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Abstract. CFD has become a vital tool for understanding and optimiz-
ing fluid flow phenomena in engineering. The recent incorporation of Al
into CFD has opened new prospects for faster and more reliable simu-
lations. This work delves into the accuracy of integrating CFD with Al
and evaluates its performance on an HPC system using multiple NVIDIA
HG200 chips - one of the most powerful GPU-based accelerators for Al.

This research explores the potential of mixed precision techniques with
diverse data formats to accelerate the distributed data-parallel training
of our DNN model proposed for CFD motorBike simulations. Among
the considered formats are BF16, TF32, and FP32. Especial emphasis
is given to validating and tuning the accuracy of training concerning
the impact of mixed precision methods and partitioning a large training
dataset into smaller batches. We aim to understand better how various
number formats impact the performance-accuracy trade-off in training
DNN models for CFD simulations on modern HPC platforms with mul-
tiple GPUs and nodes.

Keywords: HPC - CFD - AI/ML - DNN - mixed precision - GPU - data
parallel training - NVIDIA GH200 - performance - accuracy

1 Introduction

Computational fluid dynamics (CFD) has become a keystone for understanding
and perfecting fluid flow phenomena in various engineering areas. The recent
incorporation of artificial intelligence (AI) into CFD has opened new possibili-
ties for accelerated simulations and has promised enhanced accuracy. This work
discusses a key intersection of topics at the core of this field - emerging new
number formats, leveraging mixed precision methods in AI, and utilizing high-
performance parallel architectures.
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This work is based on recent hardware developments that have dramatically
increased the scale of parallelism available for CFD Al-driven simulations, in-
cluding neural network training [21] leveraging the data parallel (DP) training
method. It allows us to accelerate training deep neural networks (DNNs) used
in CFD simulations by dividing a large dataset into smaller batches processed
simultaneously across multiple computing units like GPUs [22,20]. Each GPU
holds a copy of the model and executes all training steps on its data subset. This
technique makes it possible to train large models faster by taking advantage of
multiple GPUs. Distributed data-parallel (DDP) training is an advanced form of
DP training, assuming computations across multiple nodes and allowing training
to scale beyond a single machine [22].

At the same time, additional data parallelism in training can come at cer-
tain costs, among which lower accuracy is particularly significant. This effect
depends heavily on the specific AI model and is related to the increase in the
effective batch size, corresponding to the size of the whole dataset processed by
all GPUs of the computing platform [21]. This paper focuses on unraveling the
intricacies of performance-accuracy trade-off for DDP training of DNN models
using as a use case an Al model based on the variational autoencoder architec-
ture we propose for CFD motorBike simulations. Notably, among a number of
aspects influencing this trade-off, we deliberately concentrate on the impact of
mixed precision techniques using emerging floating-point number formats such
as bfloat16 (BF16) and TensorFloat-32 (TF32). By directing our attention to
these techniques and formats, we aim to contribute a distinctive perspective on
mixed precision computations, recognizing potentially enormous capabilities in-
tegral to their implementation in the state-of-the-art graphics accelerators such
as those provided by NVIDIA GH200 chips considered in this paper.

The paper is organized as follows. Related works are discussed in Section 2.
Section 3 introduces the Al-accelerated CFD motorBike simulation, including
the training dataset and architecture of the DNN model we propose for the
simulation. Section 4 outlines key issues of implementing DDP training, along
with performance-accuracy trade-off. The overview of HPC hardware and soft-
ware for DDP training of DNN models, including programming of the training
in PyTorch, is provided in Section 5. Section 6 presents the results of the perfor-
mance and accuracy evaluation of DDP training of our DNN model using mixed
precision based on the BF16 format, while Section 8 discusses the performance-
accuracy trade-off for the TF32 format versus the BF16 and FP32 formats.
Section 8 concludes the paper.

2 Related Works

Recently, there has been a remarkable growth in research exploring integrating
AT models within CFD simulations. These efforts aim to expand the efficiency
and precision of simulations, thus enabling handling more complicated and re-
alistic problems [26,11,2,18]. Modern AI frameworks, like TensorFlow [1] and
Pytorch [10], play a key role in supporting Al-driven simulations on multiple
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computing platforms, providing code portability with minimum additional ef-
fort.

