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Abstract. The Petrov-Galerkin (PG) method is a robust alternative to
the Galerkin method for finite element simulations of challenging partial
differential equations (PDEs). The solution of the Galerkin method is
obtained from the linear system Bx = F resulting from discretization of
trial and test spaces. Although the Galerkin method enforces the equal-
ity of trial and test spaces (Uh = Vh) and relies on the inf-sup stability
condition to ensure solution accuracy, it often fails for difficult problems
where the discrete inf-sup constant αh significantly deviates from the
abstract inf-sup constant α. This discrepancy leads to numerical insta-
bility and incorrect solutions. The PG method addresses this by allowing
distinct trial and test spaces (Uh ̸= Vh), enabling the selection of test
functions that improve the discrete inf-sup constant αh. Of particular in-
terest is the Petrov-Galerkin method with optimal test functions (PGO),
where the test functions are computed to maximize αh, ensuring stable
solutions even for ill-conditioned problems. The PGO method modifies
the discrete test space to approximate the abstract stability properties
as closely as possible. The computation of optimal test functions involves
solving GW = B, where B is the Galerkin matrix, and G is the Gram
matrix of the test space’s inner product. Solving BTWx = WTF then
yields a stable solution. However, the added computational cost of invert-
ing G−1 poses a significant overhead. In this work, we propose a novel
approach that leverages deep neural networks (DNNs) to approximate
the inverse of the Gram matrix for a class of advection-diffusion problems
with variable diffusion coefficients. By training the DNN to predict G−1,
we eliminate the computational overhead of matrix inversion, enabling
efficient and stable solutions of PDEs. Our results demonstrate the effec-
tiveness of the DNN-enhanced PGO method in maintaining stability and
accuracy, even for difficult computational problems where the standard
Galerkin method fails. This approach represents a significant advance-
ment in the practical applicability of the Petrov-Galerkin framework for
solving complex PDEs.
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1 Introduction

Petrov-Galerkin (PG) method [1,4,13,11] is an alternative to the Galerkin method
for performing finite element simulations of difficult Partial Differential Equa-
tions (PDE). In the Galerkin method, we consider the weak formulation of the
PDE, reading: Find u ∈ U such that b(u, v) = l(v) for all v ∈ V . For the problems

that are bounded b(u, v) ≤ α∥u∥U∥v∥V and inf-sup stable infu∈Usupv∈V
b(u,v)
∥v∥∥u∥ =

α > 0 there exists a unique ”stable” solution. On the discrete level, e.g. using the
B-spline basis functions discretization from isogeometric analysis (IGA) [7,3], in
the Galerkin method, the trial and the test spaces are considered to be equal
Uh = Vh, and they generate the system of linear equations Bx = F . The inf-sup
condition on the discrete level, where we have replaced the infinite dimensional
trial and test spaces U, V by their discrete counterparts Uh, Vh may not be ful-

filled, namely infu∈Usupv∈V
b(u,v)
∥v∥∥u∥ = α > αh = infuh∈Uh

supvh∈Vh

b(uh,vh)
∥vh∥∥uh∥ . Let

µ be the continuity constant b(u, v) ≤ µ∥u∥U∥v∥V . In this case µ
αh

> µ
α ≥ 1

and we can get incorrect ”unstable” solutions. However, in the Petrov-Galerkin
method, the trial and test spaces can be different, and the discrete inf-sup con-
stant can be ”better”. Of our particular interest is the Petrov-Galerkin method
with the optimal test functions (PGO). In the PGO method, we compute the
optimal test functions that allow us to obtain correct solutions even for difficult
computational problems. We modify the discrete test space, so we get the dis-
crete inf-sup constant αh as close to the abstract inf-sup constant α as possible,
using these spaces. The matrix of coefficients of the optimal test functions W
can be computed by solving GW = B, or W = G−1B, where B is the discrete
Galerkin problem matrix, and G is the Gram matrix of the inner product for
which we can prove that our weak formulation is inf-sup stable. Having the ma-
trix of the coefficients of the optimal test functions, we solve BTWx = WTF
which provides a ”stable” solution. In other words, the PGO method allows
one to obtain a correct solution of difficult ”unstable” problems, for which the
Galerkin method results in incorrect ”unstable” solutions. The overhead of us-
ing the Petrov-Galerkin method is the cost of inverting the Gram matrix G.
In this paper, for a class of advection-diffusion problems with variable diffusion
coefficients, we train the Deep Neural Network (DNN) the inverse of the Gram
matrix. Using this DNN, we can obtain stable solution of our PDE without the
additional overhead, just by asking the DNN for the inverse of the Gram matrix.

