
Performance-energy investigation of selected
applications using a parallel multi-GPU genetic

algorithm under power capping

Filip Magdziak1[0009−0008−7641−2876] and Paweł Czarnul1[0000−0002−4918−9196]

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

filip0magdziak@gmail.com

Abstract. In this article we demonstrate performance-energy optimiza-
tion of multi-GPU genetic algorithm execution using power capping.
Firstly, we outline elements concerning the design and implementation
of a multi-GPU framework for the execution of a genetic algorithm, al-
lowing the application of a solution to a variety of problems. Secondly,
the implementation of three algorithms is proposed and discussed: Trav-
eling Salesman, Knapsack, and Partition. Then, we present a testbed
environment with a high-performance computing node with 2 multi-core
Intel Xeon CPUs and 8 NVIDIA Quadro RTX 6000 GPUs as well as a
Yokogawa WT-310E power meter. Finally, we describe and discuss the
optimization results of the implementations using 1, 2, 4, and 8 GPUs
under different power caps imposed by NVIDIA NVML. We show the
scalability of the solution in terms of fitness versus the number of GPUs
used and analyze execution times and energy consumption of various
cases under various power caps. We demonstrate that for 8 GPUs, using
the power cap of 140W per GPU, we can obtain considerable energy sav-
ings of over 17.93% for Traveling Salesman, 15.88% for Knapsack, 21.97%
for Partition, with small increases of execution time: 0.89% for Travel-
ing Salesman, 1.41% for Knapsack, and 14.64% for Partition, versus the
results for the default power cap of 260W per GPU.

Keywords: CUDA, power capping, multiple GPUs, genetic algorithm,
performance-energy optimization

1 Introduction

Nowadays, the reduction of the execution time of applications is possible thanks
to the utilization of high-performance computing systems allowing parallel com-
puting [13], at the level of many: nodes, computing devices, and cores [23]. Evo-
lutionary Algorithms (EAs) [12] are frequently used for finding solutions to a va-
riety of problems, especially those for which deriving accurate, analytical models
is difficult. At the same time, energy consumption has become a very important
factor. In this paper, we contribute1 by:
1 The data and code supporting the results of this study are openly available in the

GitHub repository at https://github.com/k0n0di0d4/MultiGPU_RP

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://github.com/k0n0di0d4/MultiGPU_RP
https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


2 F. Magdziak and P. Czarnul

– Implementing 3 parallel multi-GPU genetic algorithms Traveling Salesman
problem, Knapsack problem, Partition problem.

– Integrating simulation of the former with energy measurements using the
professional meter Yokogawa [1].

– Demonstrating multidimensional optimization using various numbers of GPUs
and power caps showing the scalability of the solution and potential to ob-
tain higher percentage energy gains than percentage performance losses, us-
ing power capping [14,15], compared to the results for the default power cap
per GPU.

The article is organized in the following manner. In Section 2 we present
selected existing works on parallel implementation of genetic algorithms (GAs)
and energy-aware EAs. In Section 3 we present a detailed description of the
three different genetic algorithms implemented for the three problems – Traveling
Salesman problem, Knapsack problem, and Partition problem. Section 4 details
our experimental approach, metrics, results, and analysis of the collected data,
highlighting key findings related to the impact of power capping and GPU uti-
lization on algorithm efficiency. Section 5 presents a concise recap of the study’s
main findings and contributions.

2 Related work

2.1 Overview of Parallel Genetic Algorithms

There are several review/survey papers available in the literature, focusing on
various aspects of parallel genetic algorithms (PGAs). In paper [21] authors dis-
cuss: master-slave, fine-grained, multiple-population parallel GAs. Hierarchical
parallel algorithms are discussed with: a multi-deme GA at the upper level and a
fine-grained GA at the lower level; multi-deme and master-slave; or multi-deme
GAs at both these levels. Speed-up curves versus demes are outlined. In pa-
per [3] authors introduced the taxonomy of search techniques, including parallel
GAs, with coarse and fine-grained parallelism, heterogeneous and homogeneous
versions. Paper [10] presents a taxonomy and discussion of PGAs in terms of:
(parallel programming) APIs, software: libraries, programming languages, hard-
ware (including GPUs, CPUs, FPGAs, cloud, grid), implementations (global,
island, cellular, hybrid), problem domain and applications. In paper [5] authors
considered choosing parameters that affect the execution and quality of a PGA
– specifically sizing populations, migration rates, and topologies, that can be of
interest from the practical point of view. As outlined in the survey paper [6],
parallelizing GAs using GPUs poses several important challenges, including: ex-
posing sufficient parallelism, optimization of instruction execution, and memory
access. Data layout in memory as well as block and grid configurations are im-
portant.

