Uncertainty-Aware Well Placement:
Simulator-Verified Dual-Network Reinforcement
Learning Approach meets Particle Filters

Hibat Errahmen Djecta!:?*[0009-0005-9417-8364] " Qergey
Alyaey!0000-0002-2105-2067] " K ristian Fossum', Reidar B.Bratvold?, Ressi
Bonti Muhammad?, and Apoorv Srivastava3

! NORCE Norwegian Research Centre As, Bergen, Norway
*hidj@norceresearch.no
2 University of Stavanger, Stavanger, Norway
3 Stanford University, Stanford, CA, USA

Abstract. Geosteering, the art of navigating wells to maximize the
reservoir resources, is fraught with challenges of geological uncertainty
and the relentless pace of real-time operations. In this paper, we present
a novel framework that integrates Particle Filters (PF) for probabilis-
tic subsurface interpretation with a Dual-Network Deep Reinforcement
Learning (DRL) model for adaptive decision-making in geosteering oper-
ations. The PF component quantifies subsurface uncertainties, providing
a probabilistic interpretation of geological boundaries, while the DRL
model leverages this information to generate optimal steering decisions.
This synergy ensures robust trajectory planning that dynamically adapts
to real-time geological changes. The framework incorporates key features,
such as target-line alignment to maintain wellbore proximity to reservoir
zones and dog-leg severity constraints to ensure operational feasibility.
Extensive verification in an industry-standard environment accessed via
an API demonstrates the model’s ability to accurately track reservoir
boundaries, predict gamma-ray values, and optimize well trajectories.
The results highlight significant improvements over traditional geosteer-
ing approaches and standard DRL-based methods in terms of reservoir
contact, decision-making efficiency, and trajectory accuracy, even in low-
data scenarios. The proposed framework provides a scalable and robust
solution for quantifying uncertainties in real-time geosteering, paving
the way for informed operational decisions improving value-creation and
drilling effciency.

Keywords: Deep Dual Reinforcement Learning - Geosteering - Particle

Filters - Uncertainty Modeling - Reservoir Optimization.

1 Introduction

Real-time trajectory optimization in uncertain environments is a key challenge
across various engineering disciplines, often likened to tasks such as autonomous
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driving. Yet the geosteering problem in drilling operations can be even more
complex, as it involves adjusting well trajectories in a largely unobservable sub-
surface. The aim is to maximize monetary value by optimizing reservoir contact,
minimizing costs, and mitigating hazards, all while dealing with indirect and
potentially noisy data streams. Traditional geosteering practices have generally
depended on manual interpretation of real-time measurements—methods that
can be time-consuming, prone to human error, and difficult to scale to today’s
higher drilling demands. Recent advances in artificial intelligence (AI) and com-
putational science have motivated the development of automated, data-driven
geosteering workflows that seek to address these issues more systematically.

Kullawan et al. [5] pioneered a formalized decision-analytic framework for
geosteering allowing the balancing multiple objectives such as reservoir contact,
cost control, and drilling risk. The framework combined greedy optimization and
Bayesian treatment of boundaries linking geological uncertainties to decision-
making process. A follow-up paper [6] implemented Discretized Stochastic Dy-
namic Programming (DSDP) for fixed-thickness reservoir improving the value
of the well by up to 31% compared to the original approach. Building on these
approaches, Alyaev et al. [2] introduced a Decision Support System (DSS) that
combined Ensemble Kalman Filtering (EnKF) with simplified dynamic program-
ming, thus offering reproducible, effective decisions under uncertainty. Later,
Alyaev et al. [1] integrated Generative-Adversarial-Networks (GAN) geological
model into the DSS, extending decision-making to complex geology.

In parallel with these contributions, Reinforcement Learning (RL) has be-
come a promising paradigm for sequential geosteering decisions. Muhammad et
al. [9] introduced Deep Q-Networks (DQN) for geosteering that outperformed
earlier model-based strategies, including greedy optimization and DSDP for
test cases from [5, 6] - all without the implementation complexities and limita-
tions. Muhammad et al. [10] coupled DQN with Particle Filters (PF) to model
the uncertainty of hidden reservoir boundaries, verifying the RL advantages in
more general case. Recently, the authors adapted PF+RL method to a real-
istic Geosteering-World-Cup (GWC) environment, called the Pluralistic robot
[8]. The robot outperformed most human experts in a post-GWC-2021 synthetic
test with noiseless measurements, even though the PF was setup to handle noise.
Under these idealistic conditions the robot compared favorable against experts
in the competition proving effectiveness of RL when the probabilistic estimation
is accurate.

