
MinRNNs
for Lagrangian-Based Simulations

of Transient Flow Problems

Dody Dharma1,2[0000−0003−1022−9346], Peter K. Jimack2[0000−0001−9463−7595],
and He Wang3[0000−0002−2281−5679]

1 School of EE and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
dody.dharma@itb.ac.id

2 School of Computer Science,University of Leeds, Leeds, UK
p.k.jimack@leeds.ac.uk

3 AI Centre, Computer Science, University College London, London, UK
he_wang@ucl.ac.uk

Abstract. Motivated by the need for faster yet accurate surrogate mod-
eling of continuum simulations, we investigate whether the recently pro-
posed minimal recurrent networks (minLSTM and minGRU [1]4) can
benefit particle-based fluid and soft-solid simulations. To our knowledge,
this is the first work applying these minimal RNNs to Lagrangian data
from 2D continuum simulation, including single-phase fluids and multi-
material interactions. We embed minLSTM and minGRU in an MLP-
based encoder–decoder and compare them against (i) a classical LSTM,
and (ii) an MLP baseline with no recurrent core. Where prior studies
of minRNNs focused on simpler time-series tasks, our results show that
minLSTM and minGRU remain highly effective in these physics-driven
settings: they train approximately 350–400% faster than the standard
LSTM or GRU, while matching—and often surpassing—their accuracy.
Thus, for particle-based continuum simulations, minimal recurrent ar-
chitectures offer a superior trade-off between computational overhead
and predictive performance, thereby advancing real-time or high-fidelity
simulation workflows in engineering and visual effects. We conclude that
minimal RNNs are well-suited for surrogate modeling of fluid and soft-
solid dynamics.

Keywords: Continuum simulation · Lagrangian · particle-based meth-
ods · Material Point Method · Surrogate modeling · Temporal learning ·
LSTM · minLSTM · minGRU · minRNNs· Minimal RNNs

1 Introduction

Physics-based continuum simulation techniques aim to enhance visual fidelity
[2], simulate new phenomena [3], and improve computational efficiency [4]. Our
work seeks to preserve visual realism while accelerating simulations via machine
4 Also available at https://github.com/BorealisAI/minRNNs

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://github.com/BorealisAI/minRNNs
https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


2 D. Dharma et al.

learning, thereby enabling real-time interactive graphics and other applications.
By leveraging machine learning algorithms, we aim to conserve critical flow fea-
tures (e.g., density, kinetic energy, vorticity) while reducing the computational
overhead of fluid simulations.

Simulating the behavior of fluids and deformable solids is essential in com-
puter graphics, engineering, and scientific computing. Lagrangian representa-
tions (particle- or mesh-based) track positions, velocities, and other attributes
over time, offering a versatile means of modeling complex behaviors. However,
full physics-based simulations remain computationally expensive [5,6]. Conse-
quently, machine learning-based surrogate models have emerged as an attrac-
tive alternative for rapidly predicting system evolution [7,8,9]. Traditional fluid-
dynamics methods, which store velocity fields on regularly spaced grids [10],
perform well for smooth flows but struggle with irregular phenomena in com-
plex or continuous domains. Moreover, the curse of dimensionality, local dis-
continuities, and hidden physical constraints complicate modeling in large-scale,
detailed space-time domains, highlighting the need for more compact and struc-
tured representation spaces.

Lagrangian continuum simulation [11] is especially popular for real-time ap-
plications (see, e.g.[13,14]). Nevertheless, relatively few efforts have developed
particle-based or material point-based predictors for fluids or deformable solids.
Recent advances, such as continuous convolution methods [15] and Graph Net-
work simulators ([16]), are beginning to fill this gap. Additionally, momentum-
conserving techniques have shown promise in learned physics simulations ([17]).
Despite these strides, developing robust and scalable machine learning solutions
for Lagrangian continuum simulation remains an open challenge, particularly for
long-term temporal modeling ([9,18,19]).

Although machine learning has accelerated continuum simulations, trade-offs
remain. Non-recurrent networks (e.g., [7,9]) are not well suited to capture long-
term dependencies, while standard recurrent networks such as LSTMs [20] or
GRUs [21] incur high training costs due to backpropagation through time. Fur-
thermore, fluid simulations involve high-dimensional particle data and complex
multi-phase interactions, requiring models that are both flexible enough to cap-
ture intricate dynamics and scalable enough to handle large amounts of data
[6,22].