It has been demonstrated that parallelizing GAs or using parallel algorithms
with GAs with GPUs can bring considerable speed-ups over the CPU-based
implementations, both sequential and parallel. In paper [16], using an island

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


Performance-Energy investigation of selected applications … 3

model executed on a GPU and a system with an Intel i7-4770K 3.5 GHz CPU,
16 GB memory and NVIDIA Titan Black GPU, running Linux, for the TSP
benchmark, acceleration ratios of GAs on the GPU over those on the parallel
CPU ranged up to even approx. 160, depending on the population size (512 to
8192 tested) and the number of nodes (16 to 256 tested). The solution presented
in paper [4] takes into account a parallel genetic algorithm approach, utilizing
GPUs to solve the Traveling Salesman Problem. It focuses on the Lightweight
Island Model (LIM) that aims to implement the concept of persistent threads
in the island model of the genetic algorithm. The results show that the new
approach can increase the speed-up to 27x over the serial CPU and 4.5x over the
Traditional Island Model (TIM). To achieve these results authors used an Intel
Core i5-10 2.5GHz CPU and Nvidia RTX 3050Ti GPU. Article [11] explores
the acceleration of genetic algorithms on GPUs using CUDA to solve the N-
Queens problem. It presents a modified genetic algorithm that leverages GPU
parallelism by allocating multiple threads per individual. This approach proves
that the computational speed can be increased significantly, achieving over 24
times faster results compared to CPU implementations for single-island setups,
and substantial improvements in multi-island scenarios. Intel i7 3770 and an
Nvidia GTX1060 GPU were used. In paper [24] authors presented an FFEAT
library that aimed at simplification of the implementation of parallel EAs using
GPUs, based on Torch. The authors used two systems for the comparison of the
solution using GPUs and CPUs. The same code implemented with Python and
PyTorch was used with different hardware layers. For the GPU tests, a computer
with an Intel Xeon Gold 5128 (16 cores/32 threads) with 192 GB RAM and an
NVidia Tesla T4 was used. For CPU tests a computer with an AMD Epyc 7452
processor (32 cores/64 threads)and 256 GB of RAM was used. Examining the
running time of the GA for the SAT problem with various numbers of literals
(100-2000) and different population sizes (32-32768), one can observe that the
GPU version requires a large enough population size to offer a smaller execution
time. For the population sizes of 2048 and more the GPU version is better by
an order of magnitude for this application.

Selected, available research works concerning energy consideration and en-
ergy efficiency of the evolutionary algorithms themselves, are summarized below.
Authors of paper [19] compared the energy consumption of various tools, in-
cluding bun version 0.5.8, deno version 1.32.1 and node.js version 18.5.0, for
running EAs2. They investigated the use of several tools for energy consumption
such as pinpoint (using the RAPL interface and NVIDIA registers), perf, and
likwid-powermeter. The authors concluded that for EA workloads, bun turned
out to be the best in terms of energy consumption and running time; followed
by deno, except for a specific case (2048) being better than node.js ranking the
third. Paper [7] investigates the energy consumption in the context of batch runs
of evolutionary algorithms, focusing on the impact of introducing rest times be-
tween runs to mitigate CPU overheating due to hysteretic effects. The study
demonstrates that inserting short pauses (e.g., 100 seconds) can reduce energy

2 https://github.com/JJ/energy-ga-icsoft-2023

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


4 F. Magdziak and P. Czarnul

consumption by 5%-8% for various benchmark functions. While the paper fo-
cuses on CPU-based implementations, it underscores the broader importance of
energy-aware strategies in evolutionary algorithms, aligning with our investiga-
tion of power capping on multi-GPU systems.

