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Abstract. This research explores the impact of structural limiting per-
ception on the performance of Particle Swarm Optimization by restrict-
ing the range of information sharing among particles. By introducing
localized communication models through Ring and Tree topologies, the
study demonstrates significant improvements over the standard global-
best PSO, particularly on a range of Traveling Salesman Problem in-
stances from the TSPLIB. The results show that constraining parti-
cle perception enhances both solution quality and convergence behav-
ior, with the Tree topology emerging as the most effective structure.
The topological modifications maintain swarm diversity, prevent prema-
ture convergence, and facilitate continuous exploration while exploiting
promising search regions. These findings suggest that structural con-
straints on information sharing can enhance PSO’s robustness and ef-
fectiveness without adding computational complexity, offering a flexible
approach applicable to various PSO variants and problem domains be-
yond TSP.
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1 Introduction

Particle Swarm Optimization (PSO) has emerged as one of the most effective
population-based metaheuristic algorithms for solving optimization problems.
Inspired by the collective behavior of social organisms such as flocks of birds or
schools of fish, PSO relies on the dynamic exchange of information among indi-
viduals (particles) within a search space. In the standard PSO framework, each
particle adjusts its velocity based on both its personal best experience (pbest)
and the experience of the best-performing individual in the swarm (gbest). There
are many modifications of the basic PSO algorithm, making the swarm intelli-
gence actually a broad class of computing methods (see, e.g. [1,16]).

Although this global information-sharing mechanism effectively guides the
swarm toward optimal solutions, it can also lead to premature convergence and
stagnation, especially in complex and high-dimensional search spaces. This oc-
curs because all particles are influenced by the same global best solution, which
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can limit the diversity of the search and cause the algorithm to become trapped
in local optima.

A critical challenge in PSO design is balancing exploration and exploitation.
The classic PSO approach, which uses an unrestricted global best (gbest) topol-
ogy, often favors exploitation. While this accelerates convergence, it can result in
suboptimal performance in multimodal and dynamically changing environments.
One potential solution is to modify the interaction topology to limit the range
of perception among particles. By constraining how particles share information,
alternative topologies can promote a more diverse search and prevent premature
convergence.

In this paper, we introduce a novel structural approach to limiting the range
of perception in PSO by modifying its topology. Instead of relying on a global
best (gbest) selection that considers the entire swarm, we implement localized
communication models where each particle is influenced only by a subset of the
swarm. This localized structure allows particles to form distinct neighborhoods,
facilitating the exploration of multiple local optima rather than converging to a
single global solution. By adjusting the topology, we can fine-tune the balance
between exploration and exploitation, thereby enhancing the performance of
PSO on a variety of complex optimization tasks.

Our proposed modifications to the PSO topology redefine how information
propagates across the swarm, potentially improving robustness, adaptability, and
scalability. Unlike traditional PSO, where each particle has full awareness of the
swarm’s best solution, our approach ensures that particles only have access to
a constrained set of neighbors. This creates a more diverse evolutionary pres-
sure that mitigates premature convergence while maintaining the algorithm’s
efficiency. Although our experiments focus on classic PSO, the proposed strat-
egy for limiting the range of perception can be seamlessly extended to any PSO
variant, making it a versatile tool for different problem domains.

In the next sections we show selected PSO-inspired algorithms using similar
approach (limiting the perception of the swarm individuals). In relation to those
referenced papers we propose our idea, then test it comparing the original PSO
with the ones using novel technologies. It is to note, that the proposed commu-
nication structures may be applied far beyond the original PSO, which makes
the contribution much more universal than only modifying a selected algorithm.

2 Perception in PSO

Metaheuristics are an excellent tool for solving difficult optimization problems.
Despite perfection, there are difficulties, such as excessive convergence, which will
lead to inaccurate solving problems and uncertainties of results. Metaheuristics
have some possibilities to restore population diversity. If there is an effect of pop-
ulation uniformity in parallelized version of the evolutionary algorithm (PEA),
then a good solution is to divide the population into several subpopulations. PEA
restores population diversity by migrating individuals between islands [19].