Building on insights from parallelizable RNNs [1], we hypothesize that min-
imal recurrent networks—which remove hidden-state dependencies from their
gating mechanisms—can preserve key memory properties with lower parameter
overhead and facilitate efficient, parallel training. Minimal variants such as minL-
STM and minGRU [1] bypass the costly backpropagate through time (BPTT)
process while capturing complex temporal dynamics, thereby addressing both
the computational burden of large-scale surrogate modeling and the need for
robust long-range memory.

In this work, we investigate neural network architectures for learning the
temporal evolution of continuum simulations from per-particle attributes. We
compare a baseline Multi-Layer Perceptron (MLP) that directly predicts the

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


MinRNNs for Lagrangian-Based Simulations of Transient Flow Problems 3

next frame with recurrent architectures that integrate temporal information,
focusing on classical LSTMs versus minimal recurrent architectures (minLSTM
and minGRU, [1]). To the best of our knowledge, this is the first study to explore
minimal recurrent architectures for predicting the temporal evolution of fluid
and multi-material simulations, while evaluating trade-offs between accuracy
and computational efficiency.

2 Related Work

Lagrangian Continuum Simulation is widely used for simulating fluids and de-
formable bodies. In these approaches, the continuum is discretized into particles
that carry positions, velocities, and material properties. Classical solvers update
these attributes based on physical conservation laws [23]. An example of a Lan-
grangian Approach is Lagrangian Finite Element Method [24]. In this method,
the deforming computational domain is discretized by means of a finite element
mesh that deforms with the flow [24]. The method allows simulations of sus-
pensions under planar extensional flow to be conducted to large strains in a
truly periodic cell. Another prominent example of the Lagrangian approach is
SPH (Smoothed Particle Hydrodynamics) [11,27]. Initially used in astronomy
to simulate gas dynamics on a large scale (astrophysics), but later it was also
applied to the problem of incompressible flow such as simulations of ocean waves
and liquid mud in tanks [12]. In the SPH method, the computational domain is
discretized into a finite number of particles. The continuous integral representa-
tion of the field variable f(x) can then be approximated by summation over the
neighbouring particles using the smoothing/kernel function W and smoothing
length, r, defining the influence domain of W [27].

Deep Learning for Physics-Based Systems: The rise of Machine Learning Tech-
niques, particularly Deep Neural Networks (DNN), is currently propelling re-
search into accelerating physical simulation and modeling physical functions.
Applications cover a range of areas such as rapid approximations for numerical
fluid solvers [7,16], robotic control and planning [25,26], and more efficient cloth
simulation [30,31].

Temporal modeling: Autoencoders have been used to compress fluid fields [18,19],
and recurrent networks, especially LSTMs [20], have been employed to capture
temporal dependencies. More recently, minimal recurrent architectures such as
minLSTM and minGRU [1] have emerged as efficient alternatives that reduce
parameter counts while maintaining performance. Autoencoders (AE) are used
by [9,18,19] to compress the dimensionality of the simulation into latent space
prior to temporal prediction. [18], in a separated training process from the AE,
uses an LSTM network and time convolution in latent space to predict the tem-
poral change of the fluid. This approach leads to large speed-ups relative to the
tradional CPU-based solver. [28] developed a non-intrusive data-driven ROM
using POD for reduced basis construction and LSTM for temporal evolution,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


4 D. Dharma et al.

integrating CFD and DEM while employing a filtering procedure to reduce di-
mensionality. [29] developed a hybrid neural network combining LSTM and CNN
to predict unsteady fluid flows with an eulerian representation, where the LSTM
forecasts the lift coefficient over time, and the CNN reconstructs velocity and
pressure fields based on CFD-simulated flow data around cylinders. [9] uses a
generative approach with a CNN to re-synthesize / upscale the dynamic flow
fields for both smoke and liquid.

3 Ground Truth for Continuum Simulation

In this section, we provide a detailed overview of the datasets and simulation en-
vironments used in our research on fluid and deformable solid simulations. The
primary goal is to establish a comprehensive ground truth that serves as the
basis for training and validating our models. All ground truth simulations are
conducted using the Material Point Method (MPM) [33], implemented through
the Taichi framework [34]. We adopt a time step size of ∆t = 8 × 10−4 time
units for these simulations, saving every 20th time step (referred to below as
a “frame”)—thus generating about 60 frames per second. This setup allows us
to generate diverse scenarios that capture various physical interactions between
different materials, such as liquids, soft solids, and deformable solids. Figure 1
illustrates examples of the different types of multi-material simulations used in
our study. These include representations of homogeneous liquid, "snow", "rope",
and "jelly" ball interactions, as well as mixed simulations where different mate-
rials interact dynamically ((see Appendix A for further details)).

