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Abstract. The goal of this paper is twofold. First, it explores hybrid
evolutionary-swarm metaheuristics that combine the features of PSO
and GA in a sequential, parallel and consecutive manner in comparison
with their standard basic form: Genetic Algorithm and Particle Swarm
Optimization. The algorithms were tested on a set of benchmark func-
tions, including Ackley, Griewank, Levy, Michalewicz, Rastrigin, Schwefel,
and Shifted Rotated Weierstrass, across multiple dimensions. The experi-
mental results demonstrate that the hybrid approaches achieve superior
convergence and consistency, especially in higher-dimensional search
spaces. The second goal of this paper is to introduce a novel consecutive
hybrid PSO-GA evolutionary algorithm that ensures continuity between
PSO and GA steps through explicit information transfer mechanisms,
specifically by modifying GA’s variation operators to inherit velocity and
personal best information.

Keywords: Particle Swarm Optimization · Genetic Algorithm · Hybrid
Evolutionary-Swarm Metaheuristics

1 Introduction

While numerous hybrid algorithms integrating Particle Swarm Optimization
(PSO) and Genetic Algorithms (GA) have been proposed (as reviewed, e.g., in
[26,19,21,22]), this work focuses on a systematic comparison of three distinct
hybridization modes—sequential, parallel, and a tightly coupled consecutive
approach—across a wide range of problem dimensions. To achieve this, we in-
troduce and evaluate a specific implementation of the consecutive approach
(PGCHEA) featuring a novel mechanism for preserving search momentum (veloc-
ity and personal bests) across the alternating GA steps, addressing a potential
information loss in simpler sequential hybrids. We specifically investigate how
these different strategies handle the challenges posed by increasing dimensionality.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_15

https://dx.doi.org/10.1007/978-3-031-97554-7_15
https://dx.doi.org/10.1007/978-3-031-97554-7_15


2 P. Urbańczyk et al.

2 Hybrid models of evolutionary and swarm optimization
methods

This section briefly introduces the algorithms we have investigated in our re-
search, along with referring to the relevant papers showing the hybrid versions of
metaheuristics under consideration.

2.1 Genetic Algorithm (GA)

Genetic Algorithms are one of the earliest and perhaps most common computa-
tional models inspired by nature and evolution. They were originally developed by
John Holland [14] and then later modified by Goldberg [9]. These population-based
algorithms encode potential solutions to specific problems as chromosome-like
data structures and apply stochastic genetic search operators to these structures
to preserve and mute the “genes” they carry. In the general form, the method
can be described as:

P ′ = ρ
(
P ∪ µ (σ (P, f))

)
(1)

where P is a multiset of positions in the search space (solution candidates), called
the population, f is a fitness function that evaluates the solution candidates
and returns a vector of values that stand for the optimality of each population
member, µ is a composite operator that introduces random variations to a subset
of individuals within the population, σ is a stochastic selection operator, and
ρ denotes the replacement strategy that removes poorly performing individuals.

In our implementation, selection σ uses binary tournament: two individuals
are randomly drawn, and the fitter one is added to the mating pool. The variation
operator µ applies simulated binary crossover (SBX) and polynomial mutation.
SBX recombines two real-valued parents into offspring, while mutation adds
diversity by perturbing gene values. These operators generate a new population
aimed at improving solution quality. The process repeats until a termination
criterion—such as a maximum number of iterations or a desired fitness level—is
met. The best individual from the final population is returned as the solution.
The algorithm proceeds as follows:
Algorithm 1: GA

Input: Population size N , crossover rate pc, mutation rate pm
Output: Best solution found

1 Initialize population P with N individuals;
2 Evaluate fitness of each individual in P ;
3 while Termination criterion is not met do
4 Select parents from population P based on their fitness;
5 Apply crossover to selected parents with probability pc to produce

offspring;
6 Apply mutation to offspring with probability pm;
7 Evaluate fitness of offspring;
8 Replace less fit individuals in P with offspring to create new

population;
9 end

10 return the best individual from the final population;
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2.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is an evolutionary computational model
inspired by the social behavior of swarms, such as flocks of birds or schools
of fish. Introduced by Kennedy and Eberhart [17], PSO is a population-based
optimization method similar to Genetic Algorithms (GA). The algorithm begins
with a set of randomly generated potential solutions, termed particles, which
collectively form the initial population, often termed swarm. In general, the PSO
method can be described as:

P ′ = m(P, f) (2)

where P represents a multiset of positions, f is the fitness function that evaluates
each particle, and m is a stochastic population manipulation function that
produces a new population from the current one.