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_19

https://dx.doi.org/10.1007/978-3-031-97554-7_19
https://dx.doi.org/10.1007/978-3-031-97554-7_19


Structural Limiting Range of Perception in Particle Swarm Optimization 3

Additionally, there is a constant pressure to accelerate metaheuristics work.
That is why metaheuristics are modified and combined with other techniques.
[22] presents a novel two-stage hybrid swarm intelligence optimization algorithm
that combines the evolution ideas of the genetic algorithms, particle swarm op-
timization and ant colony optimization based on the compensation for solving
the traveling salesman problem.

Particle Swarm Optimization (PSO) was first introduced by J. Kennedy et
al. in 1995 as a nature-inspired optimization technique, drawing inspiration from
swarm intelligence observed in biological phenomena such as bird flocking, fish
schooling, and human social behavior [12]. The algorithm’s foundation is closely
related to evolutionary computation, and over time, PSO has emerged as a strong
alternative to traditional genetic algorithms and other iterative optimization
methods [5,3].

PSO has demonstrated robust performance across a diverse range of appli-
cations [4,20,15]. The algorithm begins by initializing a population of candidate
solutions, referred to as particles, with randomized velocities. These particles
navigate the search space iteratively, adjusting their positions based on their
own best-discovered solution and the best-known solution found by the entire
swarm. This mechanism enables PSO to efficiently explore and exploit the so-
lution space, making it a widely used optimization technique in computational
science.

The approach to using PSO [17] in problem solving has also been mod-
ified many times since its inception [6,2]. A crucial factor influencing PSO’s
performance is the gbest topology, where all particles are attracted to the best-
performing individual in the swarm. While this accelerates convergence, it can
also lead to stagnation if gbest becomes dominant too early, reducing search
diversity.

Several studies have introduced modifications to the algorithm, its operators,
or the underlying mechanisms to alter how information is exchanged among
particles:

1. Velocity Operator Adjustments [7], customized velocity operators were in-
troduced to refine how particles update their positions, influencing their
movement dynamics based on their neighborhood structure.

2. Hierarchical and Hybrid Strategies[18], a two-level search strategy combined
with a crossover elimination technique was used to scale PSO for solving
larger optimization problems.

3. Clustered PSO [21], a two-phase heuristic algorithm was tested for solving
the Capacitated Vehicle Routing Problem (CVRP), integrating clustering
techniques (k-means, k-medians, k-medoids) to improve route calculations
using PSO, Genetic Algorithm (GA), and Ant Colony Optimization (ACO).
Interestingly, PSO performed competitively between a winning GA and a
losing ACO, suggesting its effectiveness in structured search spaces.

4. Swarm Initialization and Reset Mechanisms [10], an improved swarm initial-
ization method was proposed to periodically reset the swarm greedily and
introduce cross-transformation operations, thereby mitigating stagnation.
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5. PSO for Combinatorial Optimization [9], a discrete PSO variant was ana-
lyzed for solving the Traveling Salesman Problem (TSP). This study intro-
duced a novel method of measuring differences between tours using "edge
exchanges" and computing a centroid of these differences. Notably, this ap-
proach eliminated inertia and relied solely on attraction to local and global
best solutions.

6. Levy Flight for Enhanced Exploration [11], a PSO variant with Levy flight
was introduced to improve population diversity. Levy flight, a type of stochas-
tic random walk with heavy-tailed step sizes, was applied to a subset of
particles (excluding gbest) to enhance exploration.

7. Lbest approach [14] enables particles to explore different regions indepen-
dently, allowing the swarm to "flow around" local optima rather than be-
coming trapped.