A widespread approach involves using machine learning algorithms to model
fluid behavior [16]. Recent works [14, 19] have addressed the increasing computa-
tion demand of CFD simulations by implementing generalized AT models to simu-
late various use cases. It allows achieving lower costs of experiments and faster
prototyping/parametrization. For instance, neural networks have been success-
fully employed to simulate turbulence [4], forecast drag and lift forces on aircraft,
and optimize the design of turbulent flow control devices [23]. Furthermore, re-
searchers have delved into leveraging AI models for optimizing CFD simulation
parameters and settings [18]. These models are trained on large amounts of data
and used to make accurate and efficient predictions, which can be incorporated
into HPC simulations [14].

In the realm of CFD simulations the choice of number formats significantly
influences both the accuracy and performance of computations, along with mem-
ory utilization and overall computational efficiency. A prominent step to opti-
mize the performance of numerical computations has been the reinvention of the
mixed precision technique - a combination of lower and higher-precision number
formats [9]. It has become a powerful optimization to speed up Al computations,
especially deep learning training and inference [12]. Utilizing a mixture of (16-
bit| (BF16, TF32) and 32-bit floating-point number formats (FP32) in a model
during training aims to run it faster and reduce memory utilization. Accelerat-
ing computations and reducing the execution time with lower-precision formats
also allows decreasing energy consumption. However, reduced precision may lead
to numerical instability in certain computations. Therefore, the optimal choice
of floating-point precision depends on the specific application and the trade-off
between precision needs, memory constraints, and computational efficiency.

The impact of mixed precision techniques on training and inference efficiency
of deep neural networks has been studied in papers [6] and [8]. Regardless of
whether the first work uses NVIDIA GPU for experiments and the second one
focuses on Intel CPU and GPU, both papers do not consider TF32 format,
and what is more significant, they leverage only a single accelerator and do
not consider any method of training parallelization such as data parallelism,
model parallelism, or pipeline one [3]. This paper delves into the intricacies of
incorporating mixed precision computing into the multi-GPU implementation of
DNN training based on data parallelism. The reason for engaging parallelization
across multiple GPUs in our Al-driven simulatio is that, unlike previous work
[8], where a simpler model was used with fewer degrees of freedom, this study
on the CFD motorBike simulation scenario adopts an enhanced AI (and larger)
model tailored to the increased complexity introduced by the expanded param-
eter space. The inclusion of three variable parameters - freestream velocity U,
yaw angle 9, and ground clearance hy - significantly broadens the diversity of
the aerodynamic scenarios simulated, necessitating a more robust deep learning
architecture capable of capturing the intricate interplay between these factors
and the resulting flow fields.
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3 Deep Neural Network for Al-Accelerated CFD
Simulation

3.1 CFD simulation of steady flow around a motorcycle and rider

This work investigates the performance and accuracy of training DNN models
used in Al-accelerated CFD simulations. It leverages a practical application: the
simulation of steady flows around a motorcycle and rider geometry available
in OpenFOAM [15] — a versatile open-source CFD software widely used for
simulating fluid flows. This tool provides a comprehensive set of solvers for a
variety of flow problems, including steady-state and transient simulations.

For this study, we employ the steady-state simpleFoam solver, based on the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) [25] algorithm,
which is suitable for incompressible, turbulent flows. The solver performs steady-
state, incompressible Reynolds- Averaged Navier-Stokes calculations (RANS) over
the mesh. In fluid dynamics, the Navier-Stokes equations describe the motion
of fluid, taking into account viscosity, pressure, and velocity. The RANS-based
approach is a widely used approach in CFD for simulating turbulent flows.

In the considered application, by integrating AT methodologies [17, 8] into the
simulation, we aim to streamline the evaluation of crucial fluid dynamic param-
eters — velocity U and pressure p. This study’s motorcycle and rider geometry
is a standard benchmark provided in OpenFOAM. It realistically represents the
motorbike scenario, and is often used for aerodynamic and drag analysis.

