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Abstract. The use of neural networks and operators to solve partial
differential equations that govern fluid flow is carried out in a simulation-
free, physics-informed approach, where the residual of the governing
equation calculated via automatic differentiation across the neural net-
work is the loss function used for training. One issue with this approach
is that simulating highly nonlinear flows such as high Reynolds num-
ber flows is challenging, even in laminar settings. We propose a new
simulation-free approach for training PINNs using a residual loss based
on a discrete numerical scheme instead of automatic differentiation. This
loss function also requires a new grid-based PINNs training strategy.
Using the loss landscape, we demonstrate why our new loss function
works better than the automatic differentiation-based loss function. We
also demonstrate how to implement our grid-based training for complex
geometry. Simulations using the new neural model for high Reynolds
number fluid flow and complex geometry test cases are showcased and
compared with automatic differentiation approaches. The results show
that our new discrete loss function and training strategy take less com-
putational time, converge faster than automatic differentiation, and can
be used to simulate nonlinear flows efficiently.

Keywords: PINNs · Finite Volume Discrete · Automatic Differentia-
tion.

1 Introduction

Simulating dynamical systems governed by partial differential equations (PDEs)
is a major part of engineering design and practice. These simulations are typi-
cally performed on a computer using computational methods to solve the govern-
ing equations [1]. Recently, deep neural models, called Physics-Informed Neural
Networks (PINNs) and Neural Operators (PINO), have been developed to solve
PDEs in a semi-supervised manner and have been used in various applications
[24,21,30,11,8,4]. The training method is semi-supervised because the loss func-
tion is a combination of mean square error of initial/boundary data and the
residual of the governing PDEs.

The main innovation of PINNs is the use of Automatic Differentiation (AD;
[3,2,34,23])to calculate the residual of PDE. The training is simulation-free and
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does not require the use of expensive computational solvers to obtain training
data. However, this process is computationally expensive; calculating the loss
function itself requires the calculation of the first and second derivatives of the
output (e.g., velocity in a fluid flow problem) with respect to the input (e.g.,
spatial and temporal coordinates). Furthermore, PINNs are computationally in-
tensive, requiring numerous training epochs with two automatic differentiation
operations per epoch, one for loss calculation and another for backpropagation.
This algorithm increases the computational time and resources required to train
PINNs for practical applications. Thus, new research is required to reduce com-
putation requirements.

In the present paper, we develop a new discrete loss function for training
PINNs in a semi-supervised manner. We show that a PINN model trained using
a discrete loss function converges in fewer epochs and less time. Here, we develop
and use a finite-volume discrete loss function, shortened as FVD loss. However,
other discretization schemes could also be utilized. Theoretically, we demonstrate
why it works better compared to AD, and experimentally, we demonstrate that
the FVD loss performs better than automatic differentiation in simulating highly
nonlinear fluid flow and how to solve for complex geometry cases.

Previously, a few papers have proposed the use of a different residual loss
function along with automatic differentiation. VPINN [12] is a finite element
based method that establishes the loss function by integrating the residue of
PDEs multiplied by a set of basis, hp-VPINN [13] uses the same idea as VPINNs,
but the basis functions only have local supports, RVPINNs [27] uses quadratic
loss functionsl in terms of petrov-galerkin-type variational formulation for PDE,
CVRPINNs [19] accelarates implementation of RVPINN, [5] employs least squares
functionals as loss function, can-pinn [6] combines automatic difference with fi-
nite difference, and other papers [18,7,5,29,16,10] that use different types of
residual losses.

The objective of this paper is to theoretically elucidate the reasons why this
residual loss function results in reduced computational time and demonstrates
faster convergence, supported by experimental results utilizing the FVD loss.
Furthermore, we present experimental evidence indicating that these discrete
PINNs can achieve accurate results for high Reynolds number scenarios, and
we illustrate the application of discrete loss functions for complex geometrical
configurations.

