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Abstract. In this paper, we discuss MATLAB implementation of the
exponential integrators method employed for simulations of brain tu-
mor progression. As the input data, we utilize the publicly available
T1-weighted magnetic resonance imaging dataset ds003826, representing
healthy individuals. The data is originally stored using NIfTI format. We
randomly select one anonymized individual from the considered dataset.
We normalize the brain scan data using min-max normalization to a
range of 0 to 255. In the data from ds003826, the voxel resolution is not
isotropic in all directions, so we interpolate the data from dimensions
176×248×256 to 194×248×256 in order to have proper proportions of
the human brain. We set the data as a sequence of 256 PNG files with the
resolution of 194× 248. Having the MRI scan data, we run the exponen-
tial integrators method simulating the glioblastoma tumor growth using
the Fisher-Kolmogorov diffusion-reaction model with logistic growth. We
assume the initial tumor location and run the simulation predicting the
tumor growth two years forward. For the spatial discretization, we em-
ploy the finite difference method, and for the temporal discretization, we
use the ultra-fast exponential integrators method. Our simulator gener-
ates results suitable for visualization using the ParaView tool.

Keywords: T1-weighted magnetic resonance, MATLAB code, brain tu-
mor simulations, exponential integrators, Fisher-Kolmogorov diffusion-
reaction model with logistic growth, ParaView visualization

1 Introduction

In this paper, we present the EXPBrain code that performs simulations of the
glioblastoma brain tumor on the patient’s MRI scan data using the exponential
integrators method [1]. Glioblastoma is a malignant brain tumor with a high
mortality rate [2]. This tumor is highly aggressive, and it generates a microvas-
cular proliferation that is not visible on MRI scans [3]. Thus, computer-based
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simulations of the evolution of the brain tumor are essential in planning treat-
ment and surgery. The state-of-the-art three-dimensional finite element or finite
difference simulators are computationally intense [4–7], and the Physics Informed
Neural Networks simulators can deal well with two-dimensional simulations only
[8]. The exponential integrators considered in our code method allow for high-
speed and accurate simulations of time-dependent problems. We employ this
method to simulate the growth of a three-dimensional glioblastoma brain tu-
mor. Our exponential integrators method is based on the Fisher-Kolmogorov
diffusion-reaction equation with logistic growth [9].

The EXPBrain simulator presented here is a useful tool for modeling the fu-
ture growth of the brain tumor. Here we discuss some of the possible use cases.
One of the use cases of this tool is to produce compelling visualizations of the
tumor growth that can help patients understand the dangers of not undergoing
professional medical treatment. Another use case is to assist medical profes-
sionals in determining the possible directions of intense tumor growth. While it
should not be used as a determining factor in surgical decisions, it can highlight
the areas where the tumor is likely to grow more aggressively, thus indicating
the areas that should be studied more closely. In the future, after some modifica-
tions of the model, it can be used to incorporate treatment effects and improve
prediction accuracy.

In our research, we utilized a publicly available T1-weighted magnetic reso-
nance imaging dataset, named ds003826 [10], which consists of the collected data
from 136 healthy individuals. Their ages vary from 18 to 35 years. All the subjects
were scanned using a 3T scanner called Magnetom Skyra provided by Siemens
[11]. It uses a 20-channel or 64-channel head/neck coil. An MPRAGE sequence
was employed to obtain the T1-weighted images, using 176 sagittal slices with
1× 1× 1.1 millimeter cube [ mm3] voxel size, with TR = 2300 millisecond [ms]
and TE = 2.98 millisecond [ms]. Data from the dataset were originally saved in
NIfTI format. For our analysis, one anonymized subject was randomly selected
from the dataset. The data were then normalized using min-max normalization
to a range of 0 to 255, which enabled proper saving in PNG format. In the case
of our dataset ds003826, the voxel resolution was not isotropic in all directions,
so it was necessary to interpolate the data from dimensions 176× 248× 256 to
194×248×256 in order to maintain the brain proportions consistent with reality.
Finally, the randomly selected individual’s data was saved as a set of PNG files,
with each file corresponding to one axial slice of the brain.