Despite this progress, several notable gaps persist. All of these geosteering
methods are verified in controlled synthetic environments that may not capture
the full range of real drilling uncertainties. Although the Pluralistic robot demon-
strated a successful integration of RL and PF, it lacked a deeper exploration of
more stable dual-network designs or testing across diverse, real-time operational
constraints.

In this paper, we propose a new geosteering robot that enhances the Plural-
istic framework by incorporating a Dual-Network Deep Reinforcement Learning
(DRL) architecture [15] together with Particle Filters. Through a comparative
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analysis with the original Pluralistic robot we demonstrate that by separating
value and advantage streams, this design promotes more stable policy learning
and reduces the risk of converging to suboptimal decisions in complex drilling
environments. Moreover, we link our approach to the ROGII Solo API [11] to
enable testing on high-fidelity simulator and in real workflows within ROGII
StarSteer. The industrial simulator simplifies testing with different geological
scopes and includes industry-standard models for measurement noise and vari-
ous drilling constraints.

In the next section, we describe our dual-network RL and PF integration,
alongside the StarSteer environment (Section 2). We then present performance
evaluations (Section 3), followed by a discussion of operational implications and
future enhancements (Section 4). Finally, we conclude with a summary of our
findings and propose directions for extending this approach to more complex
geosteering problems (Section 5).

2 Methodology

In this study, we propose an advanced geosteering framework that integrates Par-
ticle Filters for probabilistic subsurface interpretation with a Dual-Network Deep
Reinforcement Learning model for sequential decision-making. This approach ex-
plicitly accounts for uncertainties in geological parameters while optimizing well
placement over multiple drilling steps.

2.1 System Architecture
Figure 1 provides an overview of the proposed framework. At each time step:

1. Real-time measurements (In our case: gamma-ray logs, trajectory data) are
acquired from the drilling environment.

2. The PF assimilates these observations to update a posterior distribution of
the subsurface state, quantifying uncertainties in reservoir boundaries and
well orientation.

3. A dual-network DRL agent processes the PF’s probabilistic state estimates
and outputs a steering command (target-line shift).

4. The command is executed in the drilling simulator (StarSteer), leading to
new measurements at the next time step.

This sequential loop continues until reaching the target depth or other opera-
tional objectives.

2.2 Particle Filter (PF)

A Particle Filter tracks multiple discrete boundary configurations, represented
by particles, each characterized by a boundary offset and an angle. Angle in-
crements are sampled from an approximate proposal distribution defined as a
kernel density estimator (KDE) built from a reference set of angle increments,
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Fig. 1: High-level architecture illustrating the sequential data flow among the PF,
Dual-Network DRI, and the drilling environment. Uncertainties in geological
parameters are handled by the PF, while the DRL agent selects optimal actions.

thereby capturing realistic changes between drilling steps. As new gamma-ray
logs become available, the PF updates each particle’s weight and periodically re-
samples, yielding a posterior distribution of reservoir boundary positions under
uncertainty.

Sequential Bayesian Update Let the state si of the i*" particle at time ¢ be
si = (offset;, angle}),

where offseti indicates how far above or below a reference depth the boundary
lies, and angle; encodes the local dip. The PF models the evolution , as described
in [4], from time t — 1 to ¢ by

57{&‘ = f(si—l) + €,

where € is a stochastic term modeling geological variability (sampled from a
KDE of angle increments). Once a new gamma-ray measurement o; is obtained,
each particle’s weight w; is updated according to Bayes’ rule:

wy o wy_y x plog|st) x p(sy | si_1), (1)
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where w!_; is the weight of the i'" particle at time t — 1, p(o; | s!) quantifies
how well the particle’s predicted log matches o;, and p(si | si_;) is the prior
transition probability for evolving from s ;. Here, o; is the observed gamma-ray
log at time ¢, which is generated by the environment as a function of the current
subsurface configuration. Although the measurement is provided externally, its
functional dependence on the true state (which, in turn, is influenced by both
the previous state si_; and the applied control u;) is implicitly captured in the
likelihood function p(o; | s¢).

A normalization step follows so that Zfil wi = 1, the posterior distribution
of states is updated accordingly.