The remainder of this paper is as follows. First, we provide a background
of PINNs; then, we discuss the FVD loss function along with the grid-based
training procedure. In a theoretical context, we demonstrate the advantages of
discrete PINNs over traditional PINNs, supported by simulation results that
evaluate both of these loss functions. Finally, we show that this development
helps simulate high Reynolds-number fluid flows and complex geometries test
cases.
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Fig. 1. Schematic diagram of generic PINNs

1.1 Physics Informed Neural Networks: Preliminaries

Consider a generic partial differential equation (PDE) with appropriate initial
and boundary conditions,

f(x, u,
∂u

∂x
, ....) = 0 , x ∈ Ω ,

h(u(x)) = 0 , x ∈ ∂Ω ,

where f is a generic nonlinear function, x ∈ Ω is the coordinate in the domain
Ω, ∂Ω is the boundary of the domain, h is the boundary condition function and
u ∈ U is the solution field in a solution space that satisfies the PDE above. As
a specific example, for 2D fluid flow problems, the vector u consists of the flow
velocities (horizontal, vertical) and pressure. The domain coordinates consist of
x, y, t. For steady problems, the coordinates are x, y.

The Physics-informed Neural Network is a map of the domain to the solution,
i.e., u = H(x; θ), where H is a parametrized neural network with parameters θ
(Fig. 1).

The PINNs loss comprises a PDE-residual and boundary data loss terms
given by

LPINN = LPDE + LBL

LPDE =
1

Nc

[
Nc∑
i=1

(f(x, u,
∂u

∂x
, ...))2

]

LBL =
1

Nbp

Nbp∑
i=1

(h(u(x))2

 ,

where Nc is the total number of domain collocation points and Nbp is the total
number of boundary points. Automatic Differentiation evaluates the PDE loss
term, and the boundary data loss term is calculated as the mean squared error.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_13

https://dx.doi.org/10.1007/978-3-031-97554-7_13
https://dx.doi.org/10.1007/978-3-031-97554-7_13


4 J. Rishi et al.

The use of automatic differentiation allows us to solve the PDE without rely-
ing on simulation data from numerical solvers, as is done in several simulation-
based neural operator methods such as DeepONets [20], and Fourier Neural
Operators [17].

2 Finite Volume Discrete Loss for PDE Residual

Instead of using automatic differentiation, we use finite volume discrete(FVD)
loss function to evaluate the PDE residual. The FVD loss can be derived for a
generic PDE, but for ease of demonstration, we derive the FVD loss for the 2D
steady incompressible Navier-Stokes equation [22]. The 2D steady-state Navier-
Stokes is given by:

(V⃗ .∇)V⃗ = −∇p+
1

Re
(∇2V⃗ ) (1)

∇ · V⃗ = 0 (2)

where V⃗ is the velocity vector, p is the pressure, Re is the Reynold number,
∇ is the first spatial derivative gradient operator and ∇2 is the second spatial
derivative Laplace operator. We express the above momentum and continuity
equations using a finite-volume discretization scheme on a uniform grid (Fig-

ure 2). (V⃗ .∇)V⃗ is called the advection term, and ∇2V⃗ is called the diffusion
term.

Fig. 2. Schematic of the grid used for deriving the FVD loss

The upwind scheme is used for the advection terms:

ϕ̂e =

{
ϕP if uE ≥ 0

ϕE if uE < 0
ϕ̂n =

{
ϕP if uN ≥ 0

ϕN if uN < 0

ϕ̂s =

{
ϕS if uS ≥ 0

ϕP if uS < 0
ϕ̂w =

{
ϕW if uW ≥ 0

ϕP if uW < 0
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where ϕ is a general scalar.

The gradient operator is approximated using the central difference scheme
as

∂ϕ

∂x

∣∣∣∣
x

=
ϕ(x+∆x)− ϕ(x−∆x)

2∆x

∂ϕ

∂y

∣∣∣∣
y

=
ϕ(y +∆y)− ϕ(y −∆y)

2∆y

(3)

The Laplace operator is approximated as

∂2ϕ

∂2x

∣∣∣∣
x

=
ϕ(x+∆x, y)− 2ϕ(x, y) + ϕ(x−∆x, y)

∆x2

∂2ϕ

∂2y

∣∣∣∣
y

=
ϕ(x, y +∆y)− 2ϕ(x, y) + ϕ(x, y −∆y)

∆y2

(4)

Residual loss is calculated as the mean of the square of the finite volume
discrete residuals at all interior points.

