanoscale, this limitation can be over-

come by leveraging either a network of powerful supercomputers enabling to scale 

computing resources, like BRAINS [43], or cloud storage offered by open-source ser-

vices, such as the Brain Observatory Storage Service and Database, for storing and 

accessing petascale image datasets [44]. 

It should be emphasized that this work presents an estimation of data bigness for the 

human nanoscale connectome, since the determination of the precise amount of data is 

not possible today as a suitable technology enabling the acquisition of the full human 

brain data at the nanoscale in a reasonable time is not yet available. Moreover, the hu-

man brain is highly variable in cytoarchitecture, neurochemistry, connectivity, and 

functional characteristics across different brain regions. Several studies have high-

lighted the interindividual variability both in the structural and functional organization 

of the human brain [35-37]. Functional and structural studies examining macroscopic 

connectivity in the human cerebral cortex have implied that the high-order associative 

cortex exhibits greater connectivity compared to the primary cortex, including the so-

matosensory, motor, and visual cortices [38-39]. Although complete data for the entire 

human brain are not yet available, a mouse study, such as [40], provides some indica-

tions about regional variability. Namely, this study has found (i) the highest densities 

of synapses in the isocortex, olfactory areas, and hippocampal formation; (ii) low den-

sities in the pallidum, hypothalamus, brainstem, and cerebellum; (iii) a wide range of 

synapse densities in the striatum and thalamus; (iv) homogeneously low densities in the 

cerebellar cortex; and (v) the lowest synaptic densities in the pallidum, hypothalamus, 

and brainstem. 
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In this work, I employ geometric and wireframe connectome modeling. Note that 

the difference in the data bigness between the volumetric neuronal model (or raw vol-

umetric data) and the geometric model is dramatic at the nanoscale. Namely, for the 

spatial 10 nm (chemical synapse) resolution the geometric neuronal models, depending 

on their type, range from 24 PB to 96 PB, whereas the volumetric model requires about 

5.6 ZB (zetta (1021) bytes); at 1 nm (electric synapse) resolution, the geometric neuronal 

models need similar storage, while the volumetric model requires about 5,600 ZB [16]. 

The synaptic geometric model employed in this study is relatively simple. It assumes 

a circular shape of each of the presynaptic and postsynaptic terminals with three coor-

dinates of its center and a radius (which model requires 2 x 16 B per synapse without 

counting the indices). However, from a geometric perspective, an actual synapse ex-

hibits a distinct size and shape, thereby necessitating more detailed data, especially that 

to yield accurate insights into the connectivity, it is critical to account for all morpho-

logical characteristics of synapses [45]. For instance, it has been postulated that synap-

tic size correlates with release probability, synaptic strength, efficacy, and plasticity 

[46]. In general, synapses can be excitatory and inhibitory. The excitatory synapses are 

asymmetric and the inhibitory synapses are symmetric. The identification of the asym-

metric and symmetric synapses is based on the thickness of the postsynaptic density 

(PSD). The synapses are also classified into four main categories taking into account 

the shape of the PSD; namely, macular (disk-shaped PSD), perforated (with one or 

more holes in the PSD), horseshoe-shaped (with an indentation), and fragmented (disk-

shaped PSDs with no connection between them, consisting of two or more physically 

discontinuous PSDs) [47]. Another geometric feature used when studying the synaptic 

properties is the position of centroids of synaptic junctions [45]. Moreover, postsynap-

tic targets can be classified as spines (corresponding to axospinous synapses) or den-

dritic shafts (axodendritic synapses) [45]. Thus, while the type of synapse along with 

its postsynaptic target only requires the additional 4 bits to capture the abovementioned 

features and 12 B for the position of the synaptic centroid, however, to store the shapes 

of synapses and PSDs can increase the required synaptic storage a few times. Addition-

ally, the PSDs vary not only in size but also in composition across brain regions. 

5 Conclusions 

Despite the lack of precise connectomic data, I proposed a method to estimate storage 

required for the human nanoscale connectome based on previously formulated synaptic 

and neuronal models. The wireframe and geometric connectomic models were formu-

lated, each comprising 3 sub-models: straight and enhanced parabolic and cubic. To 

account for a substantial neuronal and synaptic variability, the storage demands for each 

connectomic model was estimated for 86 and 100 billion neurons, and 1,000, 10,000 

and 30,000 average synapses per neuron resulting in 36 cases. This storage ranges from 

8.51 PB (for the straight wireframe model, 86 billion neurons, and 1,000 synapses per 

neuron) to 1,569 PB (for the cubic geometric model, 100 billion neurons, and 30,000 

synapses per neuron) surpassing the capabilities of today’s most powerful supercom-

puters. Moreover, model enhancement significantly increases storage demands. This 

study is the first providing the bigness data estimation for the complete human na-

noscale connectome. 
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Future challenges include the data bigness estimation for connectomic electrical and 

molecular models, which are anticipated to be substantially larger than the morphologic 

models, and evaluating the high-performance computing resources required for the 

computation and analysis of the human nanoscale connectome. 
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