In our previous work [15,16] we have trained the neural network the matrix of
the coefficients of the optimal test functions W. However, having the inverse of
the Gram matrix is more useful, since it can be applied to directly compute the
coefficients of the optimal test functions for finite element method computations,
as well as it can be applied to obtain the robust loss function in the Robust
Variational Physics Informed Neural Networks (RVPINN) [14]. DNNs have been
used to augment the mesh-based simulations, supporting automatic selection
of mesh refinements [12,17] in the finite element method setup [5], or training
the Variational PINN solution using test functions span over the computational
mesh [8,14].
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The structure of the paper is the following. In Section 2 we introduce a
family of exemplary advection-diffusion problems, including the B-spline based
discretization. Section 3 describes the design and training of the neural net-
work. Section 4 presents exemplary numerical results. The paper is concluded in
Section 5.

2 Problem formulation

We focus on the advection-diffusion problem: Given Ω = (0, 1)2 ⊂ R2 we solve

β · ∇u(x1, x2) −∇ · (ϵ (x2)∇u(x1, x2)) = f(x1, x2) (1)

with the sin(Πx2) Dirichlet b.c. on the left boundary, and the arbitrary right-
hand side functions f(x1, x2). Here β = (βx, βy) = (1, 0) is the assumed ad-
vection vector, and ϵ has a non-constant distribution. Namely, We assume the
following five layers in the computational domain, where we vary the diffusion
coefficient arbitrarily from (1, 10). The exemplary setup of the computational
domain is illustrated in Figure 1.

Fig. 1: The sample body in consideration.

The weak formulation of the problem: Find uh ∈ Uh such that b(uh, vh) =
l(vh), ∀vh ∈ Vh reads

b(u, v) = βx

(
∂u

∂x
, v

)
Ω

+ βy

(
∂u

∂y
, v

)
Ω

+

(
ϵ
∂u

∂x
,
∂v
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)
Ω

+

(
ϵ
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Ω

−
(
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)
Γ

−
(
ϵ
∂u

∂y
ny, v

)
Γ

(2)

where n = (nx, ny) is the versor normal to Γ = ∂Ω, and

l(v) = (f, v) . (3)
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We discretize with B-spline basis functions. For example, let us consider the
discretization with B-spline basis functions with knot vectors and knot points.

knot x = knot y = [0 0 0 1 2 3 4 5 6 7 8 8 8];

points x = points y = [0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1];

The basis functions along x axis are obtained by introducing knot points
ξi = points x[knotx[i] + 1] into the recursive formula (8),

Bi,0(ξ) = 1 if ξi ≤ ξ ≤ ξi+1, otherwise 0,

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi
Bi+1,p−1(ξ),

(4)

for the order p defined as the number of repetitions of the first knot x[1] minus
one, assuming that the subsequent knots inserted into the denominator must be
different, and if they are not different, then the given term is changed to zero.
Similarly, the basis functions along y axis are obtained by introducing knot points
ξi = points y[knoty[i] + 1] into the recursive formula (5). The two-dimensional
basis functions are obtained by the tensor products of the one-dimensional basis.