Enhancing PSO through modifications remains a crucial research direction,
particularly with the integration of modern AI techniques. Recent studies have
demonstrated the effectiveness of combining metaheuristics with machine learn-
ing (ML) [8,13] to improve adaptability and performance. However, a significant
gap remains in optimizing the influence of the global best (gbest) solution and
its distribution across the swarm. Addressing this limitation through adaptive or
structured information-sharing mechanisms could further enhance PSO’s ability
to balance exploration and exploitation, leading to more robust and scalable
optimization methods

3 Structural limiting perception in PSO

3.1 Classical Particle Swarm Optimization for discrete problems

Particle Swarm Optimization model for discrete problems, in particular the Trav-
eling Salesman Problem, is a quintuple PSO = (T,X,S, obj, χ), where:

– T = {tj}j∈N - countable time space; when regarding elements of T we will
denote t0 =: 0, t1 =: 1 etc.

– X - feasible position space: a discrete set of permutations X ⊂ Sn, with
a common starting element. Feasible position space can be identified with
a subset of Rn by an injective mapping Sn → Rn coding each element in
permutation as a real number.

– obj - objective function obj : X → R; the aim of optimization task is to
minimize the objective function

– χ = {χt}t∈T - a family of time-indexed probability distributions
– S - a swarm with update rules, i.e. a quadruple S = (S, S0, v, x) where S is

a particle swarm of #I = N particles, S0 is a set of initial states of particles,
v : I × T → X is a velocity update function and x : I × T → X is a position
update function.
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A particle swarm S is a function of time returning S(t) - the state of the
swarm at time t

S : T ∋ t 7→ S(t) =
(
{si(t)}i∈I , gbest(t)

)
∈ (X3)I ×X,

where I is an at least countable set of indices, {si(t)}i∈I is a set of particles
at time t, and gbest(t) is a global best at time t (see definitions below).
A particle si : T → X3, i ∈ I, is defined by its position xi = x(i, ·), velocity
vi = v(i, ·), obtained from update functions, and personal best pbesti, namely

si(t) =
(
xi(t), vi(t), pbesti(t)

)
∈ X3.

Position xi(t) of particle si at time t is a single permutation from the position
space X and its velocity vi(t) at time t is a vector of probabilities of each
transposition (j k), i.e. switching j-th with k-th element in a permutation.
Personal best pbesti(t) : T → X of each particle si, i ∈ I is the best position
achieved by particle si up to time t, i.e.

pbesti(t) = argmin
{xi(τ):τ∈T,τ≤t}

(
obj(xi(τ))

)
.

Global best gbest(t) : T → X is the best position achieved by all particles in
the swarm up to time t, i.e.

gbest(t) = argmin
{xi(τ):τ∈T,τ≤t,i∈I}

(
obj(xi(τ))

)
.

The initial state of the particle si is a tuple (x0
i , v

0
i ) ∈ X × X setting its

position and velocity in time zero. The set S0 of initial states is S0 =
{(x0

i , v
0
i )}i∈I .

Velocity update function v : I × T → X assigns i-th particle at time t the
probability vector vi(t) = (ρ(j k))j,k=1,...,n

j<k
where ρ(j k) is a probability of

transposition (j k). The discrete velocity update function should mimic the
behavior of the classical PSO velocity v(i, t+ 1) = ωvi(t) + r1cp

(
pbesti(t)−

xi(t)
)
+ r2cg

(
gbest(t)− xi(t)

)
.

Thus one of possible approaches to define the discrete velocity update func-
tion is:{

v(i, 0) = vi(0) = v0i
v(i, t+ 1) = vi(t+ 1) = ⌊ωvi(t) + r1cpPp(i, t) + r2cgPg(i, t)⌉[0,1]

where ω ∈ [0, 1] is an inertion constant, cp, cg ∈ [0, 1] are personal and
global accelerator constants independent of i and t, and r1, r2 are stochas-
tic factors sampled from distribution χ(t). Transposition occurence vector
Pp(i, t) = (oc(j k))j,k=1,...,n

j<k
(respectively, Pg(i, t)) represents transpositions

transforming xi(t) to position pbesti(t) (respectively, gbest(t)). Namely, let
Θp(i, t) (Θg(i, t)) be a combination of transpositions transforming position
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xi(t) to position pbesti(t) (gbest(t)). If (j k) ∈ Θp(i, t) (Θg(i, t)), then in
Pp(i, t) (Pg(i, t)) occurence oc(j k) = 1, otherwise oc(j k) = −1. The round-
ing ⌊·⌉[0,1] rounds vector terms greater than 1 down to 1 and terms smaller
than 0 up to 0.