We use the exponential Euler method, which is of the first order. We also
employ the routine presented in [12] for computing the action of the correspond-
ing φ-functions over the vector. The output from the simulation is stored in the
ParaView format for visualization. We test our code using the 256 slices with a
resolution of 194× 248 each, selecting the initial location of the tumor and sim-
ulating the tumor growth prediction two years forward. The numerical results
show that we can perform 100 iterations over 128 × 128 × 128 computational
mesh in less than 5 minutes on a single computing node from Athena computer
[13]. Thus, this simulator can be employed "on the fly".
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The alternative approach to this problem may utilize Physics Informed Neu-
ral Networks (PINNs), originally proposed by Karniadakis [14]. For instance, in
[8], PINNs instantiated for the brain tumor simulation can predict the future
behavior of the glioblastoma tumor evolution within one hour for the patient-
specific case. We employ the exponential time integrators [15–17] designed to
solve semilinear problems. While there are many brain tumor simulation meth-
ods, the originality of our method lies in the novel implementation using the
exponential integrators method. As far as the authors know, there is only one
work in the literature using the exponential integrators method to simulate the
tumor growth [18].

The efficiency comes from the fact that the exponential routines are extremely
efficient on operators coming from a semi-discretization in space employing finite
differences. Moreover, the exponential time integrators [1, 16, 17] are designed to
solve semilinear problems presented in this article. They are suitable for long-
time simulations, and they are unconditionally stable. The computational model
and numerical methods have already been described in detail in [19]. In this pa-
per, we focus on MATLAB implementation, its performance, and its limitations.

The structure of the paper is the following. In Section 2, we introduce the
finite difference spatial discretization for the Fisher-Kolmogorov brain tumor
model. In Section 3, we derive the exponential integrators method for temporal
discretization. The following Section presents the MATLAB code description,
including the software architecture and the installation manual. We summarize
the paper in Section 5, presenting exemplary numerical experiments. The con-
clusions are presented in Section 6. In the Appendix section, we provide some
code snippets (Appendix A) and a user guide to visualize the simulation results
in ParaView (Appendix B).

2 Finite differences

The simulation is based on the Fisher-Kolmogorov diffusion-reaction equation
with logistic growth,

∂u

∂t
= ∇ · (D(x)∇u)︸ ︷︷ ︸

Tumor cell diffusion

+ ρu(1− u)︸ ︷︷ ︸
Tumor cell proliferation

, in Ω × I,

∇u · n = 0, on ∂Ω × I,

u(x, 0) = u0, on Ω × {0},

(1)

where x = (x, y, z), u(x, y, z; t) represents the tumor cell density, D(x, y, z) is
the diffusion coefficient estimated for different materials based on the MRI scan
data, and ρ is the tumor cells proliferation rate (patient-specific).

We first semi-discretize (1) in space employing finite differences. Namely, we
introduce a regular grid with equidistant points in each spatial direction:

{xi,j,k = ((i− 1)h, (j − 1)h, (k − 1)h)}i=1,...,Nx;j=1,...,Ny ;k=1,...,Nz
, (2)
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and we represent the values of the tumor cell densities at these points and time
moment t as

{ut
i,j,k = u(xi,j,k; t)}i=1,...,Nx;j=1,...,Ny ;k=1,...,Nz

. (3)

We discretize the equation at time moment t using finite differences as follows:

∂ut
i,j,k

∂t
=
∂D(xi,j,k)

∂x1

∂ut
i,j,k

∂x1
+D(xi,j,k)

∂2ut
i,j,k

∂x2
1

+

∂D(xi,j,k)

∂x2

∂ut
i,j,k

∂x2
+D(xi,j,k)

∂2ut
i,j,k

∂x2
2

∂D(xi,j,k)

∂x3

∂ut
i,j,k

∂x3
+D(xi,j,k)