3.1 Continuum Domain

These experiments involved two primary types of simulations: homogeneous fluid
simulation and multi-material simulation. For multi-material simulations, we
generated 60 two-dimensional scenes using predefined scenarios specified by dif-
ferent scenario IDs, each with unique initial configurations involving varying
shapes, sizes, initial positions, and velocities of fluid and some material bodies
within a square container of 1 by 1 unit. Similarly, for fluid-only simulations, we
generated 40 distinct scenes, each focused solely on fluid dynamics, with varied
initial configurations of fluid particles.

The duration of the multi-material scenes was uniformly set to 10 time units
to capture the full range of material interactions. For the fluid-only simulations,
scene durations varied from 5 to 25 time units. These simulations were designed
to run until significant fluid dynamics had subsided, avoiding the bias of pro-
longed stationary scenarios in the training data. By ending the simulations when
little activity remained, we ensured that the dataset represented a diverse set of
dynamic behaviors without over-representing static configurations.

To further characterize the flow in these experiments, we use the Reynolds
number, defined as Re = ρUL

µ . Given the normalized parameters in our simula-
tions (ρ = 1, L ≈ 1, and µ = 0.5), the Reynolds number ranges from approxi-
mately 0.2 to 40. In MPM, the dynamic viscosity µ is related to the density ρ and

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


MinRNNs for Lagrangian-Based Simulations of Transient Flow Problems 5

Fig. 1. Snapshots from groundtruth data for multi-material multi-phase simulation.
Top-left: homogeneous liquid; top-middle: snow; top-right: rope and jelly ball; bottom-
left: liquid and snow; bottom-middle: rope and snow; bottom-right: rope and liquid.

the kinematic viscosity ν by the relation µ = ρν. Despite dynamic variations,
the flow remains predominantly laminar.

3.2 Data Generation and Description

Figure 2 illustrates examples from the dataset used for fluid simulation, while
Figure 1 displays example datasets for multi-material simulations. For multi-
material simulations, initial configurations were generated using a shell script
that automated the creation of 60 unique scenarios by running the Python code
of the MPM Simulation with varying scenario IDs. These scenarios included
diverse initial conditions for fluids, and soft solids, ensuring a wide range of
material interactions.

For fluid-only simulations, a separate script was used to automate the gen-
eration of 40 different scenarios, each focused solely on fluid dynamics. In both
simulation types, we captured the position (px, py), velocity (vx, vy), and ma-
terial parameter (m) (in integer) of each particle in every frame. Positions and
velocities were normalized relative to the simulation domain and a predefined
maximum velocity to ensure consistency across scenes. The resulting datasets
provide a comprehensive collection of fluid and multi-material interactions, as
depicted in Figures 2 and Figures 1.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


6 D. Dharma et al.

Fig. 2. Dataset of fluid simulations using 2,500 particles per domain, with each row
showing a different initial configuration and its time evolution: Top: A circular fluid
body spreading from the center. Middle: A rectangular fluid body deforming and
dispersing. Bottom: A random-velocity splash under gravity.

4 Data Normalization

Simulation data, stored in HDF5 files (each frame having 2,500 particles), is
loaded and reshaped from:

(totalFrames, 2500, nFeatures) → (totalFrames × 2500, nFeatures-1).

This 2D representation allows MinMax scaling across all features—positions
(x, y), velocities (vx, vy), and any material parameters. After scaling, the data
is reshaped back to its original structure to preserve temporal and spatial rela-
tionships.

Because each feature can have different value ranges, they are normalized
independently. Using MinMax scaling, each feature is mapped to the interval
[0, 1] by subtracting the feature’s minimum value and dividing by its range: s
defined as:

xnorm =
X −Xmin

Xmax −Xmin
(1)

This ensures no single feature disproportionately affects the model.
We apply Scikit-Learn’s MinMaxScaler to fit and transform both input and

target data, then reshape the transformed data back to its original format. The

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


MinRNNs for Lagrangian-Based Simulations of Transient Flow Problems 7

normalized dataset is subsequently partitioned into training, validation, and test
sets, following an 80:10:10 split ratio.

5 Temporal Modeling

Accurately capturing the time evolution of particle states is essential for building
predictive surrogate models of Lagrangian simulations. Our approach compares
different architectures to handle temporal information, focusing on the interplay
between classical LSTM networks and their minimal variants.

5.1 Encoding and Decoding Particle States

We first encode raw particle attributes into a latent space using an MLP encoder,
and then decode from that latent representation back into particle space with
an MLP decoder. For a particle i with attributes pi = (xi, yi, vx,i, vy,i,mi), the
encoder maps pi to zi, and the decoder reconstructs p̂i from zi. Training these
modules end-to-end, with Mean Squared Error (MSE) loss across all particles
and frames, provides a compact representation of particle states.