3.2 Training Dataset

The AI model is trained on extensive datasets from RANS simulations, designed
to infer and optimize the estimation of flow velocity U and pressure p in a motor-
cycle aerodynamic analysis. The datasets are constructed through a parametric
series of simulations with key physical variables - rider’s freestream velocity Us,
and motorcycle’s yaw angle v, systematically varied to capture a broad range
of operational conditions. An additional parameter, the ground clearance hgy, is
introduced to account for the motorcycle’s proximity to the ground, influencing
boundary layer interactions and wake dynamics. The simulation domain is dis-
cretized into a structured mesh with 350,000 hexahedral cells, ensuring sufficient
resolution of the near-field flow structures around the rider-motorcycle geometry.
Each simulation is evolved over 100 timesteps with duration of At = 1x1073 s
each, using the OpenFOAM finite-volume solver to achieve numerical conver-
gence of the turbulent flow field, modeled with the £ —w SST turbulence model.

In this study, 25 distinct simulations are performed, each representing a
unique combination of Us,, 9, and hg. The velocity U is varied between 10 m/s
and 30 m/s, the angle ¥ ranges from —15° to +15° relative to the longitudinal
axis, and the clearance hg is adjusted between 0.05 m and 0.15 m. A sliding
window approach is adopted for each simulation with five consecutive timesteps
per window. The dataset for a simulation is constructed by designating the flow
field data (velocities u,, uy, u,, and pressure p) from the first four timesteps as
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input features, with the fifth timestep serving as the target output. This tem-
poral sequencing yields 96 samples per simulation (calculated as 100 — 4 = 96
windows), resulting in a total of 96 x 25 = 2400 samples across all simulations.
Each sample contains spatially-resolved field data across the 350k-cell do-
main, with four variables (uy, uy, u, p) stored in FP32 format, giving the size of
a single sample approximately 350k x4 x4 bytes = 5.6 MB, and the total dataset
size 2400x5.6 MB ~13.44 GB. The dataset is divided into training and valida-
tion subsets with a ratio of 90% to 10% of the samples to facilitate efficient model
training. Before training, the data is preprocessed by normalizing the velocity
and pressure fields concerning their global maxima across the dataset, ensuring
numerical stability and improving the deep learning framework’s convergence.

3.3 Architecture of Deep Neural Network used in CFD Simulations
Our AI model for predicting iteration results in motorBike CFD simulations
leverages a variational autoencoder (VAE) architecture [24], chosen for its flex-
ibility and scalability in handling complex computational tasks. The VAE’s ca-
pabilities are particularly well-suited for CFD for two primary reasons. First,
its efficient and scalable design facilitates the processing of extensive datasets,
a common requirement in CFD simulations involving intricate geometries like
motorbikes. Second, VAEs’ unsupervised learning capability enables them to
capture latent patterns and structures in CFD data, making them adept at
modeling the nonlinear and dynamic nature of fluid flows.

In this work, the VAE is used to predict critical CFD quantities such as pres-
sure and velocity around a motorbike geometry. Our approach employs a ML
pipeline with four iterations of CFD simulation, which produces the input data
for the VAE and generates a single predicted output. Each input corresponds to ¢
quantities (e.g., pressure, velocity) across n domain cells, represented as an array
of size timesteps x n x q. The output is represented as an array of size 1 x n x 1,
predicting the last time step’s pressure distribution. The VAE model includes
an encoder with four Conv2D and a decoder with four Conv2DTranspose layers.
The encoder compresses the high-dimensional input into a latent representation,
and the decoder reconstructs the predicted output (Algorithm 1). This setup
efficiently models the dynamic interactions within fluid flows around the mo-
torbike geometry, enabling accurate predictions over time. In Algorithm 1, the
Kullback-Leibler (KL) divergence quantifies the difference between two proba-
bility distributions. In variational autoencoders, it acts as a regularization term,
ensuring the latent distribution aligns with a prior one (e.g., standard normal),
promoting a structured and efficient latent space for inference. Hyperparame-
ters like the number of filters, kernel sizes, and latent space dimensionality were
determined empirically through grid search, optimizing for validation loss.