Position update function x : I × T → X changes current position xi(t) to
position xi(t+ 1) in time t+ 1. It is defined recursively:

{
x(i, 0) = xi(0) = x0

i

x(i, t+ 1) = xi(t+ 1) = xi(t) + vi(t+ 1),

where +vi(t+1) means performing on permutation xi(t) transpositions based
on their probability given by velocity vi(t+ 1).

3.2 Structural limiting perception in PSO

Our structural approach to limit the range of perception in PSO is based on
modification of its topology where the i-th particle can interact only with a
subset Si of #Ii particles of the swarm. Thus, the particle does not have access
to gbest(t), the best position achieved by all particles in the swarm. We need to
define a new, indexed function gbest : I × T → X - the best position achieved
up to time t by particles accessible by i-th particle, i.e.

gbest(i, t) = gbesti(t) = argmin
{xi(τ):τ∈Ti,τ≤t,i∈Ii}

(
obj(xi(τ))

)
.

The subset Si of particles accessible by the i th particle depends on the
topology of the entire particle swarm and the chosen radius r.

Ring topology In Ring topology, all N particles are arranged in a form of a
ring (see Figure 1). For the radius r < N/2, the neighborhood of radius r of a
particle si is defined simply as a 2r+1 element subset Si = {si−r, ..., si, ..., si+r},
where for non-positive indices we define sj := sN−|j|, j = 0,−1,−2, ...
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s1

sN

..
.

si

. . .

s4

s3

s2

Fig. 1: Ring topology. The neighborhood of particle s2 of radius r = 2 is S2 =
{sN , s1, s2, s3, s4}.

Tree topology In the Tree topology the particles are arranged as nodes of a
complete binary tree (see Figure 2). The neighborhood of node si of radius r is
the set Si of all nodes of the tree accessible from si by moving along at most r
edges. The size of the particular set Si depends on the placement of the particle
si in the tree.

s1

s2

s4

s8

· · · · · ·

s9

· · · · · ·

s5

s10

· · · · · ·

s11

· · · · · ·

s3

s6

· · · · · ·

s7

· · · · · ·

Fig. 2: Tree topology. The neighborhood of particle s2 of radius r = 2 is shown
in red.

4 Experimental results

The computing node utilized on the Ares supercomputer, provided by the Aca-
demic Computing Center “Cyfronet”, is a robust and highly capable system. It
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boasts an x86_64 CPU architecture with 8 cores per socket, totaling 32 CPUs
overall.

The Traveling Salesman Problem Library (TSPLIB)1 , maintained by the
University of Heidelberg, provides benchmark instances essential for TSP algo-
rithm research and standardization. The collection ranges from small problems
to large-scale instances with thousands of nodes, incorporating both real-world
geographic data and synthetic test cases. Each dataset includes documentation
of its origin, node count, and characteristics (symmetry, distance metrics), en-
abling consistent evaluation and comparative analysis across the optimization
research community.

In our experiments, neighborhood configuration is governed by two primary
parameters: the neighborhood radius and the neighborhood topology. The ra-
dius defines the spatial extent of each particle’s neighborhood, determining how
far-reaching each particle’s interactions are within the network. The topology
parameter specifies the structural arrangement of connections within this ra-
dius, shaping how nodes are organized and interact with one another. Together,
these parameters control the local connectivity and structural dynamics of the
neighborhood, providing a foundation for analyzing their combined impact on
algorithmic performance and network behavior.