Further tests using various versions of the solutions [18] indicate that ex-
perimentation shall be performed as a valid indicator for given versions of the
virtual environments in order to assess their relative capabilities in terms of
energy consumption. In paper [9] authors consider power and energy consump-
tion when running GAs. Specifically, they investigate the impact of population
size on fitness as well as energy consumed. Two measurement perspectives are
considered in the analysis: running the algorithm within a certain time frame
(300 seconds assumed in the experiments) and running the algorithm until a
given fitness of the number of generations has been reached. LID and ORDER
Tree benchmarks were used. Three different platforms were analyzed: a Rasp-
berry Pi 3 Model with a Quad Core 1.2GHz Broadcom BCM2837 CPU and 1GB
RAM; a laptop with an Intel i5-2450M 2.5 GHz, 4 cores, and 8GB RAM running
Ubuntu 14.04.1 LTS; a desktop PC with an Intel i5-4430 processor at 3 GHz,
4 cores, 32GB RAM running Ubuntu 14.04.1 LTS. Yokogawa WT-310E (laptop
and Raspberry Pi) and APPPowerMeter (via Intel RAPL for the PC) were used
for energy consumption measurements. The authors found that the function of
energy consumption versus population size is non-linear. Additionally, by impos-
ing a time limit they noticed that increasing the population size can result in
worse fitness values. Depending on the problem and platform, the best energy
consumption and fitness can occur either for the smallest tested population size
(256) or in between population sizes. Depending on the configuration, sizes be-
tween 25 and 8192 were tested. For the fitness level bound, the best fitness on the
PC platform was obtained for the 1024 size and largest 8192 size for LID and
ORDER respectively with energy consumption smallest for the smallest pop-
ulation sizes. Additionally, the authors concluded that larger population sizes
resulted in higher numbers of cache misses, contributing to energy consumption.
In paper [2] authors studied which operations, and to what degree, contribute to
the energy consumption of genetic algorithm execution – both sequential GAs
and distributed versions (dGAs). For dGAs, both synchronous and asynchronous
communication schemes were tested. Algorithms were implemented with C++,
with MPI for dGAs. Energy measurements were taken with Intel RAPL. Several
benchmark problems were considered, including bit-counting, multimodal prob-
lem generator, error-correcting code design, minimum tardy task problem, an
instance of MAXSAT, maximum cut of a graph, frequency modulation sounds,
and massively multimodal deceptive problem. Tests were averaged over 30 runs
using a machine with an Intel Xeon E5-2620 v4, Linux 14.04.5, and 64 GB RAM.
The population size in a sequential GA was 100, and the subpopulation in the
dGA was 50, 32 islands. For a sequential GA, fitness and genetic operators con-
sumed most of the energy. Mutation was the most energy-requiring component
for 4 problems and required more energy than crossover for all problems. For the
dGA, the asynchronous version resulted in higher (time and energy) efficiency

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


Performance-Energy investigation of selected applications … 5

with the optimal energy consumption for the number of islands equal to the
number of cores.

2.2 Research Gap and Motivation

Despite significant advancements, existing research primarily focuses on consumer-
grade hardware or older HPC systems. Moreover, while some studies explore en-
ergy efficiency, they often neglect the trade-offs between performance, accuracy,
and actual deployment constraints. Our work aims to bridge this gap by evalu-
ating PGAs on modern HPC clusters, analyzing versatility and energy efficiency
across different parallelization strategies, and integrating hardware acceleration
techniques refined for recent architectures.

3 Implementation of algorithms

3.1 Algorithm Design

We implemented our framework using CUDA 11.8 and OpenMP 4.5. The popu-
lation size on each GPU is set to 65,536, and during initialization, it is randomly
generated on each GPU using cuRAND [20] the latter also used for mutation.
The population evolves over 500 generations, with a migration interval of 5
generations. The islands (GPUs) are interconnected in a circular topology for
communication. Each GPU can directly access the memory of its neighboring
GPU using CUDA’s Peer-to-Peer (P2P) functionality. The communication fol-
lows a sequence that progresses from the GPU with the lowest ID to that with
the highest ID. The transfer between GPUs is achieved asynchronously using
cudaMemcpyAsync, allowing for computation and communication to overlap.

For the Traveling Salesman problem, we have generated a dataset that con-
tains the distances between each pair of cities beforehand. The dataset comprises
100 cities and is saved in a two-dimensional array of size 100 by 100. We allocate
a separate thread for each individual in the population to manage its computa-
tions. Aiming at the shortest route between cities, we want to minimize the total
distance traveled. We employ tournament selection to choose the fitter individ-
ual out of two randomly selected members of the population. For the crossover
operation, we utilize the one-point crossover method. The mutation comes af-
ter the crossover, and there is a 0.01 probability of mutation to occur for each
member. If a mutation occurs, a randomly chosen pair of cities will be swapped
in a member’s DNA.

For the Knapsack problem, we use a pre-generated dataset that consists of
1000 different items with corresponding values and weights. In the code, we max-
imize the total value of items of a member. However, if the generated member’s
weight is greater than the knapsack’s capacity, the fitness is set to 0. For the
selection process, we picked the tournament type, which chooses between 2 mem-
bers of the tournament, which one is more fit to be sent to the next generation.
For the crossover operation, a one-point crossover method is applied. Mutation
occurs with a 0.01 probability.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


6 F. Magdziak and P. Czarnul

For the Partition problem, in our dataset, there are 8000 numbers with values
ranging from 1 to 300. The objective of our algorithm is to find a solution where
the total value of each of the three parts is equal. In the code, we minimize the
difference between the largest and smallest partitions’ sums.