∂2ut
i,j,k

∂x2
3

+ ρut
i,j,k(1− ut

i,j,k),

(4)

with

∂ut
i,j,k

∂x1
=

ut
i+1,j,k − ut

i,j,k

h
,

∂ut
i,j,k

∂x2
=

ut
i,j+1,k − ut

i,j,k

h
,

∂ut
i,j,k

∂x3
=

ut
i,j,k+1 − ut

i,j,k

h
,

∂2ut
i,j,k

∂x2
1

=
ut
i+1,j,k − 2ut

i,j,k + ut
i−1,j,k

h2
,

∂2ut
i,j,k

∂x2
2

=
ut
i,j+1,k − 2ut

i,j,k + ut
i,j−1,k

h2
,

∂2ut
i,j,k

∂x2
3

=
ut
i,j,k+1 − 2ut

i,j,k + ut
i,j,k−1

h2
,

(5)

and we obtain the following system of semilinear Ordinary Differential Equations{
U̇(t) = AU(t) + F (U(t)), in I,

U(0) = U0,
(6)

where U(t) = {ut
i,j,k}i=1,...,Nx;j=1,...,Ny ;k=1,...,Nz

is the time-dependent vector
of the degrees of freedom in space. To derive the A operator, we simplify the
derivation, assuming ∂Di,j,k

∂xi
= 0,

∂ut
i,j,k

∂t
= D(xi,j,k)

ut
i+1,j,k − 2ut

i,j,k + ut
i−1,j,k

h2

+D(xi,j,k)
ut
i,j+1,k − 2ut

i,j,k + ut
i,j−1,k

h2

+D(xi,j,k)
ut
i,j,k+1 − 2ut

i,j,k + ut
i,j,k−1

h2
+ ρut

i,j,k(1− ut
i,j,k),

(7)
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and we group the terms

h2
∂ut

i,j,k

∂t
= −6D(xi,j,k)u

t
i,j,k +D(xi,j,k)u

t
i−1,j,k

+D(xi,j,k)u
t
i,j−1,k +D(xi,j,k)u

t
i,j,k−1

+D(xi,j,k)u
t
i+1,j,k +D(xi,j,k)u

t
i,j+1,k

+D(xi,j,k)u
t
i,j,k+1 + h2ρut

i,j,k(1− ut
i,j,k),

(8)

The entries of matrix A are

Ai,j,k;l,m,n =



−6D(xi,j,k), (i, j, k) == (l,m, n),

D(xi−1,j,k), (l,m, n) ∈ {(i− 1, j, k), (i+ 1, j, k),

(i, j − 1, k), (i− 1, j + 1, k),

(i− 1, j, k − 1), (i− 1, j, k + 1)},
0, otherwise.

(9)

We employ {1, ..., Nx} × {1, ..., Ny} × {1, ..., Nz} ∋ (i, j, k) → global(i, j, k) =
i+(j− 1)Ny +(j− 1)(k− 1)NyNz as the mapping from the integer coordinates
into the global rows / columns numbering. The F operator is given by F (U(t)) =
ρU(t)(1− U(t)).

3 Exponential integrators

For the time discretization, we consider a uniform partition of the time interval
as

0 = t0 < t1 < . . . < tN−1 < tN = T, (10)

we define In = (tn, tn+1) and τ = tn+1 − tn, ∀n = 0, . . . , N − 1. Let Un be the
numerical approximation of the solution of (6) at tn, we know that the integral
representation of the solution of (6) at tn+1, also known as the variation-of-
constants formula, reads

Un+1 = eτAUn + τ

∫ 1

0

e(1−θ)τAF (U(tn + τθ))dθ. (11)

Different approximations of the nonlinear term in (11) lead to different expo-
nential time integration methods [15]. All these methods are expressed in terms
of the so-called φ-functions defined as

φ0(z) = ez,

φp(z) =

∫ 1

0

e(1−θ)z θp−1

(p− 1)!
dθ, ∀p ≥ 1,

(12)

which satisfy the following recurrence relation

φp+1(z) =
1

z

(
φp(z)−

1

p!