Uncertainty Quantification and Measurements When many particles have
negligible weights, resampling discards those low-weight interpretations and repli-
cates more plausible ones. Representing the posterior distribution as weighted
particles (s, wj) allows calculation of:

N

N
Mean(s;) = sz st Var(s;) = sz (si — Mean(st))Q,
i=1 i=1

where N is the total number of particles. These metrics reveal both the most
likely boundary configuration and the spread uncertainty around it.

To better replicate realistic log fluctuations, a correlation-based noise term
can be added to the observed gamma-ray values:

n(0) = (v+r)(0),

where £ is the log sample index, v(¢) is a vector of independent random draws,
and k is a Gaussian-like filter kernel. During training, the correlation scale is set
to 2, meaning adjacent points within roughly two samples influence each other
(depends on ¢ + 2), producing moderately smooth fluctuations in the logs. By
iteratively updating particle states and weights in tandem with these correlated
measurements, the PF delivers a faster-than-real-time probabilistic interpreta-
tion of the boundary under geological uncertainty. During testing, the synthetic
measurements are produced by the StarSteer simulator which uses a different
noise model unknown to the robot.

2.3 Deep Reinforcement Learning (DRL) with a Dual-Network
Architecture

Geosteering poses a high-dimensional, uncertain, and sequential decision-making
challenge, where actions have long-term consequences. A standard Deep Q Net-
work often struggles with the sparse and delayed rewards typical of geosteering
tasks. We mitigate these issues using a dual-network DQN [13]| that addresses
these obstacles by decomposing the action-value function into separate value and
advantage components, enhancing both learning stability and efficiency. In the
following, we first define our action and state spaces.
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Action and State Spaces

State Space: In the geosteering robot, each state draws on both probabilistic
boundary estimates and real-time drilling information. A PF provides multiple
particles describing possible boundary offsets and angles at or near the current
drill-bit depth. Rather than using an entire segment, the robot samples a subset
of these particles (the top five by weight), yielding around ten parameters (two
per particle) that capture geological uncertainty. Additional drilling context—
inclination in this case (i.e., the actual measured angle of the well relative to
vertical), further expand the state vector. Under typical settings, the overall
state vector comprises around 266 components, reflecting both the subsurface
uncertainty and the drilling context at the current depth.

Action Space: Steering actions are discretized according to drilling phases.
During the landing phase, the agent adjusts the wellbore angle (A#) within a
range of —10° to 4+10° in 0.5-degree increments to steer the well toward the
reservoir zone. In the horizontal drilling phase, the agent selects from a set
of discrete vertical adjustments that shift the planned well trajectory upward
or downward by small increments (typically between —6 and +6 units). These
vertical adjustments are intended to keep the well within the productive zone
while preventing excessively abrupt directional changes. Such rapid changes in
direction are constrained by the dog-leg severity (DLS) limit—a safety parameter
that restricts the maximum rate of change in the wellbore’s direction to protect
the drilling assembly. Because the impact of these actions may only be observed
several steps later, the agent’s decision-making algorithm must be robust to
delayed feedback.

Dual-Network Q-Value Decomposition A dual-network Deep Q-Network
(DQN) functions as the agent’s brain, receiving the current state s as input
and outputting the optimal steering action a. This dual-network architecture
decomposes the action-value function Q(s,a) into a state-value V(s) and an
advantage A(s,a) [13], as defined below:

Qs ) = V(s) + Als,0) — 1 O Als,),

Al 7=,

where V(s) captures the inherent desirability of the drilling state s, and A(s, a)
measures the relative benefit of taking action a compared to the average action
in state s. The set A comprises all feasible steering adjustments, and |.A| denotes
the total number of possible actions.

By segregating Q(s, a) into value and advantage components, the dual-network
DQN mitigates overestimation biases and promotes stable learning, as illustrated
in Figure 2. The agent processes state transitions (s,a,r,s’) stored in an expe-
rience replay buffer, which enables random sampling and breaks temporal cor-
relations in the training data. Here, r represents the reward signal received by
the agent for taking action a in state s, guiding it toward optimal geosteering
decisions. Additionally, the policy network’s parameters # are learned from these
past state transitions through gradient-based updates, and a separate state-value
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network, updated periodically with the policy network’s parameters 6~ , pro-
vides consistent Q-value targets, further enhancing learning stability. Meanwhile,
the advantage network estimates the relative benefit of each action in a given
state, allowing the model to distinguish between more and less advantageous
choices. This architecture empowers the DRL agent to effectively handle the
long-horizon and high-dimensional challenges inherent in geosteering tasks. By
leveraging PF-derived states that encapsulate geological uncertainty, the agent
learns geosteering policies that balance immediate operational constraints with
long-term reservoir objectives, ensuring robust decision-making in complex and
uncertain subsurface environments.