In a n-dimensional search space, each particle is represented by the position
vector Xi = (xi1, xi2, . . . , xin). The particle also has an associated velocity vector
Vi = (vi1, vi2, . . . , vin). The fitness of each particle is evaluated using an objective
function, with higher fitness values indicating better solutions. Each particle
retains a personal best position pi and is influenced by the global best position
pg discovered by the entire swarm.

The movement of the particles is guided by the following equations:

v′ij = wvij + c1r1(pij − xij) + c2r2(pgj − xij) (3)

x′
ij = xij + v′ij , (4)

where c1 and c2 are acceleration coefficients (sometimes called cognitive and social
coefficients, respectively), r1 and r2 are random values uniformly distributed
in the range [0, 1], and j = 1, . . . , n. The velocity equation directs a particle’s
movement toward both its personal best and the global best positions, encouraging
convergence to an optimal solution over successive iterations.

This iterative process of evaluating fitness, updating velocities and positions,
and adjusting towards the best solutions continues until a termination criterion is
met. The best position found by any particle at the end of the process is returned
as the final solution.
Algorithm 2: PSO

Input: Swarm size N , acceleration coefficients c1 and c2, inertia weight w
Output: Best solution found

1 Initialize population of N particles with random velocities;
2 Evaluate the fitness of each particle;
3 while Termination criterion is not met do
4 Modify each particle’s position and velocity by equations (3) and (4);
5 Evaluate the fitness of each particle;
6 Update the personal best pi and global best pg positions if necessary;
7 end
8 return The global best position pg as the final solution;
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2.3 PSO-GA Hybrid Algorithms

PSO and GA are both population-based optimization techniques that, while
similar in their parallel processing nature, differ fundamentally in their approach
to exploring and exploiting the search space. GA uses a “competitive” strategy,
where individuals in the population compete for survival, with poorly performing
individuals being replaced by offspring generated through crossover and mutation.
This selection process allows GA to adaptively fine-tune the search as it evolves.
In contrast, PSO operates on a “cooperative” principle, where particles adjust
their positions based on their own best-known position and the best-known
position of the swarm, without explicitly replacing any individuals. This method
can lead to faster convergence in smooth, well-defined search spaces, but may
struggle in more complex landscapes where directional guidance is less clear. The
philosophical (together with the performance) differences between PSO and GA
might be found in [2].

It has been quickly observed that combining these two distinct approaches
can yield potent hybrid algorithms, capable of addressing a broader range of
complex optimization problems more effectively. Several hybridization strategies
have been proposed over the years. The overview of over 20 hybrid PSO-GA
algorithms published between 2002 and 2010 can be found in [26], a good
and more recent overview may be found in [19,21] and [22]. The diversity of
hybridization strategies ranges from simple combinations where one algorithm
initializes the population for the other, to more complex schemes where both
algorithms are applied in tandem. In most cases, the integration of PSO and GA
is executed either sequentially or simultaneously, where PSO typically aids in
global exploration, and GA contributes to local exploitation through its crossover
and mutation operations. This study provides a comparative analysis of specific
implementations of the concepts of sequential and parallel PSO-GA hybridization
alongside a novel consecutive approach, focusing particularly on performance
scaling with dimensionality.

Sequential Approach (PGSHEA) In sequential approaches, the two algo-
rithms are applied one after the other in series. Such an approach, in various
forms, can be easily found in the literature [20,23,15,8,1,25,18].