For each generation, after defining our starting population, the selection
phase follows, in which, we pick 5 members of the population to participate in a
tournament. Only the participant with the best fitness wins, and will move on
to the next generation. Crossover is then performed using the one-point method.
The probability of mutation is 0.01. If a member mutates, one value of the mem-
ber’s DNA is chosen, and a partition that does not currently own it becomes the
new owner of that value. Since the partition problem has three different parts,
if the previous partition that owned it was numbered 0, the algorithm randomly
changes its ownership to 1 or 2.

3.2 Pseudo-Code Overview

The PGA for TSP, KP, and PP is summarized in pseudo-code shown in List-
ing 1.1.

Listing 1.1. Parallel Genetic Algorithm Pseudo-Code
1 # Constants
2 POPULATION_SIZE = 65536
3 GENERATIONS = 500
4 MAX_WEIGHT = 500
5
6 FUNCTION genetic_algorithm(algorithm_type , num_gpus , problem_data)
7 FOR each GPU in parallel
8 INITIALIZE random number generator
9 ALLOCATE memory for population and fitness

10 COPY problem_data to GPU
11 FOR each individual in a population
12 IF algorithm_type = TS
13 GENERATE random permutation of cities
14 APPLY mutation with probability 0.01
15 CALCULATE ts_fitness equal to path length
16 ELSE IF algorithm_type = KP
17 SELECT items randomly until weight <= MAX_WEIGHT
18 APPLY mutation with probability 0.01
19 CALCULATE kp_fitness as backpack value
20 ELSE IF algorithm_type = PP
21 ASSIGN values to random partitions
22 APPLY mutation with probability 0.01
23 CALCULATE pp_fitness as max(partition sums) - min(partition sums)
24 END FOR
25 COPY population and fitness to backup
26 TRACK best fitness (minimize for TS/PP, maximize for KP, generation = 0)
27 END FOR
28 FOR generation = 1 to GENERATIONS
29 FOR each GPU in parallel
30 FOR i = 1 to POPULATION_SIZE / 2
31 SELECT two parents via tournament selection (size 5)
32 PERFORM one-point crossover to produce two offspring with recalculated fitness
33 APPLY mutation with probability 0.01
34 END FOR
35 IF generation % 5 = 0
36 EXCHANGE half of a population with neighboring GPU
37 TRACK the best fitness (minimize for TS/PP, maximize for KP, generation)
38 UPDATE population and fitness backup
39 END FOR
40 END FOR
41 COLLECT best fitness from all GPUs
42 WRITE results to file
43 FREE GPU memory
44 END

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


Performance-Energy investigation of selected applications … 7

4 Experiments

4.1 Methodology

In our experimental methodology, we establish a fixed maximum of 500 gener-
ations per trial, regardless of the GPU count involved. Each GPU employs 512
blocks with 128 threads per block, totaling 65,536 threads. This approach ensures
consistency across all tests and allows for a fair comparison of results. We assess
the effectiveness of our configurations by monitoring the improvement in fitness
over and after the elapsed generations. Given the variability of genetic algo-
rithms, we conduct 100 runs for each configuration to account for the stochastic
nature of the process, and note the average outcome. We run all configurations
for various numbers of GPUs available for the same number of generations. For
consistency, in the following figures and the analysis, the fitness values for the
traveling salesman and partition problem are presented as 1/ts_fitness and
1/pp_fitness while for the knapsack problem fitness is shown as kp_fitness –
to align with the convention of higher values indicating better solutions (see List-
ing 1.1, pp_fitness was greater than 0 in simulations). Consequently, we expect
that average and median fitness values will grow with an increasing number of
GPUs, justifying parallelization. Apart from the fitness, we assess the quality of
each configuration also by taking into consideration:

– Average energy spent per run – expecting an increase for a larger number of
GPUs involved.

– Average execution time – expecting slightly larger execution times for a larger
number of GPUs but only due to synchronization/communication costs. In
the latter aspect, the computational time for each GPU shall be the same.

Additionally, we assess all of the aforementioned metrics: fitness, energy, and
time for various power caps, applied on the GPU(s) involved in computations,
to see which power cap setting would yield more desired trade-off of fitness,
energy, and time. In case more than 1 GPU is involved, the same power cap is
applied for all the GPUs used. Specifically, we are interested in: verification of
the speed-up, i.e., an increase in fitness versus the number of GPUs, impact of
power capping on energy consumption, impact of power capping on execution
time, searching for a configuration resulting from power capping that provides
larger energy gains percentage-wise than execution time increase percentage-
wise, for the best performing configuration, presumably using 8 GPUs.
We shall note that in the paper we are intentionally focusing on the exploration
of the aforementioned metrics with fixed GA parameters such as population size,
probability of mutation, crossover method, etc.