)
. (13)
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Here, we will focus on the simplest exponential integrator method, the Ex-
ponential Euler method, which is first order in time. For higher-order methods,
we refer to [15, 16]. For that, we approximate in (11) the non-linear term with
its value at tn that is known, i.e., F (U(tn + τθ)) ≈ F (Un). Integrating exactly
in (11), we obtain

Un+1 = φ0(τA)Un + τφ1(τA)F (Un), (14)

which is given in terms of the φ-functions (12). Finally, employing the recurrence
formula (13), we rewrite (14) as

Un+1 = Un + τφ1(τA)(F (Un) + τAUn). (15)

For the numerical results, we employ the MATLAB routines from [12] for com-
puting the action of φ-functions over vectors. In these routines, the authors
employ the scaling and squaring method together with a truncated Taylor se-
ries approximation to the exponential of a matrix. As we show in the numerical
results, these routines applied to operator τA coming from finite difference semi-
discretization in space are extremely efficient. Moreover, exponential integrators
are suitable for long-time simulations as they are unconditionally stable.

Thus, in the exponential integrators method we compute the sequence

U1 = U0 + τ

∫ 1

0

e(1−θ)(τA)dθ(ρU0(1− U0) + τAU0),

U2 = U1 + τ

∫ 1

0

e(1−θ)(τA)dθ(ρU1(1− U1) + τAU1),

· · ·

Un+1 = Un + τ

∫ 1

0

e(1−θ)(τA)dθ(ρUn(1− Un) + τAUn).

(16)

4 Software description

The EXPBrain code runs the exponential integrator simulations of the glioblas-
toma tumor growth within the 3D domain. The code parameters are described in
Table 1. The dimensions of the domain x2−x1, y2− y1, z2− z1 [mm] define the
human head size. The code allows the simulation to be performed within a pre-
scribed time interval, starting from t0 and ending at the final time moment T . It
assumes initial brain tumor location at point xic, yic, zic [mm]. The exponential
integrators simulation in time is based on the finite difference approximation in
space using the computational mesh with nelx, nely, nelz elements.

The simulation is performed within the human head model based on MRI
scan data loaded into the directory brain_scan out_*.png.

The simulation output is a sequence of ParaView files generated into the
directory paraview_files tumor_*.vti.
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Parameter Description
rho = 0.025; tumor proliferation rate
x1 = 0; y1 = 0; z1 = 0; left-front-bottom domain corner
x2 = 193; y2 = 193; z2 = 193; right-rear-top domain corner
t0 = 150; initial time moment
T = 750; final time moment
steps=100; number of time steps
tau = (T − t0)/steps; time step size
xic = 102; yic = 138; zic = 96; initial location of tumor
nelx = 32; nely = 32; nelz = 32; number of mesh elements
hx, hy, hz element diameters
hx2, hy2, hz2 element diameters squared
nx = nelx+ 1; ny = nely + 1; nz = nelz + 1; number of grid points

Table 1: Code parameters

4.1 Software architecture

The software metadata are summarized in Table 2. The primary executable is
Tumor_growth_3D.m file. First, in the Initializing step, the simulation param-
eters are initialized as described in Table 1.

Nr. Code metadata description Please fill in this column
C1 Current code version v1
C2 Permanent link to code/repository used for

this code version
https://github.com/Magdamini/EXPBrain

C4 Legal Code License GNU General Public License (GPL)
C5 Code versioning system used git
C6 Software code languages, tools, and services

used
Matlab, ParaView.