4 Distributed Data Parallel Training of DNN

4.1 Key Issues of Implementing DDP Training

In DDP training, multiple processes are launched on various machines with
each process usually assigned to a single GPU. Training DNN models rely on
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Algorithm 1 VAE Architecture for Motorbike CFD Simulations

Input: Data (timestep, n, q)
Output: Predicted output (1,n,1)
Encoder:
Conv2D: filters=8, kernel _size=(3,3),
Conv2D: filters=16, kernel size=(3,3), strides=(2,2), activation="relu’
Conv2D: filters=32, kernel _size=(3,3), strides=(2,2), activation="relu’
Conv2D: filters=64, kernel _size=(3,3), strides=(2,2), activation="relu’
Flatten output to 1D
Dense Layer: units=latent dim, activation="linear’
Latent Representation:
z = mean + std_dev
Decoder:
Dense Layer: units=(encoded size), activation="relu’
Reshape back to 3D
Conv2DTranspose: filters=32, kernel _size=(3,3), strides=(2,2), activation="relu
Conv2DTranspose: filters=16, kernel 81ze:( ,3), strides=(2,2), activation="relu
Conv2DTranspose: filters=8, kernel _size=(3,3), strides=(2,2), activation="relu’
Conv2DTranspose: filters=1, kernel _size=(3,3), strides=(2,2), activation="linear’
Loss Function:
Loss = Reconstruction Loss (MSE) + KL Divergence

strides=(2,2), activation="relu’

)

)

executing iteratively three steps: (i) the forward pass to compute loss, (ii) the
backward pass to compute gradients, and (iii) the optimizer step to update
parameters [22|. Each process performs the forward pass independently on sep-
arate partitions of the training dataset to calculate the local gradients. Since
DDP training and traditional local training must be mathematically equivalent,
models for all processes have to be synchronized at each training iteration by
sharing and averaging the local gradients in order to compute the global gradient
used by each process to update the model [22,27]. As a result, all processes have
the same model state after each training iteration.

DDP training is implemented by many Al frameworks, including PyTorch
and Horovod [20,22]. While they rely on gradient synchronization across pro-
cesses, their implementations differ. Horovod performs gradient averaging after
all processes complete the backward pass [20], implementing AllReduce oper-
ation between gradient calculations and model update. The original optimizer
is wrapped with a new one called Distributed Optimizer, which delegates the
gradient computation to the local optimizer, and averages gradients based on
AllReduce operation [27]. The averaged gradients are used to update the model
for each process. Opposite to Horovod, the gradient averaging in PyTroch is per-
formed during the local backward pass using AllReduce operation. PyTorch uses
a technique called layer bucketing [22] to optimize the gradient synchronization
performance. It groups parameters from several layers into a larger bucket. Once
the backward pass for the layers in a bucket is performed, this bucket is syn-
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chronized in a single AllReduce operation, so AllReduce operation on gradients
can start before the local backward pass finishes. Bucketing allows overlapping
communication and computations [22]. While the backward computations for
bucket i+1 are performed, the gradients of bucket i are exchanged.

4.2 Performance Versus Accuracy for DDP Training

For the DDP training, we will distinguish between the batch size Bg correspond-
ing to the size of subsets processed by each GPU and the effective batch size
By, which corresponds to the size of the whole dataset processed by all p GPUs
of the computing platform, where Bgy = pBg. When using only a single GPU,
the rule of thumb for selecting the first parameter is to choose the maximum
value at which all calculations are still performed in GPU memory. This way,
we can maximize hardware efficiency (utilization) and training performance. For
DDP training on multiple GPUs, the statistical accuracy of the model training
has to be considered in addition to the performance when selecting the second
parameter. Following work [3], the size Bgy should not be too small to harness
inherent concurrency in the evaluation of the loss function, nor should they be
too large, as the quality of the result decays once increased beyond a certain
point. Typical batch sizes, where the training error is stably close to the mini-
mum, lie in a range between the orders of 10 and 10,000 [3]. The boundary points
of this range depend heavily on the specific model.

Consequently, setting the batch size Bgy results in a complex optimization
space. Increasing Br allows us to escalate the parallelism of computations by
expanding the GPU number. At the same time, large batch sizes can negatively
affect training convergence. Among the methods of overcoming this problem,
the most popular is adjusting learning rates statically or adaptively, including
the usage of specific learning-rate schedules [3]. In particular, when multiplying
the batch size by p, it was recommended to multiply the learning rate by /p.
Linear scaling is also frequently used in practice. However, the efficiency of these
large-batch methods is again highly dependent on the specific model.