4.2 Testbed environment

For our experiments, we used a high-performance computing server, with RAM
having a total size of 394 GB, featuring two Intel Xeon 4210 CPUs. The server
hosts 8 NVIDIA Quadro RTX 6000 GPUs.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


8 F. Magdziak and P. Czarnul

To measure the energy consumption [8] accurately, we utilized a professional
grade Yokogawa WT-310E power meter, which has a power measurement ac-
curacy of 0.1% of the value reading, and a sampling rate of 100kS/s (100000
samples per second). We used yokotool which allowed us to collect time and
power usage during the run, of the whole machine. The data was measured at
a frequency of 10Hz allowing for an accurate measurement of power and con-
version to energy. The aggregated power was averaged by dividing by the total
number of trials which amounted to 100.

4.3 Results

For the benchmarking runs, the sizes of the given problems are as follows. The
traveling salesman problem consists of 100 cities, with distances between cities
ranging from 5 to 300. Each city has stored the distance to every other city,
and if a city’s index matches the index of the city in the saved distances, the
distance is 0, reflecting that there is no distance to itself. The knapsack problem
is initialized with 1000 items, where each item has its own randomly assigned
value and weight. The values are drawn from a uniform distribution within the
range of 1 to 100, while the weights are similarly chosen between 1 and 50.
The Partition problem comprises 8000 numbers, ranging from 1 to 300. The
data for each problem consists of integers and was pre-generated and saved
in a separate array using the Mersenne Twister (MT19937)[17] pseudo-random
number generator.

Figures 1 through 3 present the average fitness of the genetic algorithm for
the Traveling Salesman, Knapsack, and Partition problems using specified power
caps of 100W, 140W, 180W, 220W, and 260W respectively, across GPU counts
of 1, 2, 4, or 8. Values shown in the figures denote proper median values for the
given number of GPUs used along with boxplots and outliers.

Figures 4 through 6 depicts average energy (along with standard deviation)
spent per run by genetic algorithm for the Traveling Salesman, Knapsack, and
Partition problems using specified power caps of 100W, 140W, 180W, 220W,
and 260W respectively, across GPU counts of 1, 2, 4, or 8.

Figures 7 through 9 display average time (along with standard deviation)
spent per run by genetic algorithm for Traveling Salesman, Knapsack, and Par-
tition problems using specified power caps of 100W, 140W, 180W, 220W, and
260W respectively, across GPU counts of 1, 2, 4, or 8.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


Performance-Energy investigation of selected applications … 9

Fig. 1. Fitness for Traveling Salesman problem with power capped at 100W, 140W,
180W, 220W, and 260W, median values are shown under the bars.

Fig. 2. Fitness for Knapsack problem with power capped at 100W, 140W, 180W, 220W,
and 260W, median values are shown under the bars.

Fig. 3. Fitness for Partition problem with power capped at 100W, 140W, 180W, 220W,
and 260W, median values are shown under the bars.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


10 F. Magdziak and P. Czarnul

Fig. 4. Total energy spent for Traveling Salesman problem with power capped at 100W,
140W, 180W, 220W, and 260W

Fig. 5. Total energy spent for Knapsack problem with power capped at 100W, 140W,
180W, 220W, and 260W

Fig. 6. Total energy spent for Partition problem with power capped at 100W, 140W,
180W, 220W, and 260W

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


Performance-Energy investigation of selected applications … 11

Fig. 7. Total time spent for the execution of Traveling Salesman problem with power
capped at 100W, 140W, 180W, 220W, and 260W

Fig. 8. Total time spent for the execution of Knapsack problem with power capped at
100W, 140W, 180W, 220W, and 260W

Fig. 9. Total time spent for the execution of Partition problem with power capped at
100W, 140W, 180W, 220W, and 260W

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


12 F. Magdziak and P. Czarnul

4.4 Discussion

In terms of fitness, we see that fitness levels for a particular number of GPUs
stay at similar levels for any of the power cap settings. This is expected, as power
capping settings shall affect execution performance rather than affect changes in
the genetic algorithm although it might affect e.g. ratio of host-device or device-
device communication to computation times. For the desired configuration with
8 GPUs (because it allows the best fitness levels), differences between medi-
ans across all power caps tested are: for the Traveling Salesman (TS) between
0.00102669 and 0.00106895, for the Knapsack Problem (KP) between 8211 and
8212 and for the Partition Problem (PP) between 0.25000000 and 0.33333333.
These minor variations in fitness values are primarily attributed to the inherent
stochasticity of the genetic algorithm, such as random initialization and muta-
tion, which are slightly amplified by power capping’s effect on inter-GPU commu-
nication timing. This confirms that power capping primarily impacts execution
time and energy consumption, with minimal influence on fitness performance.
We note that for the latter a difference of just 1 in the sums of partitions causes
a reasonably large percentage difference in fitness due to the construction of the
fitness function mentioned before. For the latter, we can also see that the upper
bound of the boxes reaches the same level of 0.5 for all power caps.