Q-Network

% Q-value Q(s,a)

Q-value Q(s,a)

Advantage A(s, a)

% Dueling Q-Network b State-value V(s)

E | Fully-connected layer for state-value V(s)

Fully-connected layer for advantage A(s, a)

Aggregation layer

Fig. 2: Tllustration of the dual-network (bottom) versus a single-stream architec-
ture (top). In the dual-network approach, the network splits into two separate
streams for estimating the value function (left branch) and the advantage func-
tion (right branch), then recombines these outputs to produce the final Q-values.
This decomposition can lead to faster convergence and more stable learning, par-
ticularly in high-dimensional geosteering tasks with sparse or delayed rewards
[15].

Reward Formulation: Building on previous geosteering research [8], we de-
fine a reward function that balances both reservoir placement and operational
constraints [12]. Concretely, the agent receives:

— Positive reward proportional to reservoir contact, i.e., how much of the drilled
interval remains within the target layer or pay zone.
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— Penalties for excessive dog-leg severity, which encourage smoother wellbore
trajectory adjustments.

— Penalties for drilling out of zone, reflecting lost production potential and
elevated operational risks.

— Minor or shaping penalties to maintain stable inclination/azimuth transi-
tions, discouraging abrupt or extreme steering changes.

A typical formulation is given by Eq. (2):

T = W, - contacty — wgq - dogleg, — w, -out_of zone, — w, - steer_change, .

zone contact dog-leg penalty out-of-zone penalty shaping penalty

(2)
where t is the time step at which the reward is computed. In this expression,
contact; tracks how effectively the well trajectory stays within the reservoir,
dogleg, measures dog-leg severity, out_of _zone, captures any excursions outside
the target zone, and steer _change, is a minor shaping term penalizing abrupt
or excessive steering changes. The coefficients w., wq, w,, and ws govern each
term’s relative importance. By adjusting these weights, we can emphasize reser-
voir contact or operational smoothness as needed, ensuring that the agent’s
drilling strategy balances short-term positioning goals with long-term trajectory
stability.

Temporal Difference (TD) Learning: We train the agent using an off-policy
Q-learning method with experience replay [7]. At each time step ¢, the environ-
ment transitions from state s; to state s’ after the agent selects an action ay,
yielding a reward ;. These transitions (s, at, r¢, ') are stored for later randomly
sampled updates. The replay buffer enables effectively offline training, helping to
reduce correlation in consecutive samples. The agent’s parameters are updated
by minimizing the Temporal Difference (TD) error

5= 7 +ymax Q(s',a’s 07) — Q(si,as; ), (3)

where s’ denotes the next state, a’ is a candidate action in s’, « is the discount
factor, and 6~ are parameters of the slowly updated target network. This off-
policy approach handles potentially delayed or sparse geosteering rewards and
leverages a separate target network to stabilize Q-value estimates [14]. By iter-
atively reducing d;, the agent converges on a policy that maximizes long-term
return under geological uncertainty.

2.4 Integration of PF and Dual-Network DRL in a Sequential Loop

Algorithm 1 summarizes how PF outputs and dual-network DRL are coupled in
a sequential geosteering system for testing. At each time step, the PF refines its
posterior distribution of possible subsurface configurations in light of new mea-
surements. The already trained DRL agent observes these PF outputs—along
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with drilling data such as the previous action—and selects a steering command
to maximize the long-term expected reward.

Algorithm 1 Integration of Particle Filter (PF) and Dual-Network DRL in
Geosteering Environment

Require: Real-time measurements o, initial particle set {sé,wé}f\;l, trained dual-
network DRL agent, environment &

Ensure: Steering actions a; and updated trajectory

1: Initialize:

{sh, w} (particle states & weights)

environment £ with initial subsurface model

operational constraints (e.g. target-line geometry, dog-leg severity)

replay buffer D for DRL (optional if training is on)

: for each time step t =1,2,...,7T do

Step 1: Receive Observation

ot < £.get_observation()