5.2 Minimal RNN Variants

Although standard LSTM networks [20] effectively capture long-term dependen-
cies in complex, non-linear sequences, they can be computationally intensive and
contain many parameters. This is a limitation in scientific machine learning, as
long training and inference times hinder real-time applications, and high pa-
rameter counts require significant computational resources, increasing the risk
of overfitting when data are limited. To address these issues, minLSTM and
minGRU, introduced in [1] (also presented in Apendix C Figure C), simplify the
classical gating mechanisms while retaining core memory capabilities:

– minLSTM reduces the standard three-gate design to two gates (input and
forget), removing the output gate but preserving a dedicated memory cell.
This trimming decreases the parameter count and simplifies the updates.

– minGRU further streamlines by merging the reset and update gates into
a single gate zt. Instead of maintaining a separate cell state, it computes a
candidate hidden state h̃t and forms the final output as a convex combination
of ht−1 and h̃t.

By reducing computational complexity and parameter overhead, these mini-
mal recurrent variants are especially attractive for scientific machine learning ap-
plications where efficiency, scalability, and robustness are essential. Both minimal
variants reduce the number of gating operations and the amount of sequential
dependence at each time step, which in turn increases the portion of computa-
tions that can be parallelized by GPUs or other parallel hardware ([1]). This
design leads to reduced training costs and makes the architectures attractive for
large-scale simulations. By contrasting LSTM, minLSTM, and minGRU, we aim
to identify the best balance of accuracy, model complexity, and computational
efficiency for predicting particle states over extended temporal horizons.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


8 D. Dharma et al.

6 Network Architectures and Training Procedures

We study three classes of models:

MLP Baseline An MLP maps the concatenated per-particle attributes at time
t directly to the attributes at time t+ 1. Although simple, this approach suffers
from drift over long rollouts.

LSTM+MLP A standard LSTM processes a sequence of frames (or their la-
tent representations) and predicts the next frame. While this model improves
temporal continuity, it incurs computational overhead.

Minimal RNNs+MLP We combine an MLP encoder–decoder with a recurrent
core. In our architecture, the encoder compresses per-particle data into a latent
representation, the recurrent core evolves the latent state over time, and the
decoder reconstructs full particle states. We report results separately for the
model with a minLSTM core and the one with a minGRU core.

Frame xt−1 Frame xt

Pointwise MLP

Latent zt−1 Latent zt

RNN stack

Hidden St. ht

Decoder MLP

Prediction x̂t+1

Fig. 3. Architecture for the proposed model with encoder-decoder and RNN Stack.

6.1 Architecture

We illustrate the full encoder–decoder pipeline with an RNN stack in Figure 3.
The model receives two consecutive frames as input, and dropout is applied after
the first and second RNN layers for regularization. In the first layer, the sequence
of frame embeddings is passed through the RNN; its output is then processed
by an MLP layer to transform the hidden dimensions. Finally, a decoder MLP
generates the predicted frame. The layer-by-layer details of this RNN stack and
hidden state appear in Table 1. By learning the encoder, RNN, and decoder
weights simultaneously, the model constructs a latent-space representation on the
fly that best suits the prediction task. The next section presents both qualitative
and quantitative results showing how well this end-to-end approach captures
long-term fluid and solid behavior.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


MinRNNs for Lagrangian-Based Simulations of Transient Flow Problems 9

Table 1. Details layer by layer of the proposed Temporal Model

Layer Input Output Details

(1) Input
(
B, T,N, 5

)
– features per point (e.g., x, y, vx, vy,m).

(2) Encoder
(
B,N, 5

) (
B, 1250

)
Pointwise MLP: 2×Linear + ELU
(e.g., [5 → 256 → 1250]). Then
mean/max pool over N .

(3) RNNStack
(
B, T, 1250

) (
B, 1250

)
2× minRNN(1250) + MLP(1250 →
1250). Dropout after each RNN layer.
Output is last time-step (B, 1250).

(4) Decoder
(
B, 1250

) (
B,N, 2

)
Single Linear layer (1250 → N × 2),
then reshape to (B,N, 2).

(5) Output –
(
B,N, 2

)
Predicted frame (e.g., (dvx, dvy)).

6.2 Training Details

We train our network end-to-end in a supervised manner using particle trajec-
tories generated by classical physics-based simulations as ground truth ([33]).
Each training sample consists of a pair of input frames, xt−1 and xt, and the
subsequent target frame, xt+1. Each frame contains N = 2500 particles, with
each particle described by its 2D position (x, y) , velocity (vx, vy) and material
parameter (m).