Our implementation within this approach, which we dubbed PSO-GA Sequen-
tial Hybrid Evolutionary Algorithm (PGSHEA) after [23], alternates between the
two optimization techniques sequentially, where the algorithm begins with one
technique and switches to the other at predetermined interval. The initial popu-
lation of solutions is generated using either PSO or GA (the starting algorithm
is parameterized). This set of solutions is then shared between both algorithms.
The PSO instance is initialized with parameters such as cognitive (c1), social
(c2) coefficients, and inertia weight (w). The GA instance uses standard genetic
operators: crossover, mutation, and selection (all three remain the same as in
the standard GA implementation described in section 2.1). After a series of
GA steps, the solutions are passed to the PSO algorithm, which initializes its
population with these solutions and continues the optimization. Similarly, after a
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series of PSO steps, the solutions are transferred to the GA algorithm, which
uses them as its starting population for further optimization. During the switch
from GA to PSO, particle velocities are typically initialized (e.g., randomly), as
GA individuals do not inherently possess velocity. Conversely, when switching
from PSO to GA, the velocity information associated with the particles is usually
discarded. PGSHEA continuously tracks the global best solution found so far.
This solution serves as the pg for the PSO component and is preserved across
switches, ensuring the search does not lose the high-quality solution, although it
is not explicitly forced into the population unless selected naturally by the active
algorithm’s operators. The algorithm continues to alternate between PSO and
GA until the termination criterion is met. The final result is the best solution
found by any particle or individual in the population after all iterations, which is
returned as the output of the algorithm.

Algorithm 3: PGSHEA
Input: Population size N, PSO parameters (c1, c2, w), GA parameters

(pc, pm), starting algorithm, swap interval
Output: Best solution found

1 Set current algorithm to PSO or GA based on the starting algorithm;
2 Initialize population with N individuals;
3 Evaluate fitness of the initial population;
4 while Termination criterion is not met do
5 Perform the current algorithm step on the population;
6 Update best global solution found so far;
7 if the swap interval is reached then
8 Switch between PSO and GA;
9 end

10 end
11 return The global best position as the final solution;

Parallel Approach (PGPHEA) In simultaneous or parallel approaches, PSO
and GA are run concurrently, and the two algorithms cooperate by sharing
information or combining their results. While this approach can also be found
quite widely in the literature [11,16], our implementation is based on the ideas
from [24,23] and then later presented independently by Gupta and Yadav [12].

Our implementation of this hybridization approach, which we called the
PSO-GA Parallel Hybrid Evolutionary Algorithm (PGPHEA) after [23], starts
by dividing the population into two subpopulations: one handled by PSO and
the other by GA. The subpopulations are initialized independently, with PSO
generating its initial set of particles and GA generating its initial population of
chromosomes. During each iteration, both PSO and GA execute their respective
steps concurrently: PSO updates the velocity and position of each particle based
on its personal best and the global best positions and GA applies selection,
crossover, and mutation to its population to create a new generation. After both
algorithms have completed their steps, the global best solution is updated by
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comparing the best solutions found by PSO and GA. Periodically, after a fixed
number of evaluations (determined by the parametrized exchange interval), an
exchange of solutions occurs between PSO and GA—the top-performing solutions
from the PSO subpopulation are swapped with the top solutions from the GA
subpopulation. The exchange typically involves swapping the positional vectors
of the top individuals. When solutions move from GA to the PSO subpopulation,
initial velocities need to be assigned (e.g., zero or random). When solutions move
from PSO to the GA subpopulation, their associated velocities are generally
discarded. The algorithm continues to run both PSO and GA in parallel until a
predefined termination criterion is met. The best solution found by either PSO
or GA during the entire process is returned as the final solution.