2.1 Grid-based training procedure

Vanilla PINN models are trained by giving {Xi
bp}

Nbp

j=1 as boundary points and

{Xj
c}

Nc
j=1 as domain collocation points and loss is calculated as:

Loss =
1

Nc

[
Nc∑
i=1

(f({Xi
bp}, u,

∂u

∂x
, ...))2

]
+

1

Nbp

Nbp∑
j=1

(h(u({Xj
c}))2

 (5)

In PINN training, Latin hypercube sampling (LHS) is often used to generate
diverse and evenly distributed input samples, promoting better generalization
and reducing clustering risk. However, LHS is unsuitable for use with the FVD
loss. Calculating FVD loss requires mini-batch training that includes all grid
points at once, that is Nc = Nx ∗Ny, where Nx, Ny represents total grid points
along the x and y axes. This study uses a rectangular grid and loss function as
described in Sec 2.

3 Finite volume discrete vs AD loss

In this section, we will compare computational graphs and loss function plots for
FVD and AD, as these are key components used in the analysis of neural network
training. We will first examine the computational graph and then proceed to the
loss function.
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Fig. 3. Computational graph for AD and FVD loss functions

3.1 Computational time

Consider a PDE with only the first derivative term that is being trained on a
neural network with two trainable parameters, as shown in Fig. 3. The loss func-
tions for the PINN with AD and FVD loss approaches with activation function
F using an input x and producing an output u are given by:

LossAD =
∂u

∂x
= w2w1F

′(w1x)

LossFV D =
u(x+∆x)− u(x−∆x)

2∆x

=
w2F (w1(x+∆x))− w2F (w1(x−∆x))

2∆x

The computational graphs for the above two loss functions are shown in
Fig. 3. The figure indicates that in order to calculate loss, the AD method
requires a deeper network compared to FVD loss. This suggests a higher compu-
tational requirement for AD. We have demonstrated that even when considering
w1 and w2 as scalars, the AD loss incurs higher computational cost compared
to the FVD loss. This difference in computational efficiency remains even when
w1 and w2 are treated as vectors, as the AD loss involves a greater number of
matrix multiplications compared to the FVD loss.

3.2 Faster Convergence

Empirical evidence suggests that the use of the FVD loss in training results
in accelerated performance compared to AD. In this study, we investigate the
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underlying reasons for this observation. The primary alteration in the loss func-
tion pertains to the residual term, while the boundary term remains constant;
therefore, our focus will be on the analysis of the residual term exclusively.
The residual loss gradient has been shown to be significantly higher than the
boundary loss gradient, as indicated in [33]. This allows for a comparative eval-
uation of the residual terms associated with both loss functions. For the purpose
of conducting an analysis on both residual terms, the one-dimensional Laplace
equation will be utilized as a test case.

∂2u

∂x2
= 0

To examine the training dynamics of FVD and AD loss, we investigate a net-
work architecture comprising two neurons and two trainable parameters w1, w2.
The network is structured with a single layer, as shown in Figure 4. For the sake
of simplification and ease of analysis, the weights on all other edges are fixed at
one. The Swish activation function is used for all hidden neurons [25].

Fig. 4. Neural network of 2 parameters

An input (x) gives the network output (U) as follows.

Uoutput =
w1x

1 + e(−w1x)
+

w2x

1 + e(−w2x)
(6)

Now, we will consider the neural network shown in Figure 4 and PDE loss in
the 1D Laplace equation.(For FVD loss, Eq: (4) is considered), we discrad the
third and fourth order terms in AD and finally we obtain:

LAD ≈ w2
1e

−w1x

(1 + e−w1x)2
+

w2
2e

−w2x

(1 + e−w2x)2

LFV D ≈ w1∆x

1 + e−w1(x+∆x)
− w1∆x

1 + e−w1(x−∆x)

+
w2∆x

1 + e−w2(x+∆x)
− w2∆x

1 + e−w2(x−∆x)

The efficiency of learning for a neural network through backpropagation de-
pends on the characteristics of the loss function. The residual loss function is
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Fig. 5. A comparison of squared Poisson equation Loss function between discrete and
automatic differentiation for the neural network shown in Figure 4

plotted with respect to the parameters. Figure 5 presents the loss for a fixed x
as a function of w1 and w2.