5 Overview of HPC Hardware and Software for
Distributed Data Parallel DNN Training

5.1 Overview of Multi-GPU System with NVIDIA GH200

NVIDIA GH200 Superchip was designed for large-scale Al and HPC tasks,
based on heterogenous Grace Hooper architecture [13]. It combines the high-
performance capabilities of the NVIDIA Hopper H100 GPU with the versatility
of the NVIDIA Grace CPU based on Neoverse V2 Armv9 architecture. It has
72 cores and up to 480GB of LPDDR5X memory. The CPU and GPU are con-
nected via the high-bandwidth NVIDIA NVLink-C2C delivering up to 900GB/s
of bandwidth (about 7 times higher than PCIe Genb connections). All GH200 de-
vices within a node are coupled through NVIDIA NVLink Switch System, which
enables accessing peer memory using direct loads, stores, and atomic operations.
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The GPU chip includes 16,896 FP32 cores providing up to 67 TFlop/s of
theoretical peak performance. Depending on the version, the GPU has 96GB of
HBM3 or 144 GB of HBM3e memory with a bandwidth of up to 4.9 TB/s. Ad-
ditionally, it includes 528 fourth-generation Tensor Cores designed to accelerate
matrix operations essential for Al and HPC. The cores support various preci-
sions, including FP64, FP32, BF16, TF32, and newly introduced FP8 [13]. The
GPU achieves remarkable performance across different precision levels. The the-
oretical peak performance (without sparsity) for TF32 and BF16 formats equals
494 and 990 TFlop/s, respectively. Significant performance gains of BF16 and
TF32 over FP32 justify using mixed precision techniques [6, 8], where certain
operations, such as weight updates in deep learning, leverage FP32 precision to
maintain stability and accuracy. Their presence explains why the actual perfor-
mance gain over FP32 is lower than the theoretical maximum.

5.2 Programming DDP Training in PyTorch

PyTorch is a machine learning framework that provides tools for building and
training AT/ML models [10]. Developed originally by Meta AI, since 2022 it
has been developed by PyTorch Foundation. PyTorch is one of the most pop-
ular deep learning frameworks, alongside others such as TensorFlow or Keras.
The framework ensures modules and classes including torch.nn, torch.optim,
Dataset, and DataLoader that allow create and train neural networks [10]. While
the torch.nn provides components to define neural network architectures with
layers, loss functions, and other components, the torch.optim implements op-
timization algorithms (like SGD, Adam, ...) that adjust the model’s parameters
based on gradients computed during training. The Dataset and Dataloader
modules provide efficient data handling during model training.

The basic building blocks for deep learning and numerical computations in
PyTorch are tensors [10]. They are specialized data structures that are very
similar to arrays and matrices. PyTorch tensors can be used on both CPUs,
GPUs and other accelerators, enabling fast computations.

PyTroch includes torch.nn.parallel.DistributedDataParallel module
for DDP training on machines with multiple computing units. Listing 1.1 presents
a code snippet implementing DDP training in PyTorch. It begins by initializ-
ing distributed training. Next, it prepares the dataset by using DatasetCFD class
and splitting it into the training and validation datasets. The DatasetCFD inher-
its from PyTorch Dataset class. In lines 6-7, the DNN model (NetCFD class) is
created and wrapped with DistributedDataParallel, which enables gradient
synchronization between processes. The loss function (MSELoss) and optimizer
(Adam) are defined to guide the training process. The data loader (DataLoader)
is set up with DistributedSampler (Lines 11-12), which ensures that data are
evenly distributed across multiple GPUs. The training loop (Lines 13-21) iter-
ates over epochs, adjusting the sampler per epoch (Line 14), and performing the
training steps (Lines 15-21), in which the model processes inputs, computes the
loss, backpropagates gradients, and updates weights using the optimizer.
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# import and initialize required PyTorch packages
#

; dataset = DatasetCFD ()

5 #

6

8

9

10

11

12

train_dataset ,valid_dataset = random_split(dataset, ...)
model = NetCFD ()