8: Step 2: PF Update

9: for each particlei =1,..., N do

10: Predict st = f(si_1,ut) +¢€

11: Update wi oc wi_q x plos | s5) x p(si | si_1)

12: end for

13: Normalize & Resample

14: Step 3: Construct DRL State

15: gather top Neg particles by weight

16: combine these with o; and the previous action to form the DRL state
17: Step 4: DRL Action Selection

= State, a; 0
a = argmax Q(State, a; 6)

18: E.apply action(at)
19: Step 5: Reward Computation (Optional Training)

20: ry < £.compute reward()

21: log transition (s¢,at, 7+, S¢4+1) in D

22: if training is on then

23: sample mini-batch from D, update Q(-; ) via TD error
24: end if

25: end for

Each iteration thus involves gathering new measurements, using the PF to
sample from the posterior distribution of subsurface configurations based on
refined geological knowledge, constructing a DRL state that encodes the most
likely scenarios, and selecting a steering action that maximizes the Q-value.
Although the algorithm supports on-demand re-training of the dual-network
parameters 6, in our current approach, the agent uses a pre-trained policy at
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inference time. Future extensions will consider real-time adaptation of 6 once
more data is accrued, enabling the robot to respond dynamically to changing
subsurface conditions.

3 Experimental setup and results

The results of the proposed framework are presented in this section, offering a
detailed comparison of the Normal DRL Robot and the Dual DRL Robot based

on multiple evaluation metrics and visualizations.

The experiments were conducted on a high-performance computing system
equipped with a 13th Gen Intel® Core™ i7-13800H x 20 processor, NVIDIA
Corporation / Mesa Intel® Graphics (RPL-P) with 32GB VRAM, and running
on Ubuntu 22.04. During training, a KDE was utilized to sample the geological
environment, enabling the robot to learn and adapt effectively within a controlled
setup. The training process, which lasted four hours, utilized several critical
parameters, which are summarized in Table 1. These parameters were optimized
to achieve robust and reliable performance.

For testing, the StarSteer simulator was employed via Solo API [11] to com-
municate new placements and extract feedback from real subsurface interactions,
allowing the robot to operate in a dynamic and realistic setting. Such setup as-
sures unbiased evaluation process of the developed method. To our knowledge
this is the first publication of automated geosteering results in StarSteer apart
from internal automatic geosteering developments [3].

Table 1: Training Parameters

Parameter Value
Number of Episodes 20,000
Learning Rate 0.0005
Discount Factor () 0.95
Batch Size 64

Number of Particles in Particle Filter (Training)| 256
Number of Particles in Particle Filter (Testing) 2064

Replay Buffer Size 50,000
Episods before replacements 1000
Epsilon Decay Rate 0.995
Minimum Epsilon 0.01
Target Network Update Frequency 100 steps

Figure 3a highlights the progression of training rewards for both models. The
Dual DRL Robot demonstrates significantly faster convergence and consistently
higher cumulative rewards compared to the Normal DRL Robot. This clearly
indicates its superior learning capabilities and improved performance.
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Figure 3a also depicts the mean absolute error (MAE) progression for trajec-
tory predictions. The Dual DRL Robot achieves lower MAE values throughout
training, underscoring its ability to accurately minimize trajectory prediction
errors and outperform the Normal DRL Robot in terms of prediction reliability.

The epsilon decay progression is shown in Figure 3b, which illustrates the
transition from exploration to exploitation for both robots. The Dual DRL Robot
benefits from an optimized epsilon decay schedule, enabling a quicker and more
efficient policy convergence. Conversely, the Normal DRL Robot retains higher
exploration for a prolonged duration, resulting in slower overall progress.

The boundary prediction performance, as illustrated in Figure 3c, compares
the differences between true and predicted boundaries over measured depth
(MD). The Dual DRL Robot produces smoother and more accurate bound-
ary predictions in most cases. However, occasional spikes reveal instability in
certain scenarios, which highlights potential areas for further improvement. The
Normal DRL Robot, while more consistent, provides less accurate predictions
overall. Notably, the spikes observed in the Dual DRL Robot’s predictions coin-
cide with regions of rapid geological transitions, suggesting the need for enhanced
boundary prediction mechanisms or incorporating geological priors.