The squared output of the AD network exhibits more plateau regions com-
pared to the FVD network. This causes gradient descent-based optimization
algorithms to take longer to converge when using the AD loss compared to the
FVD loss. Consequently, FVD loss demonstrates superior learning performance
for PINNs. [15,9].

4 Experiments and Results

We conducted three experiments to study the advantage of using FVD loss
instead of automatic differentiation loss. The test cases chosen are Kovasznay
flow, steady-state lid-driven cavity flow, and flow past a cylinder flow. All PINN
simulations are compared with the solution obtained from a numerical CFD
solver [31].

4.1 Accelerating Training with FVD Loss

The Kovasznay flow [14,32] is governed by the steady state Navier Stokes equa-
tions and has an analytical solution given by

ζ =
0.5

µ
−

√
1

4µ2
+ 4π2 ,

u = 1− exp(ζx) cos(2πy) ,

v =
ζ

2π
exp(ζx) sin(2πy) ,

p = 0.5(1− exp(2ζx)) ,
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Table 1. Network hyperparameters used in experiments

Hyperparameters

Flows Kovasznay flow Lid-driven cavity Flow past a cylinder

Layers 5 5 5

Neurons per layer 50 300 32

Learning rate 0.001 0.001 0.0005

Epochs 2000 50000 50000

Optimizer Adam

Grid points 64×64 100×100 256×256

Activation function swish

Initializer Glorot Uniform Glorot Uniform Glorot Normal

where µ is the viscosity, x and y are the cartesian coordinate system, u and v
are horizontal and vertical components of the velocity, and p is pressure. The
boundary condition of the Navier-Stokes equation is given by the analytical
solution evaluated at the boundary points.

Fig. 6. The solution of PINNs trained with FVD, AD is shown next to the true solution
of Kovazsnay flow with Re=40. Flow streamlines are overlaid on a background of
velocity magnitude.

We solve the Kovasznay flow using the PINN approach in a square grid with
x ∈ [−0.5, 1.0], y ∈ [−0.5, 1.5] and µ = 0.025. The loss function consists of the
residual of the Navier Stokes and the boundary loss and other hyperparameters
chosen are given in Table 1[26].

Table 2. Relative error in u and v with their confidence interval of Kovasznay flow.

Relative error

Loss U Error V Error

AD 0.025±0.0004 0.006±0.00003

FVD 0.018±0.0002 0.009±0.00007
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The training time for 2000 epochs is 1.49 minutes for the FVD loss, while
it is 2.52 minutes for the AD loss on NVIDIA RTX A6000. This suggests that
the training time is shorter for the FVD loss function compared to the AD loss
function. Table 2 presents relative error metrics for this experiment. The results
demonstrate that the FVD and AD approaches achieve comparable accuracy in
solving the Kovasznay flow problem.

4.2 Accelerating Convergence with FVD Loss: Achieving Faster
Results in Fewer Epochs

To demonstrate the convergence of FVD and AD loss, we have considered the
lid-driven cavity problem. The right panel of Fig. 7 shows the flow setup. A
square fluid-filled cavity in the x − z plane is subject to a horizontal motion
on the top surface, corresponding to the lid moving to the right at a specified
velocity of 1 non-dimensional unit.

Fig. 7. Flow streamlines are overlaid on a background of velocity magnitude for the
lid-driven cavity problem for top-velocity = 1 and Re = 500 for 30000 epochs. The
solution of PINNs trained with FVD loss is on the left. PINNs trained with AD-based
loss are in the middle. The numerical solution is shown for reference.