{Bxy
ij,p(x, y) = Bx

i,p(x)By
j,p(y)}i=1,...,Nx;j=1,...,Ny (5)

In the Galerkin method these basis functions define the trial and test spaces.
The problem matrices are defined as follows

Bn,m =

(
∂Bx

i,p

∂x
By

j,p, B
xy
kl,p

)
Ω

+ ϵ

(
∂Bx

i,p

∂x
By

j,p,
∂Bx

k,p

∂x
By

l,p

)
Ω

+ϵ

(
Bx

i,p

∂By
j,p

∂y
,Bx

k,p

∂By
l,p

∂y

)
Ω

,

(6)

where n = i + (j − 1)Ny, m = k + (l − 1)Ny, and the right-hand side vector is

fm = −
(

(f(x, y), Bxy
kl,p

)
Ω
. (7)

To deliver the Petrov-Galerkin formulation with the optimal test functions, we
need to compute the matrix of coefficients of the optimal test functions W by
solving the system of equations GW = B (see [6,18,2]). Here G is the Gram
matrix of selected inner product, namely

Gn,m =
(
Bxy

ij,p, B
xy
kl,p

)
Ω

+

(
ϵ
∂Bx

i,p

∂x
By

j,p,
∂Bx

k,p

∂x
By

l,p

)
Ω

+

(
ϵBx

i,p

∂By
j,p

∂y
,Bx

k,p

∂By
l,p

∂y

)
Ω

,

(8)

For efficient solution of the system GW = B we need to compute the inverse of
G−1. Having the matrix of the coefficients of the optimal test functions W =
G−1B, we can solve the stabilized problem BTWx = WTF .
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3 Application of Deep Neural Networks

We apply Deep Neural Networks as the expert providing the inverse of the
Gram matrix for the given configuration of the diffusion parameters. The ex-
emplary structure of the Gram matrix G is presented in Figure 2. The Gram
matrix is sparse. The selected structure of the neural network is presented in
Figure 3. Although the choice of an optimal DNN architecture is typically ex-
perimental at the beginning, the selection process resembles approaches used in
genetic algorithms. We systematically explore various architectures, evaluating
them through validation metrics after training for a limited number of epochs.
The architectures tested differ in depth, width, and activation function types.
Subsequently, the most promising architectures undergo fine-tuning and further
validated. For this problem we applied different combinations of the feed forward
neural networks, with different numbers of neurons 4, 6, 8, 12, 15, 32, 64, different
loss functions, and activation functions. The most promising was the neural net-
work with 4 hidden layers with 32, 12 , 64, and 32 neurons receptively. The
input layer consists of the five ϵi, i = 1, 2, 3, 4, 5 values describing the diffusion
coefficients on the layers of the domain, from the top layer to the bottom layer.
The last output layer has the dimension of 100 × 100 and give the whole inverse
matrix G−1 assuming the quadratic B-splines span over eight intervals for the
discretization. We employ the ReLU activation functions in hidden layers and we
use mean squared error as the loss function. The dataset consists of 3125 (= 55)

Fig. 2: The sample of calculated G matrix (size 100×100 ), for the computational
mesh with 10 × 10 quadratic B-spline basis functions in each direction.

diffusion records on the input (they are all the combinations of 1, 2.5, 5, 7.5 and
10 diffusion coefficients spanning over the five uniform layers) and the computed
inverse matrices G−1, obtained by generating the Gram matrix with given dif-
fusion coefficients and inverting the matrix. The input for the neural network
is (continuous) not categorical; thus, we can calculate the value for any epsilon
from the interval [1, 10]. The proposed architecture was trained and validated for
the same dataset. The explanation for this approach is that we want the neural
network to be the approximation of the data, so we want it to be overfitted to
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Fig. 3: The neural network architecture.

Fig. 4: Learning procedure for the feed forward neural network with 32, 12 ,64,
32 neurons. The learning process consists of 20000 epochs with mean squared
error as the loss function.
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perform the task well. In contrast to the classification or segmentation problems
performed by the deep learning approach, our approach did not require the need
to perform some generalization task that is needed to classify the new data. Here
in our problem, we have to consider that we have mid steps in output between
every known target output - continuous elements of the input have direct and
smooth impact for the continuity/nonlinearity change of the target matrix. We
consider the neural network expert to be as the black box function that can
generate the inverse matrix. The neural network training is presented in Figure
4. We performed 20,000 iterations using the ADAM algorithm [9]. On the first

panel in Figure 4 we present the relative error
∑

i,j

|G−1
i,j−G−1

i,j |
|G−1

i,j |
where G−1 is the

Gram matrix computed exactly, and the G−1 is the Gram matrix estimated
by the neural network. On the second panel we present the MSE loss function
defined as