- model = DistributedDataParallel (model)

loss_fn = nn.MSELoss ()

optimizer = optim.Adam(model.parameters (), 1lr=0.001)

# 50

distSampler = DistributedSampler (train_dataset, ...)

trainLoader = Dataloader (train_dataset, batch_size=bs,
sampler=distSampler)

; for epoch in range (epochs):

trainlLoader.sampler.set_epoch (epoch)
for inputs, targets in trainlLoader:
inputs, targets = inputs.to(...), targets.to(...)
optimizer.zero_grad()
outputs = model (inputs)
loss = loss_fn(outputs, targets)
loss.backward ()
optimizer.step ()
# Rest of code including calculaton of loss curve

Listing 1.1: Distributed Data Parallel Training in PyTorch

6 Performance and Accuracy Evaluation of Distributed
Data Parallel DNN Training: Using BF16 Format

6.1 Evaluation Metodology

The evaluation is performed on the Helios supercomputer installed at ACC
Cyfronet AGH [5]. The tests are executed on four nodes with four NVIDIA
Grace Hopper GH200 devices each (16 in total). The Slingshot interconnect
with a bandwidth of 200 Gb/s provides connections between nodes (using drag-
onfly topology) and inside them. The NVLink Switch System connects GH200
devices within a single node, based on NVLink 4 and NVLink-C2C.

The whole application’s code is written in Python (version 3.11.5), while
the DNN training is implemented in PyTroch 2.3.1. Since the GH200 device is
based on the ARM architecture, we have to compile PyTorch from the source.
The software stack also contains NVIDIA CUDA SDK 12.4.0.

This paper is focused on training the model with the VAE architecture of
Section 3.3. The model includes 93,319 trainable parameters in FP32 format,
so over 10 GB of memory is required to hold the whole model. This model is
more than 5.5 times larger than a simpler model (with only 16,583 parameters),
considered in our work [8], trained on a single H100 GPU. For improving the
performance of training while preserving the required accuracy, the mixed pre-
cision approach is leveraged based on either BF16 format (Section 6) or TF32
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format (Section 7). PyTorch Automatic Mixed Precision (torch.amp) package
is employed to enable mixed-precision computations with BF16.

In this section, the performance and accuracy of parallel DNN training is
evaluated in the following three scenarios:

1. Scenario 1: Benchmarking the scalability without considering accuracy: the
fixed number Ng = 50 of training epochs is executed on various GPU num-
bers, with the batch size Bg = 16 set corresponding to the maximum portion
of the dataset that ensures all computations fit into the GPU memory.

2. Scenario 2: Investigating the scalability of training with considering accu-
racy: unlike the previous scenario, training is performed for different num-
bers of epochs until the loss reaches a value equal to that obtained for a
single GPU (with a tolerance of 10%).

3. Scenario 3: Analyzing the scalability of training when batch sizes Bs and
Bgy are selected concerning the performance and accuracy trade-off.

6.2 Performance and Accuracy Results

Scenario 1: Scalability without considering accuracy

Table 1 shows the execution times 7}, for this scenario, obtained on different
numbers p of GPUs, as well as the speedup achieved against a single GPU and
the loss value after executing all training epochs.

The performance results achieved for Scenario 1 shows that increasing the
number of GPUs significantly reduces the execution time of DNN training, with
nearly linear scaling and efficiency remaining high across different GPU config-
urations. Using all GPUs allows us to accelerate the training 14.6 times (89%
of ideal scalability). However, while training performance increases significantly,
the accuracy decreases when employing more GPUs. The final loss remains rel-
atively stable when using up to 4 GPUs, but it rises significantly for 8 and 16
GPUs (0.211 and 0.278, respectively). This behavior suggests that, in our case,
selecting a large size B¢ negatively affects the training convergence.

The DNN model is trained with a learning rate A = 0.001 in the tests. For
overcoming the drop in training accuracy on 8 and 16 GPUs, we investigated
the methods for adjusting learning rates mentioned in Section 4, including mul-
tiplying by /p, as well as PyTorch Linear, and Step schedulers. However, they
do not provided the intended effect and even drop the accuracy of the training.