When comparing the influence of the radius of the neighborhood in different
topologies (see Figure 3), we observed distinct behaviors in the Ring and Tree
topologies. In the Ring topology, a significant improvement in performance was
noted when the neighborhood radius was increased beyond a value of 17, with the
algorithm consistently achieving better results as the radius expanded. Figure
3 illustrates this relationship through box plots, where each box represents the
distribution of solution qualities across multiple runs for a specific radius value.
The whiskers extend to show the full range of variation (minimum to maximum
values), while the boxes indicate the interquartile range with the median marked
as a horizontal line. This suggests that larger neighborhoods in the Ring topology
enhance the information-sharing process, leading to more effective convergence.
In contrast, for the Tree topology, we did not observe a similar drastic improve-
ment in performance with changes to the radius. The Tree topology appeared to
be less sensitive to radius adjustments, indicating that its hierarchical structure
may already provide an optimal level of neighborhood connectivity, regardless
of the radius size.

Comparing the performance of PSO using different neighborhood topologies
across 27 experiments (see Table 1 and Fig. 4,5), we found that the Tree and Ring
topologies produced varied outcomes. The Tree topology yielded the best results
in 14 of the experiments, showing a strong performance in guiding the swarm
toward optimal solutions. Meanwhile, the Ring topology was the top performer
in 12 experiments (see the best fitness and the final results observed for all the
problems tackled in Figs. 4, 5 tracking the convergence of the cost function across
iterations for each approach, clearly illustrating how the optimization trajecto-
ries differ between topologies and displays box plots that capture the statistical

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Fig. 3: Comparison of neighbourhood radius and distribution of cost function
values in solutions for given topology.
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Table 1: Influence of different topologies on the efficacy of the algorithm
Base Ring % Impr. Tree % Impr.

A280 2907.43 2715.67 6.60% 2725.28 6.27%
ALI535 2422.43 2216.21 8.51% 2231.77 7.87%
BERLIN52 7544.37 7544.37 0.00% 7544.37 0.00%
BIER127 125526.11 120534.37 3.98% 119908.43 4.48%
D198 16920.81 16137.03 4.63% 16176.32 4.40%
D493 39046.98 37573.93 3.77% 36979.43 5.30%
D657 59797.70 54862.37 8.25% 53830.35 9.98%
D1291 59039.96 56799.90 3.80% 56865.50 3.68%
D1655 74257.31 72099.90 2.91% 71592.28 3.59%
PR76 114168.38 111758.33 2.11% 109187.20 4.36%
PR124 61879.51 60088.84 2.89% 60144.91 2.80%
PR136 108121.22 102704.27 5.01% 103014.32 4.72%
PR152 76591.02 74570.78 2.64% 75394.09 1.56%
PR226 85932.47 81521.89 5.13% 81294.46 5.40%
PR264 54246.47 51648.98 4.79% 51444.39 5.17%
PR299 55269.41 51183.28 7.39% 51020.27 7.69%
PR439 123136.92 115400.68 6.28% 116630.74 5.28%
PR1002 308687.76 288016.75 6.70% 288845.45 6.43%
TSP225 4317.02 4050.63 6.17% 4097.47 5.09%
U159 47417.00 44676.49 5.78% 45222.16 4.63%
U574 44278.99 41420.18 6.46% 40867.74 7.70%
U724 50221.52 47510.58 5.40% 46023.45 8.36%
U1060 273657.28 254473.71 7.01% 251944.42 7.93%
U1432 185220.63 176764.05 4.57% 173481.57 6.34%
U1817 67459.73 66432.23 1.52% 66455.14 1.49%
U2152 77072.68 76696.36 0.49% 75997.36 1.40%
U2319 270048.52 270293.90 -0.09% 269616.63 0.16%

distribution of solution qualities), demonstrating its effectiveness in maintain-
ing a balanced exploration across particles. These findings suggest that, while
both topologies have strengths, the Tree topology may offer a slight advantage
in achieving optimal results more consistently under the tested conditions.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_19

https://dx.doi.org/10.1007/978-3-031-97554-7_19
https://dx.doi.org/10.1007/978-3-031-97554-7_19