The plot in Figure 4 offers a comprehensive view of the Dual DRL Robot’s
performance in trajectory tracking, geological boundary prediction, and gamma-
ray estimation. These results are benchmarked against the true geologic bound-
aries and real gamma-ray logs derived from a geosteering solution performed
by experts at ROGIL. In the upper panel, the trajectory (red solid line) closely
follows the real boundaries (black solid line), whereas the best-predicted bound-
aries (dashed blue line) indicate the robot’s ability to approximate subsurface
features. Meanwhile, the colored dashed lines from the PF capture uncertainty
in more geologically complex regions.

In the lower panel, the yellow line (predicted gamma-ray values) and the green
line (real gamma-ray logs, as provided by the ROGII-based solution) track the
corresponding subsurface changes. At around MD 3750 ft, a slight misalignment
between the predicted and real boundaries in the upper plot coincides with a
broader spread in particle-filter predictions for the gamma-ray curve, signaling
increased uncertainty. This correlation underlines how gamma-ray measurements
dynamically reflect changes in boundary geometry and trajectory adjustments
across the two panels. In spite of local uncertainties, the Dual DRL Robot demon-
strates effective alignment with the real geologic features, showing that gamma-
ray predictions serve as a real-time indicator of subsurface variability captured
in both the trajectory and boundary estimations.

These results collectively confirm the effectiveness of the Dual DRL Robot
in achieving faster convergence, higher rewards, and more accurate predictions.
Its advanced architecture and optimized training approach provide significant
advantages over the Normal DRL Robot, reinforcing its potential in geosteering
applications. Moreover, the combination of reward stability, predictive accuracy,
and real-time adaptability positions the Dual DRL Robot as a promising tool
for reducing operational uncertainties in complex drilling scenarios.
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Fig. 3: Comparison of metrics for Normal and Dual DRL Robots. Each subfigure
highlights a distinct aspect of model performance.

4 Discussion

The results demonstrate the Dual DRL Robot’s superiority over the Normal DRL
Robot with faster convergence, higher rewards, and more accurate trajectory and
boundary predictions. This is due to its dual-network architecture, which sta-
bilizes learning and reduces overfitting, along with PF’s probabilistic state esti-
mates for handling subsurface uncertainties. These features enable more reliable
and precise steering, crucial for optimal reservoir contact. An optimized epsilon
decay strategy accelerates policy convergence, improving learning efficiency over
the Normal DRL Robot. However, occasional boundary instabilities suggest the
need for adaptive constraints or regularization. Further testing across varied
geological conditions could enhance robustness and mitigate predictive inconsis-
tencies. The dual-network and PF integration increase computational demands,
posing challenges for real-time deployment. Optimizing efficiency through par-
allel processing or model compression is essential.

The Dual DRL Robot advances geosteering by integrating DRL with un-
certainty quantification. Refining its computational performance and predictive
consistency will further strengthen its practical impact.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97554-7_14 |



https://dx.doi.org/10.1007/978-3-031-97554-7_14
https://dx.doi.org/10.1007/978-3-031-97554-7_14

Uncertainty-Aware Real-Time Well Placement 13

5 Conclusion

This paper presents a novel framework integrating a Dual DRL Robot with a
PF for geosteering, tested in an environment external to training. Compared
to earlier RL Robots, the Dual DRL Robot achieved faster convergence, higher
rewards, and greater accuracy in trajectory and boundary predictions.

The dual-network architecture improved training stability and reduced over-
fitting, while the PF quantified subsurface uncertainties through probabilistic
state estimates. An optimized epsilon decay strategy further enhanced learning
efficiency, enabling accurate alignment with geological boundaries and adapta-
tion to dynamic drilling conditions.

Challenges remain, including occasional boundary misalignments and com-
putational demands for real-time deployment. Future work could incorporate
additional geological features, optimize efficiency, and explore robustness across
diverse geological settings.

In summary, the Dual DRL Robot significantly advances geosteering by com-
bining DRL with uncertainty quantification, enhancing decision-making and op-
erational efficiency. Addressing existing limitations will further improve its prac-
tical applicability in drilling operations.
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(a) Trajectory predictions at the first time slot, showing the comparison between pre-

dicted and actual values.
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(b) Gamma-ray predictions at the second time slot, highlighting real-time interaction
with StarSteer.
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(c) Trajectory and gamma-ray predictions at the third time slot, showing alignment

between predicted and actual values.
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(d) Final trajectory and gamma-ray prediction progression at the fourth time slot,
demonstrating interaction with StarSteer.

Fig.4: Trajectory and gamma-ray prediction progression at different time slots
with real-time interaction with StarSteer.
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