Algorithm 4: PGPHEA
Input: Population size N, PSO parameters (c1, c2, w), GA parameters

(pc, pm), exchange interval, exchange number NE
Output: Best solution found

1 Initialize GA population PGA with ⌈N
2 ⌉ individuals and PSO population

PPSO with N − ⌈N
2 ⌉ individuals;

2 Evaluate fitness of both subpopulations;
3 while Termination criterion is not met do
4 Perform PSO step on PPSO;
5 Perform GA step on PGA;
6 Synchronize the best global solution found so far;
7 if the exchange interval is reached then
8 Exchange the top NE solutions between PPSO and PGA;
9 end

10 end
11 return The global best solution;

Consecutive Approach (PGCHEA) One can think of two specific (extreme
or degenerated) cases of sequential methods. The first case is the simple two-phase
hybrid scheme, where one algorithm is being used to initialize or seed the other.
Although this approach is one of the oldest in evolutionary-swarm hybridizations,
it has recently been successfully applied to cloud load balancing optimization and
other applications [20,25,18]. The other extreme is represented by consecutive
approaches, where the two algorithms are applied in a highly interleaved manner—
essentially, one step of one algorithm is immediately followed by a step of the
other. While this tightly coupled sequential hybridization is less common, several
studies have implicitly adopted its principles by closely integrating PSO and GA
operations within a single iterative framework [28,6,22].

Building on this idea, we introduce and test a novel PSO-GA Consecutive
Hybrid Evolutionary Algorithm (PGCHEA). It operates by alternately applying
a PSO step and a GA step to the entire population. The algorithm initializes
a population, identifies the initial global best, and then enters this alternating
loop. Its core novelty lies in maintaining continuity between PSO and GA steps
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through dedicated information transfer mechanisms, ensuring PSO-specific in-
formation (velocity and personal best positions) is preserved and utilized across
the GA steps. This continuity is achieved via modified GA variation operators.
Crossover is modified to produce offspring that inherit both velocities and per-
sonal best positions (pi) from their parents, alongside their positional genetic
material. Furthermore, the concept of a personal best position is maintained for
each individual regardless of the active algorithm step—a memory mechanism
absent in the standard GA. This direct information inheritance distinguishes
PGCHEA from a simple sequential hybrid (PGSHEA) with a swap interval of 1,
where standard GA operators would typically discard velocity and personal best
information, disrupting PSO’s momentum.

Throughout the execution, the global best solution (pg) found so far is
continually updated and used to guide the search, acting as the reference point
in PSO steps. The algorithm continues alternating steps until a termination
criterion is met, returning the best solution found.

Algorithm 5: PGCHEA
Input: Population size N , PSO parameters (c1, c2, w), GA parameters

(pc, pm), starting algorithm
Output: Best solution found

1 Set current algorithm to PSO or GA based on the starting algorithm;
2 Initialize population P with N individuals;
3 Evaluate fitness of the initial population;
4 while Termination criterion is not met do
5 if current algorithm is PSO then
6 Perform PSO algorithm step on the population;
7 Switch to GA;
8 end
9 else

10 Perform GA algorithm step with enhanced variation operators;
11 Update personal best pi and global best pg positions, if necessary;
12 Switch to PSO;
13 end
14 end
15 return The global best position as the final solution;

3 Experiment and result

3.1 Benchmark functions

In order to evaluate the performance of the proposed hybrid algorithms, a set of
standard benchmark functions has been selected. The selection includes Rastrigin,
Ackley, Griewank, Levy, Michalewicz, Schwefel, and Shifted Rotated Weierstrass
function. Each of them presents unique characteristics, such as multiple local
minima, varying degrees of complexity, and distinct search domains. The functions
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are tested over different dimensions (namely: 10, 50, 100, 500, and 1000). The
equations defining each function are given below, with a summary provided later
in Table 1.

f(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e (Ackley)

f(x) = 1 +
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
(Griewank)

f(x) = sin2(πw1) +

n−1∑
i=1

(wi − 1)2
[
1 + 10 sin2(πwi + 1)

]
+ (wn − 1)2

[
1 + sin2(2πwn)

]
(Levy)

f(x) = −
n∑

i=1

sin(xi) sin
2m

(
ix2

i

π

)
(Michalewicz)

f(x) = 10n+

n∑
i=1

[
x2
i − 10 cos(2πxi)