The results obtained using AD loss were compared with those from FVD loss.
Figure 8 presents the learning curves corresponding to the FVD loss and AD for
a network consisting of five hidden layers, depicted by solid red and dotted red
lines, respectively. Figure 7 illustrates the PINNs simulation employing the FVD
loss and AD-based training alongside the associated numerical CFD solution.
Both networks underwent training for 30,000 epochs. At this stage, the FVD
simulation aligned with the CFD solution, whereas the AD-based training failed
to achieve such concordance. Even after extending the training to 50,000 epochs,
the AD-based training did not yield a solution consistent with the CFD solution.
To achieve 50,000 epochs of training, the AD network required 30 minutes, which
is approximately six times longer than the duration required by the FVD loss
to complete the same number of epochs in 5 minutes on the identical GPU.
Table 3 presents the tabulated relative error associated with this experiment. The
findings suggest that, training using loss based on FVD demonstrates superior
effectiveness compared to traditional PINNs trained with AD.
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Table 3. Relative error in u and v with their confidence interval for Re=500

Relative error

Loss U Error V Error

AD 0.108±0.006 0.109±0.008

FVD 0.054±0.002 0.051±0.002

Fig. 8. Loss plot for FVD and AD for Re = 500

4.3 Enhancing Efficiency in High Reynolds Number Simulations:
The Effectiveness of FVD Loss

In the present study, PINN with FVD loss was used to simulate fluid flow with
a high Reynolds number of Re = 1000 within a lid-driven cavity. The hyper-
parameters used in this study are consistent with those presented in Table 1,
except for the modifications made to the learning rate and the number of epochs.
The training process incorporated an exponential decay learning rate scheduler
and spans 100,000 epochs. Figure 9 illustrates the flow streamlines and velocity
magnitude based on FVD and AD training. Table 4 presents the tabulated rel-
ative error associated with this experiment. The findings suggest that, at high
Reynolds numbers, the training using loss based on FVD demonstrates superior
effectiveness compared to traditional PINNs trained with AD.

Table 4. Relative error in u and v along with their confidence interval for Re=1000.

Relative error

Loss U Error V Error

AD 0.11±0.013 0.10±0.013

FVD 0.04±0.001 0.04±0.001
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Fig. 9. Flow streamlines are overlaid on a background of velocity magnitude for the
lid-driven cavity problem for top-velocity = 1 and Re = 1000. The solution of PINNs
trained with FVD loss is on the left. PINNs trained with AD-based loss are in the
middle. The numerical solution is shown for reference.

4.4 Complex geometry

Thus far, we have utilized a rectangular grid to implement the FVD loss. For
complex geometries, a rectangular grid is unsuitable; alternative approaches are
required. To demonstrate FVD loss in complex geometries, we use the Flow Past
Cylinder (FPC) scenario, choosing a cylinder of radius=0.5 with dimensions
x = 20 and y = 3, and detail the utility of FVD loss (Figure 10).

The typical method for computing FVD loss in cylinder flow involves com-
puting the residual loss on a rectangular grid that covers the entire domain. The
masking operation is then applied to the designated region 1 (see Figure 10),
with boundary conditions implemented in a manner similar to that of tradi-
tional PINNs. However, this technique produces markedly higher errors near the
cylinder, as conditions are not enforced within the cylinder.

We addressed this issue by implementing a geometric loss approach similar
to boundary loss, setting loss to zero within the cylinder while applying a 1.5
residual loss weighting around the cylinder (region 2 in Figure 10), with hyperpa-
rameters detailed in Table 1. The weights for the boundary loss and the residual
loss are considered from this [28]. Figure 11 illustrates that the incorporation
of discrete loss, together with our training mechanism, successfully addresses
complex geometric scenarios.

5 Conclusion and Future work

Grid-based training mechanism combined with a discrete residual loss of finite
volume is used for PINNs. Our results suggest that this method exhibits supe-
rior advantages over AD training, as it requires fewer epochs to achieve conver-
gence and reduces computational time. We provide a reasoning that improved
the performance of the FVD loss compared to the AD loss. Moreover, we pro-
vided evidence that training utilizing the FVD residual loss yields remarkable
performance in solving flows with a high Reynolds number. Additionally, we
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Fig. 10. Schematic diagram of flow past a cylinder. Region 1 denotes a cylinder, while
Region 2 indicates an area where the residual loss is scaled.

Fig. 11. Flow streamlines are overlaid on a background of velocity magnitude for the
flow past a cylinder problem for left-velocity = 1 and Re = 50. The solution of PINNs
trained with FVD loss and the numerical solution is shown.

demonstrate the application of FVD loss in scenarios with complex geometries.
Future research will evaluate this approach for high Reynolds number flows in
complex geometries.

The codes and model weights can be accessed on GitHub1
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