At the same time, we see improvements when engaging more GPUs for the
same number of generations, for each of the algorithms. Specifically, average
improvements versus 1 GPU are, comparing average fitness across all power
caps tested for a given number of GPUs (gains for different power cap values are
listed in the parentheses), for:

TS: 10.55% for 2 GPUs (9.29, 12.78, 8.85, 9.54 and 12.28%), 18.63% for 4 GPUs
(17.02, 21.08, 15.67, 19.32 and 20.04%) and 24.94% for 8 GPUs (26.33, 24.13,
25.49, 22.09 and 26.65%);

KP: 0.15% for 2 GPUs (0.11, 0.16, 0.16, 0.15 and 0.15%), 0.24% for 4 GPUs
(0.22, 0.27, 0.24, 0.23 and 0.24%) and 0.32% for 8 GPUs (0.31, 0.34, 0.33,
0.32 and 0.32%) – note that the relatively small percentage numbers result
from an already high absolute value of fitness for 1 GPU but there is very
consistent improvement from a larger number of GPUs;

PP: 42.64% for 2 GPUs (33.33, 29.87, 66.67, 33.33 and 50%), 112.45% for 4
GPUs (60, 127.27, 150, 100 and 125%), and 163.94% for 8 GPUs (100, 203.03,
150, 166.67 and 200%).

We shall note that in all cases an increase in fitness with an increasing number
of GPUs is clearly visible and a relative increase depends on how the fitness is
defined and what the absolute level of the reference fitness for 1 GPU is.

Power capping does affect execution times and energy consumption values.
We see that for power caps between 140W and 260W, for each application there
is a slight but similar growth in execution time between 1 and 8 GPUs. This
is expected and results from the additional inter-GPU communication times
for a larger number of GPUs. However, percentage increases are different for
various algorithms which results from various compute to communication times.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


Performance-Energy investigation of selected applications … 13

Additionally, a different behavior is observed for the power cap of 100W – here
we see much larger growth in time for 4-8 GPUs, due to the apparent slowing
down of the communication.

When it comes to energy consumption, we see growing energy consumption
for an increasing number of GPUs for each application and each power cap, due
to higher power consumption of more engaged GPUs and slightly increased exe-
cution time because of increased communication due to a larger number of GPUs.
What is important is that, especially for 8 GPUs, across power caps tested, we
see the smallest energy consumption for the power cap of 140W which is a very
valuable, practical result. This indicates that this setting shall be preferred for
energy consumption minimization with 17.93% for TS, 15.88% for KP, 21.97%
for PP, compared to the power cap of 260W. This comes at the cost of only
0.89%, 1.41%, and 14.64% penalty of execution time, compared to 260W and 8
GPUs, for TS, KP, and PP respectively. Again, this proves to be a very valuable
result because it allows us to achieve considerable energy savings at a small and
percentage-wise much smaller increase in execution time.

5 Summary and future work

In this article, we presented a comprehensive study on the implementation and
performance-energy analysis of a multi-GPU genetic algorithm framework, fo-
cusing on the impact of power capping. Our investigation included the imple-
mentation and evaluation of three distinct problems: the Traveling Salesman
Problem, the Knapsack Problem, and the Partition Problem. The experimental
setup consisted of a high-performance computing node equipped with dual Intel
Xeon CPUs and eight NVIDIA Quadro RTX 6000 GPUs, paired with a Yoko-
gawa WT-310E power meter for precise energy consumption measurements. Our
findings showed that including more GPUs led to improved fitness levels of the
algorithms, indicating enhanced solution quality with increased parallelism. We
demonstrated that the application of non-default power cap settings affected
execution times and energy consumption without significantly affecting the al-
gorithm’s fitness values. Notably, a power cap of 140W (versus the default power
cap of 260W per GPU) in combination with 8 GPUs emerged as the best setting
in terms of energy efficiency. This configuration provided a balanced compro-
mise, achieving considerable energy savings with minimal impact on execution
time and algorithm performance. These results emphasize the importance of
power capping as a valuable tool for optimization. Looking forward, we pro-
pose several paths for future research. Scaling the framework to accommodate a
larger number of GPUs through adding more nodes, preferably based on exist-
ing frameworks such as KernelHive [22], could further clarify the scalability and
efficiency of parallel genetic algorithms. The other path we could take could be
applying the framework to other real-time and complex problems in fields such as
bioinformatics could show the practical utility and versatility of our framework.
Additionally, extended power capping aware analysis could include consideration

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


14 F. Magdziak and P. Czarnul

of more dimensions including various parameters such as population sizes, GPU
grid sizes, etc., per implementation of a given problem.