Our objective combines a standard mean-squared-error (MSE) loss on posi-
tions and velocities with an additional density-based loss to encourage globally
consistent particle distributions. Formally, the temporal loss at time step n+ 1
is defined as:

Ln+1 =
1

N k

N∑
i=1

k∑
j=1

(
yn+1
i,j − ŷn+1

i,j

)2

, (2)

where N is the number of particles and k is the number of scalar attributes
per particle (e.g., positions, velocities, densities, etc.). Here, yn+1

i,j denotes the
ground truth value of the j-th attribute for the i-th particle, while ŷn+1

i,j is the
corresponding predicted value. In addition to this loss, a density map MSE is
applied to enforce high quality particle distributions.

Data is processed in minibatches that capture partial sequences from the
simulation. While early experiments used a batch size of 192, extensive testing
led us to select a batch size of 4096 to balance training stability and speed.
Training iterates over all Tframes of the simulation (from frame 0 to Tframes −
1), applying the same multilayer perceptron (MLP) pointwise to each particle
without requiring any explicit dimensionality reduction.

Optimization is performed using the Adam optimizer with a learning rate of
0.001, and training proceeds for several hundred epochs. Real-time monitoring
is facilitated by torch.utils.tensorboard, and the entire training pipeline is
implemented using PyTorch.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


10 D. Dharma et al.

7 Results

7.1 Fluid Tests

We evaluate our models on single-phase fluid simulations. Figure 4 (left) com-
pares the ground truth for a typical simulation with four methods: LSTM-based,
GRU, minLSTM, and minGRU (all of which use an MLP as the hidden trans-
formation) (complete figures for all fluid test scenes are available in appendix D
). We also compare with a pure MLP architecture, though it is not shown here
due to space limitations. Although the pure MLP captures the fluid’s coarse
shape, it drifts noticeably over time. The LSTM based model preserves fluid
continuity but is computationally more expensive. By contrast, both minLSTM
and minGRU produce stable, accurate predictions over long horizons, with slight
differences in error metrics.

Table 2 reports numerical comparisons for six fluid test scenes, showing both
average and final-frame MSE. Each table block highlights the lowest errors in
bold among the tested methods.

Table 2. Comparisons of Average frames rollout (20) MSE and frame(20th) MSE for
fluid scenes. The lowest value within each block is in bold.

Scene Average frames rollout (1..20) Frame (20th) Rollout MSE

minGRU minLSTM LSTM GRU minGRU minLSTM LSTM GRU

54 0.1469 0.1465 0.1324 0.1320 0.2821 0.2814 0.2632 0.2632
55 0.1654 0.1652 0.1519 0.1491 0.3151 0.3148 0.3052 0.3052
56 0.1093 0.1090 0.1050 0.0904 0.2098 0.2093 0.2155 0.2155
57 0.1893 0.1892 0.1882 0.1935 0.3619 0.3618 0.4002 0.4002
58 0.1206 0.1203 0.1257 0.1231 0.2314 0.2310 0.2310 0.2356
59 0.1289 0.1287 0.1149 0.1033 0.2470 0.2466 0.2497 0.2497

Average 0.1343 0.1431 0.1364 0.1320 0.2746 0.2741 0.2764 0.2764

7.2 Multi-Material Simulations

We next evaluate scenes involving pairwise interactions among four material
types: liquid, snow, rope, and jelly. These multi-material scenarios exhibit diverse
physical behaviors (e.g., fluid-like spreading vs. elastic deformation) and thus
present greater challenges for learning robust dynamics models.

Table 3 summarizes each method’s performance across six multi-material
scenes, reporting both average MSE over frames 1–20 and the final-frame MSE
at frame 20. Four neural architectures (LSTM, minGRU, minLSTM, and GRU)
are compared, with the lowest value in each row highlighted in bold. Although
every approach excels for certain material combinations, minLSTM consistently
achieves lower error across most interactions.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


MinRNNs for Lagrangian-Based Simulations of Transient Flow Problems 11

Fig. 4. Left: Raw per-frame MSE curves for fluid scene 58, which underpin the
numerical comparisons in Table 2. Right: MSE curves for the multimaterial scene
“jelly+liquid”, as reported in Table 3. Each plot displays MSE values over 20 frames for
the evaluated models. Complete figures for all test scenes are available in Appendix D.