]
(Rastrigin)

f(x) = 418.9829n−
n∑

i=1

xi sin(
√

|xi|) (Schwefel)

f(x) =

n∑
i=1

(
20∑

k=0

[
0.5k cos(2π · 3k · (xi + 0.5))

])
− n

20∑
k=0

[
0.5k cos(2π · 3k · 0.5)

]
(Shifted Rotated Weierstrass)

Table 1: Benchmark functions overview

Function Name Search Domaina Fitness at Global Minimuma

Ackley [−32.768, 32.768]n f(0) = 0

Griewank [−600, 600]n f(0) = 0

Levy [−10, 10]n f(1) = 0

Michalewiczb [0, π]n f(x) is known for specific n

Rastrigin [−5.12, 5.12]n f(0) = 0

Schwefel [−500, 500]n f(420.9687) ≈ 0

Shifted Rotated
Weierstrass

[−0.5, 0.5]n Depends on shift and rotationc

a n – dimensionality. n ∈ {10, 50, 100, 500, 1000}
b m = 10
c The shift vector has been defined as a random vector drawn from a uniform distri-

bution within [−0.5, 0.5]n, the rotation matrix is generated as a random orthogonal
matrix.
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3.2 Experiment setup

The experiment was conducted to evaluate the performance of the PGSHEA,
PGPHEA, and PGCHEA algorithms in comparison to the standard GA and
PSO across a suite of benchmark functions, as detailed in the previous section
(3.1). We adopted GA parameter values widely reported in the literature [10,3,13].
We then conducted a preliminary parameter tuning for the PSO and hybrid
algorithms using Bayesian optimization. The resulting parameters are listed in
Table 2. Each algorithm was executed 10 times on each benchmark problem,
with dimensionality set at n ∈ {10, 50, 100, 500, 1000}. The results were averaged
across runs.

The population size for all experiments was consistently set to N = 100. The
termination criterion for each algorithm was based on a maximum number of
evaluations and set to 25000 for most cases and 10000 for n = 10 dimensions. This
adjustment was made for clarity and practical purposes, preventing algorithms
from merely converging due to the large number of evaluations, thus providing a
more meaningful comparison of their performance.

Table 2: Parameter settings for each algorithm
Parameter GA PSO PGSHEA PGPHEA PGCHEA

Crossover Rate (pc) 0.9 - 1.0 1.0 1.0
Mutation Rate (pm)a 1.0

n
- 0.38

n
0.37
n

0.61
n

c1 - 1.97 2.63 0.01 1.85
c2 - 0.94 0.21 0.26 0.5
w - 0.56 0.01 0.17 1.53
Exchange Interval - - 13 13 -
Exchange Number - - - 7 -
Starting Algorithm - - PSO - PSO

a n – dimensionality. n ∈ {10, 50, 100, 500, 1000}

3.3 Experiment results

Table 3 presents the comparative performance results of GA, PSO, PGSHEA,
PGPHEA, and PGCHEA across various benchmark functions. The table shows
the average fitness obtained by each algorithm for each problem after 25000
evaluations (for most dimensions) and 10000 evaluations (for the smallest dimen-
sional cases). The best-performing algorithm for each problem and dimension is
highlighted in bold. Detailed results, including convergence plots and performance
analysis, can be found in the Figures 1 and 2.

We have systematically performed various statistical testing on the quantita-
tive results we have obtained. First, we have applied the Shapiro-Wilk test with
a significance threshold of 0.05 to assess whether the observed samples followed
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Table 3: Experiment results
Problem Dim. (n) Eval. GA PSO PGSHEA PGPHEA PGCHEA

10 10000 0.0812 0.0000 0.0942 0.0185 0.2991
50 25000 0.4264 4.6518 1.6092 0.1215 2.3408

Ackley 100 25000 3.2003 9.1545 5.0698 1.8037 6.3891
500 25000 18.3729 16.5278 13.8260 8.9708 17.6277
1000 25000 19.7747 17.4644 15.1160 11.4876 19.4970
10 10000 0.1537 0.0654 0.1563 0.0807 0.4173
50 25000 1.0387 0.0294 1.2411 0.7355 1.3394