∑
i,j |G

−1
i,j − G−1

i,j |.
The primary advantage of employing DNNs to approximate the inverse Gram

matrix arises during the online phase (runtime) of solving PDEs. While the of-
fline phase (training the DNN) involves additional computational overhead, it is
performed once and remains valid across multiple simulations. During the run-
time phase, the trained DNN rapidly approximates the inverse Gram matrix,
significantly reducing the computation time compared to the direct inversion
method. Specifically, direct inversion of the Gram matrix has a computational
complexity of approximately O(n3) for matrices of size n, whereas a forward pass
through the trained neural network is significantly cheaper (typically O(n2) or
better depending on architecture and parallelization), thus dramatically improv-
ing computational efficiency.

4 Numerical results

In this section, we verify the trained neural network by considering five dif-
ferent configurations of the diffusion coefficients in layers of the computational
domain. They are presented on the first panel in Figure 5 (five uniform lay-
ers {1, 10, 2.5, 7.5, 10}), on the first panel in Figure 7 (two layers {10, 1}, span
over 2/5 and 3/5 of the domain), on the first panel in Figure 9 (three layers
{10, 2.5, 1}, span of 1/5, 1/5, and 3/5 of the domain), on the first panel in Fig-
ure 11 (four layers {1, 2.5, 7, 1} span over 1/5, 1/5, 1/5 and 2/5 of the domain),
on the first panel in Figure 13 (three layers {1, 2.5, 1}, span over 3/5, 1/5 and
1/5 of the domain), and on the first panel in Figure 15 (one uniform layer with
ϵ = 1). In the right panels of Figures 5, 7, 9, 11, and 13 there are the inverse
Gram matrices G−1 as obtained from the neural network. In general, we can see
the symmetric layered structure of the inverse of the Gram matrix. For each con-
sidered case, we generate the Gram matrix G exactly, and we compute G−1G
that is supposed to be equal to the identity matrix I if the neural networks pro-
vided correct result. On the first panel of Figures 6, 8, 10, 12, 14, and 16, we
present the inverse of the Gram matrix corresponding to the configuration from
Figures 5, 7, 9, 11, 13, and 15, respectively. On the second panel in Figures 6, 8,
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10, 12, 14, and 16 we present the result of the multiplication G−1G ≈ I. On the
third panel of the Figures, we present the zoom towards the inverse matrix using
the logarithmic scale (cropped to interval [0, 0.1]) that is focused on showing the
tiny differences in the small values).

Fig. 5: The computational domain with diffusion coefficients in five uniform layers
{1, 10, 2.5, 7.5, 10} (left panel) and the calculated inverse of the Gram matrix
G−1 (right panel).

Fig. 6: The predicted inverse matrix (first panel), the result of G−1G ≈ I (sec-
ond panel), and the logarithmic zoom towards the approximation of the inverse
matrix (third panel). The computations for the computational domain with dif-
fusion coefficients in five uniform layers {1, 10, 2.5, 7.5, 10}.

As we see in the numerical results, the predicted inverse of the Gram matrix
G−1 is well recreated. The only difference is if we look closely at the values in
the computation of the eye of the identity matrix. The other values that are
supposed to be equal to 0 are very well approximated.

Our trained DNN has shown good generalization capabilities across differ-
ent diffusion coefficients and moderately varying material settings within the
considered class of problems and range of values for material setting. However,
extensive variations in problem parameters (such as drastic changes in mate-
rial properties, geometry, or boundary conditions) require retraining or even a
different architecture.
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Fig. 7: The computational domain with diffusion coefficients in two layers {10, 1},
span over 2/5 and 3/5 of the domain (left panel) and the calculated inverse of
the Gram matrix G−1 (right panel).

Fig. 8: The predicted inverse matrix (first panel), the result of G−1G ≈ I (sec-
ond panel), and the logarithmic zoom towards the approximation of the inverse
matrix (third panel). The computations for the computational domain with dif-
fusion coefficients in two layers {10, 1}, span over 2/5 and 3/5 of the domain.