Figure 4 (right) and Figure D in Appendix D reinforces these MSE trends
on a per-scene basis, while Figure D in the same appendix shows visual snap-
shots of four representative multi-material simulations. We observe that the more
challenging pairs (e.g., rope+liquid or rope+jelly) produce higher errors overall,
underscoring the difficulty of accurately modeling multi-material coupling.

Table 3. Comparisons of Average frames rollout (20) MSE and frame(20th) MSE for
multi-material scenes. The lowest value within each block is in bold.

Scene Average frames rollout (1..20) Frame (20th) Rollout MSE

minGRU minLSTM LSTM GRU minGRU minLSTM LSTM GRU

liquid+snow 0.2273 0.2269 0.2557 0.3210 0.4700 0.5076 0.6026 0.7888
rope+snow 0.2362 0.1657 0.3193 0.1789 0.6143 0.4314 0.8193 0.4861
jelly+liquid 0.1682 0.0983 0.1444 0.1111 0.3267 0.2242 0.2829 0.2369
snow+snow 0.3553 0.3843 0.3360 0.4263 0.6687 0.8077 0.8330 1.0047
rope+jelly 0.1980 0.0529 0.1832 0.2336 0.6679 0.1646 0.5421 0.6328
rope+liquid 0.2552 0.1886 0.6009 0.3924 0.7185 0.4610 1.6143 1.2627

Average 0.2400 0.1861 0.3066 0.2772 0.5777 0.4327 0.7824 0.7353

7.3 Training Speed

To assess efficiency, we measured training times for each recurrent architecture
on a dataset with 23,856 samples of multi-material scenario. Table 4 summa-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


12 D. Dharma et al.

rizes the key metrics. The minimal variants (minLSTM and minGRU) converge
much faster, both in total training time and average time per epoch, than their
standard LSTM and GRU counterparts.

Table 4. Training speed comparison for minLSTM, minGRU, LSTM, and GRU. To-
tal training time is the wall-clock duration until completion (or early stopping), and
average epoch time is the total divided by the final epoch count.

Model Epochs Time (s) Time/Epoch (s)
Total per sample (µs) Avg. Max.

minLSTM 99 61.50 36.68 0.62 0.88
minGRU5 85 54.04 36.05 0.54 0.86
LSTM 99 286.96 139.84 2.87 3.34
GRU 99 266.94 129.07 2.67 3.08

As shown above, minLSTM and minGRU both converge in significantly less
time (∼ 0.6 s per epoch) compared to standard LSTM and GRU (∼ 2.7-2.9 s per
epoch), demonstrating the computational advantages of minimal RNN architec-
tures. Despite faster training, minLSTM and minGRU also match or exceed the
predictive performance of their standard counterparts (see Table 2), indicating
a superior trade-off between speed and accuracy.

8 Conclusion

We introduced an end-to-end surrogate modeling approach for particle-based
continuum simulations using neural networks, incorporating a recurrent core to
capture both local particle dynamics and global temporal dependencies. Our
experiments spanned homogeneous fluid and multi-material scenarios, providing
a broad view of each method’s strengths and weaknesses.

In particular, we compared a classical LSTM against more compact RNN
variants (minLSTM and minGRU). Across all tested scenes, these minimal ar-
chitectures consistently exhibited accuracy on par with, or better than, the stan-
dard LSTM and GRU, often achieving the lowest mean-squared errors. Moreover,
our training speed benchmarks showed minLSTM and minGRU to be roughly
350–400% faster, substantially reducing wall-clock time and computational over-
head. This efficiency boost not only cuts overall training costs but also makes
more frequent or comprehensive hyperparameter searches feasible.

Overall, these results highlight that minimal RNNs can provide a superior
trade-off between accuracy and efficiency for physics-based simulation tasks. By
reducing overhead without compromising predictive quality, practitioners can
accelerate high-fidelity simulation workflows in engineering, visual effects, and
other real-time applications. Looking ahead, we plan to extend these methods to
three-dimensional simulations and more complex, multi-modal material interac-
tions, while also exploring graph-based neural networks to better capture local
particle neighborhoods and interactions.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


MinRNNs for Lagrangian-Based Simulations of Transient Flow Problems 13

Acknowledgments. We gratefully acknowledge the LPDP – Indonesia Endowment
Fund for Education Agency for supporting this research, and the NVIDIA Hardware
Grant Program for providing the NVIDIA RTX A5000 GPU used in our experiments.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Appendix

This section contains supplementary material for the paper. You can access the
full supplementary materials PDF online at the following link:

– github.com/dodydharma/minRNNsFlow/blob/main/docs/appendix.pdf

A Simulation Process

This section provides details on the simulation process used to generate the
datasets. For complete information, please refer to the supplementary PDF at:
appendix A.