Griewank 100 25000 2.4290 2.7071 10.5749 1.3514 13.1571
500 25000 1877.3427 946.6615 1085.4084 213.7523 2267.2059
1000 25000 7815.1528 3752.3912 3271.2027 1078.5572 7882.8616
10 10000 0.0003 0.0000 0.0006 0.0000 0.0019
50 25000 0.3300 6.6185 0.2859 0.3596 0.6722

Levy 100 25000 11.0033 33.9640 12.5885 0.7897 26.2848
500 25000 756.2910 436.1920 318.3160 85.6619 933.4690
1000 25000 3006.4498 1506.2417 1137.4485 361.4372 3354.4831
10 10000 -9.4219 -8.8826 -9.3585 -9.3291 -9.3618
50 25000 -41.2735 -35.7822 -41.6125 -42.9070 -40.9484

Michalewicz 100 25000 -72.6364 -59.8520 -74.4890 -76.2109 -69.3091
500 25000 -224.7013 -132.8061 -211.3493 -336.4667 -175.3285
1000 25000 -334.7268 -200.9745 -339.0732 -501.9018 -261.8926
10 10000 0.1895 5.4139 2.2492 0.4095 2.6509
50 25000 28.0475 85.3689 41.7002 14.0602 50.8819

Rastrigin 100 25000 164.9228 265.5786 148.5575 48.3258 221.7512
500 25000 3143.9534 3015.7626 2291.8820 984.8022 3665.6620
1000 25000 9010.0454 7674.9698 6411.1468 3710.6077 10041.3225
10 10000 94.9378 628.0398 166.1491 213.2274 60.1219
50 25000 1953.1047 9153.6703 3646.7280 2320.6635 2186.8971

Schwefel 100 25000 7120.7331 19838.0034 12580.6665 8033.4714 8700.4964
500 25000 91144.4005 128370.9587 121689.7331 89486.0379 103279.6629
1000 25000 239641.4942 295232.4449 292685.6819 232898.2801 254663.7326
10 10000 2.3408 4.1009 3.2057 3.8153 3.6618

Shifted 50 25000 54.1631 45.5086 44.7081 56.2984 41.6800
Rotated 100 25000 127.7596 118.2235 112.7674 129.1044 114.8938

Weierstrass 500 25000 812.1367 763.0698 745.9866 788.3598 719.0998
1000 25000 1715.7651 1633.2264 1580.6910 1615.9141 1575.6579

Table 4: Best performing algorithms per problem and dimension
Problem/Dimension 10 50 100 500 1000
Ackley PSO PGPHEA PGPHEA PGPHEA PGPHEA
Griewank PSO PSO PGPHEA PGPHEA PGPHEA
Levy PSO/PGPHEA PGSHEA PGPHEA PGPHEA PGPHEA
Michalewicz GA PGPHEA PGPHEA PGPHEA PGPHEA
Rastrigin GA PGPHEA PGPHEA PGPHEA PGPHEA
Schwefel PGCHEA GA GA PGPHEA PGPHEA
Shifted Rotated Weierstrass GA PGCHEA PGSHEA PGCHEA PGCHEA

a normal distribution. The outcomes were mixed, as the null hypothesis was
rejected for some samples while it could not be rejected for others. Consequently,
we employed the non-parametric Kruskal-Wallis test to determine if the cumu-
lative distribution functions differed among the groups. The results of the test
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(a) (b)

(c) (d)

(e) (f)

Fig. 1: Convergence analysis of GA (blue), PSO (yellow), PGSHEA (green),
PGPHEA (magenta), and PGCHEA (red) on six benchmark functions with 1000
dimensions, evaluated over 25,000 iterations: (a) Ackley, (b) Griewank, (c) Levy,
(d) Michalewicz, (e) Rastrigin, and (f) Schwefel.

were statistically significant. This was followed by pairwise comparisons using
Dunn’s test to identify which pairs exhibited statistically significant differences.
Table 5 presents the algorithm pairs that did not show statistically significant
differences (assuming the above-mentioned significance level α) when compared
against the best-performing algorithm for higher-dimensional problems.