Fig. 9: The computational domain with diffusion coefficients in three layers
{10, 2.5, 1}, span of 1/5, 1/5, and 3/5 of the domain (left panel) and the calcu-
lated inverse of the Gram matrix G−1 (right panel).

5 Conclusions

We have shown that it is possible to efficiently train the neural network the
inverse of the Gram matrix. This inverse of the Gram matrix can be applied
for the computation of the matrix of coefficients of the optimal test functions
W = G−1B, and this matrix is independent on the right-hand side vector F .
Additionally, in the novel Robust Variational Physics Informed Neural Network
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Fig. 10: The predicted inverse matrix (first panel), the result of G−1G ≈ I
(second panel), and the logarithmic zoom towards the approximation of the
inverse matrix (third panel). The computations for the computational domain
with diffusion coefficients in three layers {10, 2.5, 1}, span of 1/5, 1/5, and 3/5
of the domain.

Fig. 11: The computational domain with diffusion coefficients in four layers
{1, 2.5, 7, 1} span over 1/5, 1/5, 1/5 and 2/5 of the domain (left panel) and
the calculated inverse of the Gram matrix G−1 (right panel).

Fig. 12: The predicted inverse matrix (first panel), the result of G−1G ≈ I
(second panel), and the logarithmic zoom towards the approximation of the
inverse matrix (third panel). The computations for the computational domain
with diffusion coefficients in four layers {1, 2.5, 7, 1} span over 1/5, 1/5, 1/5 and
2/5 of the domain.

method [14] this matrix can be employed to obtain the robust loss function, by
multiplication of the residual vectors, namely REST (uθ)G−1RES(uθ). Similar
inverse of the Gram matrix can be also employed for making the loss functon of
the collocation-based RVPINN robust [10]. The inverse of the Gram matrix ob-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_9

https://dx.doi.org/10.1007/978-3-031-97554-7_9
https://dx.doi.org/10.1007/978-3-031-97554-7_9


Augmenting PG method with optimal test functions by DNN 11

Fig. 13: The computational domain with diffusion coefficients in three layers
{1, 2.5, 1}, span over 3/5, 1/5 and 1/5 of the domain (left panel) and the calcu-
lated inverse of the Gram matrix G−1 (right panel).

Fig. 14: The predicted inverse matrix (first panel), the result of G−1G ≈ I (sec-
ond panel), and the logarithmic zoom towards the approximation of the inverse
matrix (third panel). The computational domain with diffusion coefficients in
three layers {1, 2.5, 1}, span over 3/5, 1/5 and 1/5 of the domain.

Fig. 15: The computational domain with uniform diffusion coefficient ϵ = 1 (left
panel) and the calculated inverse of the Gram matrix G−1 (right panel).

tained from neural networks allows obtaining high numerical accuracy results, as
presented in Figure 17 for the Petrov-Galerkin formulation. There are some local
variations of the concentration field resulting from local layers of the diffusion.
The presented approach can be generalizable to other convection-diffusion prob-
lems and potentially other classes of PDEs beyond the isogeometric formulation
considered here. The key requirement is the availability of representative train-
ing datasets that capture the essential variability of the Gram matrix inverses
for the new problem class. Adapting our methodology to other Galerkin formu-
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Fig. 16: The predicted inverse matrix (first panel), the result of G−1G ≈ I
(second panel), and the logarithmic zoom towards the approximation of the
inverse matrix (third panel). The computational domain with uniform diffusion
coefficient ϵ = 1.

lations is straightforward in principle, as the DNN-based approximation does
not fundamentally depend on the specific basis type or discretization method,
provided the Gram matrices exhibit similar structural properties. Extending the
proposed method to other PDE formulations involves primarily generating suit-
able training data sets from the target PDE and retraining the neural network
accordingly.

Fig. 17: The solutions of the advection-diffusion problem with ϵ maps from Fig-
ures 5, 7, 9, 11, 13, and 15, obtained with Petrov-Galerkin formulation using the
inverse of the Gram matrix as provided by the neural network.
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