C7 Compilation requirements, Matlab,
operating environments & dependencies https://github.com/higham/expmv/expmv.m,

normAm.m,
select_taylor_degree.m,
select_taylor_degree.m,
theta_taylor.mat,
theta_taylor_half.mat,
theta_taylor_single.mat

C9 Support email for questions maciej.paszynski@agh.edu.pl
Table 2: Code metadata

Next, the Reading MRI scan step calls the get_diffusion3d(nx,ny,nz) routine
that reads the MRI scan data and sets the diffusion coefficient for white matter,
gray matter, cerebrospinal fluid, air, and bones. The routine assumes that the
MRI scan provides 256 bitmaps of 194× 248 pixels (this step can be adjusted to
another MRI scan resolution in the routine if needed).
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The Generating finite difference matrix step constructs a finite difference
discretization in space with nx, ny, nz elements. The finite difference matrix A is
created. The initial tumor configuration is set up with xc, yc, and zc coordinates.

Next, the Setting up exponential integrators step decides on the number of
time steps, and their time length tau.

The Computing exponential integrators step runs the numerical simulation,
followed by pumping out the ParaView files in write_solution_to_files routine.

4.2 Code installation and usage

The code can be downloaded from repository
https://github.com/Magdamini/EXPBrain
(available under GNU General Public License (GPL))

The code is implemented in Matlab and uses the ParaView tool for visualizations.
It requires Matlab and the following libraries (included in the GitHub repository)

https://github.com/higham/expmv/expmv.m,
https://github.com/higham/expmv/normAm.m,
https://github.com/higham/expmv/select_taylor_degree.m,
https://github.com/higham/expmv/select_taylor_degree.m,
https://github.com/higham/expmv/theta_taylor.mat,
https://github.com/higham/expmv/theta_taylor_half.mat,
https://github.com/higham/expmv/theta_taylor_single.mat

5 Illustrative examples

The exemplary MRI scan data files are presented in Figure 1. There are 256 scans
with a resolution of 194× 248 pixels. Running the EXPBrain code starting from
t0 = 150 for 100-time steps until time moment T = 750, using 128×128×128 fi-
nite difference mesh with the initial location of tumor defined as xic = 102; yic =
138; zic = 96; produces a sequence of output ParaView files, illustrated in Figures
2-3. The exponential integrators simulation takes 287 [s] (less than 5 minutes)
on a single node from Athena supercomputer [13]. It predicts two years of tumor
evolution.

6 Conclusions

– The EXPBrain code performs ultra-fast simulations of the glioblastoma
brain tumor on the patient’s MRI scan data. It can predict two years of
future brain tumor growth within 5 minutes on a single computing node,
including the generation of output Paraview files. In comparison, alternative
highly efficient simulators using finite difference or finite element method
for the tumor growth simulations take several minutes to compute a single
time step [4–7]. The high performance of our method comes from the fact
that the exponential routines are very efficient on operators coming from a
semi-discretization in space employing finite differences.
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Fig. 1: MRI scans of the human head.

– Fast tumor growth simulators are crucial for patient-specific modeling. Tu-
mor growth models include several patient-specific parameters. Hence, accu-
rate data assimilation techniques fitting model parameters to patient-specific
data would require several runs of the simulator [20, 21]. The EXPBrain sim-
ulator can be employed in data assimilation algorithms [20, 21] to assimilate
the model parameters, such as the diffusion coefficient D specific for each
kind of tissue (describing how the tumor cells expand in a tissue, similarly
to the diffusion phenomena), and the proliferation rate of the tumor cells ρ
(how fast they multiply).

– The EXPBrain simulator could be used by medical doctors to predict the
future progression of brain tumor cells for up to two years.

– The future work will attempt to develop the adaptive version of the expo-
nential integrators software [22–25].
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Fig. 2: Glioblastoma brain tumor simulation with exponential integrators
method.
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Fig. 3: Glioblastoma brain tumor simulation with exponential integrators
method. Cross-section of the head.
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Appendix

A Sample code snippets analysis

The simulation starts from the initially assumed configuration u0(x, y, z) of the
brain tumor cells. It generates a sequence of ParaView files, allowing for the
generation of a sequence of pictures or a movie from the simulation.
The spatial discretization utilizes the finite difference method.