4 Conclusions

The hybrid algorithms (PGSHEA, PGPHEA, and PGCHEA) generally outper-
form the standard GA and PSO in most cases, especially as the dimensionality
of the problems increases. This suggests that combining the strengths of both
GA and PSO within these hybrid frameworks provides a more robust approach
to optimization, particularly for complex and high-dimensional problems. Also,

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_15

https://dx.doi.org/10.1007/978-3-031-97554-7_15
https://dx.doi.org/10.1007/978-3-031-97554-7_15


12 P. Urbańczyk et al.

Fig. 2: Convergence plots (left) and final fitness distribution analysis (right) of
GA (blue), PSO (yellow), PGSHEA (green), PGPHEA (magenta), and PGCHEA
(red) on the Shifted Rotated Weierstrass function for 10, 50, 100, 500, and 1000
dimensions respectively (in top-down order).

the performance gap between the algorithms becomes more pronounced as the
number of dimensions increases. For instance, in lower-dimensional problems
(e.g., 10 dimensions), GA and PSO sometimes achieve competitive results. How-
ever, in higher-dimensional problems (e.g., 500 and 1000 dimensions), the hybrid
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Table 5: Non-significant algorithm pairs with p-values
Problem Dimension Algorithm Pair p-value

Ackley 100 GA vs PGPHEA 0.1084
Griewank 100 PSO vs PGPHEA 0.0666
Michalewicz 100 GA vs PGPHEA 0.1761
Michalewicz 100 PGSHEA vs PGPHEA 0.4625
Schwefel 100 GA vs PGPHEA 0.2442
Schwefel 100 GA vs PGCHEA 0.0906
Shifted Rotated Weierstrass 100 PSO vs PGSHEA 0.4769
Shifted Rotated Weierstrass 100 PGSHEA vs PGCHEA 0.6247
Rastrigin 500 PGSHEA vs PGPHEA 0.1155
Ackley 500 PGSHEA vs PGPHEA 0.0577
Levy 500 PGSHEA vs PGPHEA 0.0577
Michalewicz 500 GA vs PGPHEA 0.0577
Schwefel 500 GA vs PGPHEA 0.6676
Shifted Rotated Weierstrass 500 PGSHEA vs PGCHEA 0.2152
Rastrigin 1000 PGSHEA vs PGPHEA 0.1389
Ackley 1000 PGSHEA vs PGPHEA 0.1038
Schwefel 1000 GA vs PGPHEA 0.4337
Shifted Rotated Weierstrass 1000 PGSHEA vs PGCHEA 0.7590

algorithms, particularly PGPHEA, often show superior performance, indicating
that the hybrid approaches are better suited to handle the complexity associated
with larger search spaces.

The standard evolutionary algorithms perform well in lower dimensions (at
least on certain functions), but generally struggle as the problem complexity
increases. Particularly, PSO performs well on problems like Levy and Griewank
in lower dimensions, where its ability to explore the search space leads to good
initial results. However, as indicated by the plots in the appendix, the same
exploration tendency usually leads to premature convergence to local minima.

The consistent performance of PGPHEA across a wide range of problems and
dimensions suggests that it is the most versatile and robust technique among all
tested algorithms. It adapts well to different problem types, making it a strong
candidate for general-purpose optimization tasks.

Notably, the novel PGCHEA algorithm, while not the best performer overall,
demonstrated particular strength on the complex Shifted Rotated Weierstrass
function, highlighting that its unique mechanism for continuous information
transfer can be beneficial for certain challenging landscapes with intricate, non-
separable, or deceptive structures and warrants further investigation. This result
reinforces the “No Free Lunch Theorem” in optimization, which states that no
single algorithm can outperform others across all problem types, highlighting the
inherent complexity of optimization and underscores the limitations of relying on
a single algorithm to excel across diverse problem landscapes.
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