Structural Limiting Range of Perception in Particle Swarm Optimization 11

F
ig

.4
:C

om
pa

ri
ng

effi
ca

cy
of

to
po

lo
gi

es
fo

r
di

ffe
re

nt
pr

ob
le

m
s

ta
ck

le
d

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_19

https://dx.doi.org/10.1007/978-3-031-97554-7_19
https://dx.doi.org/10.1007/978-3-031-97554-7_19


12 M. Mastalerczyk et al.

F
ig

.5
:C

om
pa

ri
ng

effi
ca

cy
of

to
po

lo
gi

es
fo

r
di

ffe
re

nt
pr

ob
le

m
s

ta
ck

le
d

(c
on

t.
)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_19

https://dx.doi.org/10.1007/978-3-031-97554-7_19
https://dx.doi.org/10.1007/978-3-031-97554-7_19


Structural Limiting Range of Perception in Particle Swarm Optimization 13

In addition to the improvements in solution quality, both the Tree and Ring
topologies demonstrated faster convergence to better results compared to the
Base PSO approach. While Base PSO often became stuck in local optima, this
tendency was more pronounced as the problem size increased, with the algorithm
quickly losing diversity and getting trapped in suboptimal solutions. In contrast,
the use of neighborhood topologies, whether Tree or Ring, mitigated this issue,
maintaining a more balanced exploration of the solution space. These topologies
enabled the swarm to converge more efficiently and avoid getting stuck in local
optima as frequently, even in larger and more complex problems, highlighting
their robustness in comparison to the Base approach.

5 Conclusions

Our research on structural limiting perception in Particle Swarm Optimization
(PSO) demonstrates that restricting the range of information sharing among
particles can significantly enhance algorithm performance on complex optimiza-
tion problems. By implementing localized communication models through Ring
and Tree topologies, we observed consistent improvements over the standard
global-best PSO across a diverse set of TSP instances from the TSPLIB.

The experimental results clearly indicate that constraining particle percep-
tion brings substantial benefits in terms of both solution quality and conver-
gence behavior. The Tree topology emerged as the most effective structure.
Both topologies consistently outperformed the standard PSO implementation,
with improvements becoming more pronounced as the complexity of the problem
increased.

A key finding of our work is that the neighborhood radius plays a topology-
dependent role in algorithm performance. In the Ring topology, increasing the
radius of the neighborhood beyond 17 led to significant improvements, suggesting
that expanded local information sharing improves convergence in this structure.
Conversely, the Tree topology showed less sensitivity to radius adjustments, indi-
cating that its hierarchical structure may inherently provide effective information
dissemination regardless of neighborhood size.

The improved performance of both proposed topologies can be attributed to
their ability to maintain swarm diversity and prevent premature convergence.
Although standard PSO frequently became trapped in local optima, especially
for larger problem instances, our topological modifications facilitated contin-
ued exploration of the search space while still allowing effective exploitation of
promising regions.

These findings have important implications for the design and application of
PSO. By implementing structural constraints on information sharing, we can sig-
nificantly enhance PSO’s robustness and effectiveness without increasing compu-
tational complexity. Furthermore, the approach is flexible enough to be applied
to various PSO variants and problem domains beyond the TSP.

While our research focused on TSP instances, our primary goal was to ex-
amine whether limiting perception produces better optimization results, rather
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than developing a TSP-specific solution. The promising outcomes suggest that
these topological modifications could be readily translated to other PSO vari-
ants and problem domains. Future research should explore implementing these
perception-limiting structures in different PSO algorithms applied to varied op-
timization challenges, from continuous function optimization to dynamic prob-
lems, to further validate the generalizability of our approach.
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