Scenario 2: Scalability with considering accuracy

In this scenario, training is performed only for 8 and 16 GPUs as yielding notice-
ably lower accuracy in Scenario 1. The tests show that Ny = 74 and Ngp = 94
epochs are required to reach the loss value achieved for a single GPU. However,
increasing Ng decreases the training performance significantly.

Scenario 3: Seting batch size concerning performance and accuracy trade-off

This scenario starts with assuming the same effective batch size Bgy = 16 as
Bg for a single GPU, regardless of the number of GPUs. This allows us to
perform training for the fixed number Ng = 50 of epochs with the batch size
Bs = Bgy/p varied across GPU configurations. The obtained results (Table 1)
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Table 1: Performance and accuracy obtained for BF16

| 1xGH200 [ 2xGH200 | 4xGH200 | 8xGH200 [ 16xGH200
Scenario 1
Ty [s] 1274 657 336 175 90
Final loss 0.141 0.149 0.148 0.211 0.278
Sp 1 1.94 3.79 7.28 14.16
Scenario 2
T, |s] - - - 260 172
Sp - - - 4.9 7.41
Scenario 3: Bgy = 16
Ty [s] 1274 764 396 217 129
Final loss 0.141 0.14 0.144 0.142 0.146
Sp 1 1.67 3.22 5.87 9.88
Scenario 3: Bgy = 64"
Ty [s] - - - 199 110
Final loss - - - 0.15 0.152
S, - - - 6.4 11.58

— Scenario 1
14 { —— Scenario 2
— 5cenario 3

0 T T T T T
1 2 4 8 16

Number of GH200 devices

Fig. 1: The comparison of scalability achieved for different scenarios with BF16
on the multi-GPU system using NVIDIA GH200 chips.

indicate a better scalability than Scenario 2 while providing the desired accuracy.
For example, using all GPUs permits us to accelerate training by 9.88 times.
At the same time, the results achieved for Scenario 1 show a relatively stable
loss for up to 4 GPUs with the effective batch size Bgy < 4 x 16 = 64. So, it
is rational to set Bgy = 64 for 8 and 16 GPUs as well, improving scalability
considerably with the speedup of 6.4 and 11.58 for 8 and 16 GPUs, respectively.
These performance gains come at slightly higher loss but within the tolerance.
Fig. 1 compares scalability achieved for all three scenarios. While Scenario 1
provides the best scalability, it delivers lower accuracy for configurations with 8
and 16 GPUs. The opposite is true for Scenario 2, which provides the desired
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accuracy but at the cost of performance. Finally, Scenario 3 achieves a reasonable
speedup for all numbers of GPUs while maintaining the desired accuracy.

7 Performance-Accuracy Trade-off for TF32 Format
versus BF16 and FP32 Formats

Table 2 shows the execution time and accuracy obtained for mixed precision
training with TF32 format for Ny = 50 epochs. This table also includes the
achieved scalability, which is further visualized in Fig. 2. It is worth noting that
for implementing mixed precision computations with TF32 format, we have to
employ torch.backends module instead of torch.amp. This module contains
a set of routines and variables allowing for control of the code execution on
the CUDA platform, including torch.backends.cuda.matmul.allow_t£32 and
torch.backends.cudnn.allow_t£32 flags.

For the TF32 format, the maximum batch size Bg that guarantees all compu-
tations fit into GPU memory equals 8. However, the shortest execution time and
best accuracy for a single GPU correspond to Bg = 2. Besides good scalability
(speedup of about 14 times for 16 GPUs), the TF32 format provides better ac-
curacy than BF16 for all numbers of GPUs. For example, on a single GPU and
four GPUs with TF32, loss values equal, respectively, 0.118 and 1.12, against
0.141 and 1.148 with BF'16, i.e., are 1.19 and 1.23 times lower.

However, the TF32 format requires more computational overheads, which
results in 1.42 and 1.22 times longer execution time, compared to Scenario 2
for the BF16 format, on a single GPU and four GPUs, respectively. At the
same time, these overheads are counterbalanced by better training accuracy.
Consequently, the performance gap between TF32 and BF16 decreases when
more GPUs are employed. Finally, for 16 GPUs, TF32 is only 1.17 times slower
than BF16, with 1.09 times better accuracy.