Acknowledgments

The research was supported in part by the project “Cloud Artificial Intelligence
Service Engineering (CAISE) platform to create universal and smart services for
various application areas”, No. KPOD.05.10-IW.10-0005/24, as part of the Euro-
pean IPCEI-CIS program, financed by NRRP (National Recovery and Resilience
Plan) funds.

References

1. WT310E Digital Power Meter User’s Manual
2. Abdelhafez, A., Alba, E., Luque, G.: A component-based study of energy con-

sumption for sequential and parallel genetic algorithms. J. Supercomput. 75(10),
6194–6219 (oct 2019). https://doi.org/10.1007/s11227-019-02843-4

3. Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Complex.
4(4), 31–52 (mar 1999)

4. Alraslan, M., Alkurdi, A.H.: A lightweight island model for the genetic algorithm
over gpgpu. International Journal of Electrical and Computer Engineering Systems
14(7), 753 – 763 (2023). https://doi.org/10.32985/ijeces.14.7.3

5. Cantú-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and
practice. Computer Methods in Applied Mechanics and Engineering 186(2),
221–238 (2000). https://doi.org/https://doi.org/10.1016/S0045-7825(99)
00385-0

6. Cheng, J.R., Gen, M.: Accelerating genetic algorithms with gpu computing: A
selective overview. Computers Industrial Engineering 128, 514–525 (2019). https:
//doi.org/https://doi.org/10.1016/j.cie.2018.12.067

7. Cotta, C., Martínez-Cruz, J.: Energy consumption analysis of batch runs of evo-
lutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference Companion. p. 87–88. GECCO ’24 Companion, Association for
Computing Machinery, New York, NY, USA (2024). https://doi.org/10.1145/
3638530.3664093

8. Czarnul, P., Proficz, J., Krzywaniak, A.: Energy-aware high-performance comput-
ing: Survey of state-of-the-art tools, techniques, and environments. Scientific Pro-
gramming 2019, 8348791 (Apr 2019). https://doi.org/10.1155/2019/8348791

9. Díaz-Álvarez, J., Castillo, P.A., de Vega, F.F., Chávez, F., Alvarado, J.: Pop-
ulation size influence on the energy consumption of genetic programming.
Measurement and Control 55(1-2), 102–115 (2022). https://doi.org/10.1177/
00202940211064471

10. Harada, T., Alba, E.: Parallel genetic algorithms: A useful survey. ACM Comput.
Surv. 53(4) (aug 2020). https://doi.org/10.1145/3400031

11. Janssen, D.M., Liew, A.W.C.: Acceleration of genetic algorithm on gpu cuda plat-
form. In: 2019 20th International Conference on Parallel and Distributed Com-
puting, Applications and Technologies (PDCAT). pp. 208–213 (2019). https:
//doi.org/10.1109/PDCAT46702.2019.00047

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://doi.org/10.1007/s11227-019-02843-4
https://doi.org/10.1007/s11227-019-02843-4
https://doi.org/10.32985/ijeces.14.7.3
https://doi.org/10.32985/ijeces.14.7.3
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00385-0
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00385-0
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00385-0
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00385-0
https://doi.org/https://doi.org/10.1016/j.cie.2018.12.067
https://doi.org/https://doi.org/10.1016/j.cie.2018.12.067
https://doi.org/https://doi.org/10.1016/j.cie.2018.12.067
https://doi.org/https://doi.org/10.1016/j.cie.2018.12.067
https://doi.org/10.1145/3638530.3664093
https://doi.org/10.1145/3638530.3664093
https://doi.org/10.1145/3638530.3664093
https://doi.org/10.1145/3638530.3664093
https://doi.org/10.1155/2019/8348791
https://doi.org/10.1155/2019/8348791
https://doi.org/10.1177/00202940211064471
https://doi.org/10.1177/00202940211064471
https://doi.org/10.1177/00202940211064471
https://doi.org/10.1177/00202940211064471
https://doi.org/10.1145/3400031
https://doi.org/10.1145/3400031
https://doi.org/10.1109/PDCAT46702.2019.00047
https://doi.org/10.1109/PDCAT46702.2019.00047
https://doi.org/10.1109/PDCAT46702.2019.00047
https://doi.org/10.1109/PDCAT46702.2019.00047
https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12


Performance-Energy investigation of selected applications … 15

12. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,
present, and future. Multimedia Tools and Applications 80(5), 8091–8126 (Feb
2021). https://doi.org/10.1007/s11042-020-10139-6