B Selection of Activation Function

The choice of activation function is critical for the performance and efficiency of
deep neural networks. In this section, we describe our experiments with various
nonlinear activation functions (e.g., Sigmoid, Tanh, ReLU, and ELU) and explain
the rationale for our selection. For full details, please refer to the supplementary
PDF at: appendix B.

C minRNN Architecture

This section describes the architecture of the minimal RNN variants (minL-
STM and minGRU) and compares them with classical LSTM/GRU models.
Merging or removing gates reduces parameters and accelerates training without
sacrificing long-term temporal modeling. For further illustration, please see the
supplementary PDF at: appendix C.

D Further Visualization of Results

This section provides additional visualizations of the experimental results, in-
cluding qualitative comparisons and per-frame MSE curves. For a more com-
prehensive set of images and charts, please refer to the supplementary PDF at:
appendix D.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://github.com/dodydharma/minRNNsFlow/blob/main/docs/appendix.pdf
https://github.com/dodydharma/minRNNsFlow/blob/main/docs/appendix.pdf
https://github.com/dodydharma/minRNNsFlow/blob/main/docs/appendix.pdf
https://github.com/dodydharma/minRNNsFlow/blob/main/docs/appendix.pdf
https://github.com/dodydharma/minRNNsFlow/blob/main/docs/appendix.pdf
https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


14 D. Dharma et al.

References

1. Feng, L., Tung, F., Ahmed, M. O., Bengio, Y., Hajimirsadeghi, H.: Were RNNs All
We Needed? arXiv preprint arXiv:2410.01201 (2024). https://arxiv.org/abs/2410.
01201

2. Qu, Z., Zhang, X., Gao, M., Jiang, C., Chen, B.: Efficient and Conservative Fluids
Using Bidirectional Mapping. ACM Trans. Graph. 38(4), 128 (2019).

3. Huang, L., Hadrich, T., L, D., Michels.: On the Accurate Large-scale Simulation of
Ferrofluids. ACM Trans. Graph. 38(4), 93 (2019).

4. Goldade, R., Wang, Y., Aanjaneya, M., Batty, C.: An Adaptive Variational Finite
Difference Framework for Efficient Symmetric Octree Viscosity. ACM Trans. Graph.
(TOG) 38(4), 94 (2019).

5. Dharma, D., Jonathan, C., Kistidjantoro, A. I., Manaf, A.: Material point method
based fluid simulation on GPU using compute shader. In: 2017 Int. Conf. Advanced
Informatics, Concepts, Theory, and Applications (ICAICTA) (2017).

6. Gao, M., Wang, X., Wui, K., Pradhana, A., Sifakis, E., Yuksel, C., Jiang, C.: GPU
Optimization of Material Point Methods.umen ACM Trans. Graph. 37(6) (2018).

7. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating Eulerian Fluid
Simulation With Convolutional Networks. In: Proc. 34th Int. Conf. Machine Learn-
ing (2017).

8. Chu, M., Thuerey, N.: Data-Driven Synthesis of Smoke Flows with CNN-based Fea-
ture Descriptors. ACM Trans. Graph. 36(4) (2017).

9. Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep
Fluids: A Generative Network for Parameterized Fluid Simulations. In: Comput.
Graph. Forum (Proc. Eurographics 2019) (2019).

10. Wang, Y., Jimack, P. K., Walkley, M. A.: One-field monolithic fictitious domain
method for fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 317,
1168–1196 (2017).

11. Monaghan, J. J.: Smoothed Particle Hydrodynamics. Annu. Rev. Astron. Astro-
phys. 30, 543 (1992).

12. Auer, S.: Realtime Particle-based Fluid Simulation. Tech. Rep. (2009). Technische
Universität München.

13. Macklin, M., Müller, M.: Position Based Fluids. ACM Trans. Graph. 32(4) (2013).
14. Müller, M., Charypar, D., Gross, M.: Particle-based Fluid Simulation for Interac-

tive Applications. In: Proc. 2003 ACM SIGGRAPH/Eurographics Symp. Comput.
Anim. 154–159 (2003).

15. Ummenhofer, B., Prantl, L., Thuerey, N., Koltun, V.: Lagrangian Fluid Simulation
with Continuous Convolutions. In: Proc. Int. Conf. Learn. Representations (ICLR)
(2019).

16. Ladický, Ľ., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven Fluid
Simulations using Regression Forests. ACM Trans. Graph. (TOG) 34(6), 199 (2015).