Table 2 also shows performance and accuracy achieved without mixed preci-
sion when only the fully 32-bit FP32 format is used. The general conclusion is
that the accuracy behavior of the mixed precision solution with TF32 is practi-
cally the same as that of the full precision option with FP32. At the same time,
TF32 allows us to decrease computation time by about 1.25 times compared to
FP32 across the considered range of GPU numbers.

Table 2: Performance and accuracy achieved for TF32 and FP32 (Bg = 2).

| 1xGH200 [ 2xGH200 | 4xGH200 [ 8xGH200 | 16xGH200
TF32
T, [s] 1805 938 485 250 129
Final loss 0.118 0.114 0.12 0.138 0.139
Sp 1 1.92 3.72 7.22 13.99
FP32
Ty [s] 2256 1157 603 309 161
Final loss 0.118 0.128 0.129 0.135 0.137
Sp 1 1.95 3.74 7.3 14.01
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Fig. 2: The scalability achieved for training with TF32 format on the multi-GPU
system using NVIDIA GH200 chips. The scalability graph for the FP32 format
is practically identical.

8 Conclusion and Future Works

In this paper, we tackle the challenge of efficiently incorporating mixed pre-
cision computing into the data parallel implementation of DNN training. Our
contributions can be summarized as follows:

1. Unleashing the potential of mized precision in distributed data parallel com-
putations on multi-GPU systems to accelerate the training of DNN models.
Investigating the impact of diverse floating-point data formats - BF16, TF32,
and FP32 - on the performance and accuracy of training CFD AI models on
multi-GPU platforms is a focus of this work. We systematically explore the
performance gains and scalability associated with each datatype. Further-
more, we highlight the key aspect of validating and tuning the accuracy of
results obtained using these datatypes to ensure their applicability.

2. Acceleration of training the DNN model based on the variational autoen-
coder architecture we propose for CFD motorBike simulation. Incorporating
Al-driven methods into CFD simulations, specifically by integrating DNN
models with the OpenFOAM open-source software, is a vital step towards
more efficient and adaptive fluid flow predictions. Engaging parallelization
across multiple GPUs allows us to train effectively a large AI model with a
more robust deep learning architecture tailored to the increased complexity
introduced by the expanded parameter space of the considered CFD scenario.

3. Verification on the modern HPC' platform with multiple GPUs and nodes.
Extending beyond theoretical considerations, we delve into the practical im-
plementation of our findings with the PyTorch AI framework and the HPC
system, including four nodes each with four NVIDIA Grace Hopper GH200
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superchips - one of the most powerful GPU-based accelerators for Al In
particular, we show that leveraging mixed precision based on the BF16 for-
mat on 16 GPUs allows us to accelerate training the model by about 11.6
times, preserving the same loss value as for a single GPU. Besides good
scalability (speedup of about 14 times for 16 GPUs), the TF32 format pro-
vides better accuracy than BF16 for all numbers of GPUs. However, TF32
requires more computational overheads, which results in 1.42 and 1.22 times
longer execution time on a single GPU and four GPUs, respectively. How-
ever, these overheads are counterbalanced by better training accuracy, so the
performance gap between TF32 and BF16 decreases when more GPUs are
employed. For 16 GPUs, TF32 is only 1.17 times slower than BF16, with
1.09 times better accuracy. The important conclusion is that the accuracy
behavior of the mixed precision solution with TF32 is practically the same as
that of the full precision option with FP32. At the same time, TF32 allows
us to speed up computations by about 1.25 times compared to FP32 across
the considered range of GPU numbers.

Below, we outline possible directions for future work. The first one involves
studying the feasible methods of increasing the effective batch size more system-
atically without decreasing training accuracy [3]. The second direction concerns
exploiting Al accelerators with alternative architecture, such as Intel Habana
Gaudi 2 and Gaudi 3 platforms [7]. The last direction has quite a different na-
ture. It relates to incorporating the power of large language models (LLMs) into
CFD simulations [28]. The efficient utilization of these models requires harness-
ing advanced HPC systems with accelerators.

Acknowledgements We gratefully acknowledge Polish high-performance com-
puting infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for providing
computer facilities and support within grant no. PLG/2024,/017422.
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