for i = 2:nx -1
for j = 2:ny -1

for k = 2:nz -1
l = i + (j-1)*nx + (k-1)*nx*ny;
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values(idx) = (diff(i+1,j,k)-diff(i,j,k))/
hx2

+ 2.0 * diff(i,j,k)/hx2
+ (diff(i,j+1,k)-diff(i,j,k))/hy2
+ 2.0 * diff(i,j,k)/hy2
+ (diff(i,j,k+1)-diff(i,j,k))/hz2
+ 2.0 * diff(i,j,k)/hz2;

row_idx(idx) = l; col_idx(idx) = l;
values(idx + 1) = - diff(i,j,k)/hx2;
row_idx(idx + 1) = l; col_idx(idx + 1) = l

-1;
values(idx + 2) =

(- diff(i+1,j,k)+diff(i,j,k))/hx2
- diff(i,j,k)/hx2;

row_idx(idx + 2) = l; col_idx(idx + 2) = l
+1;

values(idx + 3) = - diff(i,j,k)/hy2;
row_idx(idx + 3) = l; col_idx(idx + 3) = l

-nx;
values(idx + 4) = (-diff(i,j+1,k)+diff(i,j

,k))/hy2
- diff(i,j,k)/hy2;

row_idx(idx + 4) = l; col_idx(idx + 4) = l
+nx;

values(idx + 5) = - diff(i,j,k)/hz2;
row_idx(idx + 5) = l; col_idx(idx + 5) = l

-nx*ny;
values(idx + 6) =
( -diff(i,j,k+1)+diff(i,j,k))/hz2
- diff(i,j,k)/hz2;

row_idx(idx + 6) = l; col_idx(idx + 6) = l
+nx*ny;

idx = idx + 7;
end

end
end
% Create the sparse matrix A
A = sparse(row_idx (1:idx -1), col_idx (1:idx -1),

values (1:idx -1), nx*ny*nz, nx*ny*nz);

The exponential integrators simulation is very elegant

%Time grid and step size
fprintf("Setting up exponential integrators ...\n");
steps = 100;
tau = (T-t0)/steps;
t = t0:tau:T;

%Exponential Euler method
fprintf("Computing exponential integrators ...\n");
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U = zeros(dimx ,steps +1);
U(:,1) = U0;
for i = 1: steps

Fu = rho*U(:,i).*(1-U(:,i));
U(:,i+1) = U(:,i)+tau*phiB(-tau*A,Fu-A*U(:,i));
show_progress(i, steps);

end
write_solution_to_files;

it includes phiB routine from https://github.com/higham/expmv library, per-
forming fast exponential integrators operations.

B Paraview software user guide

After running the computations, the code generates a sequence of *.vti files [26].
To visualize computed data, open the ParaView application [27, 28]. Then click
“Open” from the “File” menu in the upper left corner. Choose the file brain.vti.
It should be in the paraview_files directory. Once the file is selected, click the
“OK” in the dialog box. To display the data, in the “Properties” tab, click the
green “Apply” button and set the representation to “Volume”. After this step, the
brain image should be visible on the screen. Then, repeat the above instructions
to open files containing tumor data. When opening those files, Paraview should
see them as a group of files named tumor_..vti and open them all at once.
After setting up those files, choose the brain.vti file in the “Pipeline Browser”.
Then focus on the right tab, named “Color Map Editor”. Find the bar “Select a
color map from default presets” or the small icon with a heart and choose one
of the proposed color maps. Use the slider to decrease the opacity. Now, both
tumor and brain data should be visible on the screen. Use the mouse to rotate
the image. To display (or hide) the scale, select the chosen object and click on
the colorful “Toggle Color Legend Visibility” icon in the upper left corner. To
start the animation, choose the tumor_1.vti file, and on the right bar, set the
“Automatic Rescale Range Mode” to “Grow and update every timestep”. Then
click the play button in the top part of the window. The tumor image can also
be seen at a particular time. To visualize it, change the time option next to the
play button and adjust the scale by clicking the “Rescale to Data Range” button.
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