17. Prantl, L., Ummenhofer, B., Koltun, V., Thuerey, N.: Guaranteed Conserva-
tion of Momentum for Learning Particle-Based Fluid Dynamics. arXiv preprint
arXiv:2210.06036 (2022). https://arxiv.org/abs/2210.06036

18. Xie, W., Yang, Z., Yu, F., Jiang, C.: Latent Space Physics: Towards Learning the
Temporal Evolution of Fluid Flow. Comput. Graph. Forum 38(2), 71–82 (2019).
https://doi.org/10.1111/cgf.13661

19. Wiewel, S., Kim, B., Azevedo, V. C., Solenthaler, B., Thuerey, N.: Latent Space
Subdivision: Stable and Controllable Time Predictions for Fluid Flow. In: Proc. Int.
Conf. Machine Learning (ICML) (2020).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://arxiv.org/abs/2410.01201
https://arxiv.org/abs/2410.01201
https://arxiv.org/abs/2210.06036
https://doi.org/10.1111/cgf.13661
https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17


MinRNNs for Lagrangian-Based Simulations of Transient Flow Problems 15

20. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9(8),
1735–1780 (1997).

21. Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning Phrase Representations Using RNN Encoder–Decoder for
Statistical Machine Translation. In: Proc. EMNLP (2014).

22. Nie, X., Chen, L., Xiang, T.: Real-Time Incompressible Fluid Simulation on the
GPU. Int. J. Comput. Games Technol. (2015).

23. Bridson, R.: Fluid Simulation for Computer Graphics. A K Peters/CRC Press
(2008).

24. Ahamadi, M., Harlen, O. G.: A Lagrangian Finite Element Method for Simulation
of a Suspension under Planar Extensional Flow. J. Comput. Phys. 227, 7543–7560
(2008).

25. Hu, Y., Liu, J., Tenenbaum, J. B., Freeman, W. T., Wu, J., Rus, D., Matusik, W.:
ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics. In:
Proc. 32nd Conf. Neural Information Processing Systems (NIPS) (2018).

26. Schenck, C., Fox, D.: SPNets: Differentiable Fluid Dynamics for Deep Neural Net-
works. 2nd Conf. Robot Learning (CoRL) (2018).

27. Wang, C., Wang, Y., Peng, C., Meng, X.: Smoothed Particle Hydrodynamics Sim-
ulation of Water-Soil Mixture Flows. J. Hydraul. Eng. 142(10) (2016).

28. Hajisharifi, A., Halder, R., Girfoglio, M., Beccari, A., Bonanni, D., Rozza, G.: An
LSTM-enhanced surrogate model to simulate the dynamics of particle-laden fluid
systems. Comput. Fluids 280, 106361 (2024). https://doi.org/10.1016/j.compfluid.
2024.106361

29. Portal-Porras, K., Fernandez-Gamiz, U., Zulueta, E., Irigaray, O., Garcia-
Fernandez, R.: Hybrid LSTM+CNN architecture for unsteady flow prediction.
Mater. Today Commun. 35, 106281 (2023). https://doi.org/10.1016/j.mtcomm.
2023.106281

30. Lee, T. M., Oh, Y. J., Lee, I.: Efficient Cloth Simulation using Miniature Cloth
and Upscaling Deep. ACM Trans. Graph. 38(1) (2019).

31. Tan, Q., Pan, Z., Gao, L., Manocha, D.: Realtime Simulation of Thin-
Shell Deformable Materials using CNN-Based Mesh Embedding. arXiv preprint
arXiv:1909.12354 (2019).

32. Nwankpa, C. E., Ijomah, W., Gachagan, A., Marshall, S.: Activation Functions:
Comparison of Trends in Practice and Research for Deep Learning. In: Proc. Int.
Conf. Learn. Representations (ICLR) (2018).

33. Yan, X., Li, C.-F., Chen, X.-S., Hu, S.-M.: MPM simulation of interacting fluids
and solids. In: ACM SIGGRAPH/Eurographics Symp. Comput. Anim. (2018).

34. Hu, Y., Li, T., Anderson, L., Ragan-Kelley, J., Durand, F.: Taichi: a language
for high-performance computation on spatially sparse data structures. ACM Trans.
Graph. 38(6), 1–6 (2019).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_17

https://doi.org/10.1016/j.compfluid.2024.106361
https://doi.org/10.1016/j.compfluid.2024.106361
https://doi.org/10.1016/j.mtcomm.2023.106281
https://doi.org/10.1016/j.mtcomm.2023.106281
https://dx.doi.org/10.1007/978-3-031-97554-7_17
https://dx.doi.org/10.1007/978-3-031-97554-7_17