13. Krzywaniak, A., Czarnul, P.: Parallelization of selected algorithms on multi-core
cpus, a cluster and in a hybrid cpu+xeon phi environment. In: Borzemski, L.,
Świątek, J., Wilimowska, Z. (eds.) Information Systems Architecture and Technol-
ogy: Proceedings of 38th International Conference on Information Systems Archi-
tecture and Technology – ISAT 2017. pp. 292–301. Springer International Publish-
ing, Cham (2018)

14. Krzywaniak, A., Czarnul, P.: Performance/energy aware optimization of parallel
applications on gpus under power capping. In: Wyrzykowski, R., Deelman, E.,
Dongarra, J., Karczewski, K. (eds.) Parallel Processing and Applied Mathematics.
pp. 123–133. Springer International Publishing, Cham (2020)

15. Krzywaniak, A., Czarnul, P., Proficz, J.: Dynamic gpu power capping with online
performance tracing for energy efficient gpu computing using depo tool. Future
Generation Computer Systems 145, 396–414 (2023). https://doi.org/https://
doi.org/10.1016/j.future.2023.03.041

16. Li, C.C., Lin, C.H., Liu, J.C.: Parallel genetic algorithms on the graphics pro-
cessing units using island model and simulated annealing. Advances in Me-
chanical Engineering 9(7), 1687814017707413 (2017). https://doi.org/10.1177/
1687814017707413

17. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1), 3–30 (Jan 1998). https://doi.org/10.1145/272991.272995

18. Merelo-Guervós, J.J., García-Valdez, M., Castillo, P.A.: Energy consumption
of evolutionary algorithms in javascript. In: Villani, M., Cagnoni, S., Serra, R.
(eds.) Artificial Life and Evolutionary Computation. pp. 3–15. Springer Nature
Switzerland, Cham (2024)

19. Merelo-Guervós, J.J., García-Valdez, M., Castillo, P.: An analysis of energy con-
sumption of javascript interpreters with evolutionary algorithm workloads. In: Pro-
ceedings of the 18th International Conference on Software Technologies - Volume 1:
ICSOFT. pp. 175–184. INSTICC, SciTePress (2023). https://doi.org/10.5220/
0012128100003538

20. NVIDIA Corporation: curand - cuda random number generation library. NVIDIA
Developer Documentation, https://developer.nvidia.com/curand

21. Paz, E.C.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux
et Systems Repartis 10(2), 141–171 (1998)

22. Rościszewski, P., Czarnul, P., Lewandowski, R., Schally-Kacprzak, M.: Kernel-
hive: a new workflow-based framework for multilevel high performance computing
using clusters and workstations with cpus and gpus. Concurrency and Computa-
tion: Practice and Experience 28(9), 2586–2607 (2016). https://doi.org/https:
//doi.org/10.1002/cpe.3719

23. Sato, Y., Hasegawa, N., Sato, M.: Gpu acceleration for sudoku solution with ge-
netic operations. In: 2011 IEEE Congress of Evolutionary Computation (CEC).
pp. 296–303 (June 2011). https://doi.org/10.1109/CEC.2011.5949632

24. Valkovič, P., Pilát, M.: Implementing and evaluating parallel evolutionary algo-
rithms in modern gpu computing libraries. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion. p. 506–509. GECCO ’22, As-
sociation for Computing Machinery, New York, NY, USA (2022). https://doi.
org/10.1145/3520304.3529000

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_12

https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/https://doi.org/10.1016/j.future.2023.03.041
https://doi.org/https://doi.org/10.1016/j.future.2023.03.041
https://doi.org/https://doi.org/10.1016/j.future.2023.03.041
https://doi.org/https://doi.org/10.1016/j.future.2023.03.041
https://doi.org/10.1177/1687814017707413
https://doi.org/10.1177/1687814017707413
https://doi.org/10.1177/1687814017707413
https://doi.org/10.1177/1687814017707413
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://doi.org/10.5220/0012128100003538
https://doi.org/10.5220/0012128100003538
https://doi.org/10.5220/0012128100003538
https://doi.org/10.5220/0012128100003538
https://developer.nvidia.com/curand
https://doi.org/https://doi.org/10.1002/cpe.3719
https://doi.org/https://doi.org/10.1002/cpe.3719
https://doi.org/https://doi.org/10.1002/cpe.3719
https://doi.org/https://doi.org/10.1002/cpe.3719
https://doi.org/10.1109/CEC.2011.5949632
https://doi.org/10.1109/CEC.2011.5949632
https://doi.org/10.1145/3520304.3529000
https://doi.org/10.1145/3520304.3529000
https://doi.org/10.1145/3520304.3529000
https://doi.org/10.1145/3520304.3529000
https://dx.doi.org/10.1007/978-3-031-97554-7_12
https://dx.doi.org/10.1007/978-3-031-97554-7_12

