
Introducing B-spline basis functions in neural

network approximations

Maciej Sikora1[0009−0006−4465−2395], Kamil Dolegªo1,
Anna Paszy«ska2[0000−0002−0716−0619], and
Maciej Paszy«ski1[0000−0001−7766−6052]

1AGH University of Krakow, Poland
maciej.paszynski@agh.edu.pl

2Jagiellonian University, Krakow, Poland

Abstract. In the �nite element method (FEM), the solutions of Partial
Di�erential Equations (PDEs) are approximated using linear combina-
tions of prescribed basis functions. The coe�cients of the linear combi-
nations are obtained by solving a system of linear equations. The FEM
allows for the solution of a PDE for �xed values of the PDE param-
eters. It is not possible to obtain "at once" the family of solutions of
parametric PDEs using FEM. We proposed to introduce B-spline basis
functions into neural network approximations, where the coe�cients of
the basis functions used to approximate the solution are predicted by
a neural network. Direct approximation of B-spline coe�cients by NN
has several advantages compared to standard FEM. First, it allows us to
obtain a family of solutions of the parametric PDE "at once". The PDE
parameters are input to the neural network, and the output involves the
coe�cients of the basis functions. Second, it allows obtaining the solution
of a parametric PDE without the construction and solution of a system
of linear equations. Third, since neural networks are universal approxi-
mators, direct approximation of B-spline coe�cients by NN may �nd a
dependence between the PDE parameters and the coe�cients of the basis
functions used to approximate the solution. The training of our method
requires learning the dependence between the PDE parameters and the
basis functions' coe�cients. The approximations of B-spline coe�cients
by NN inherit all the features of standard FEM approximations.

Keywords: Finite Element Method, Isogeometric Analysis, Deep Neu-
ral Networks, Partial Di�erential Equations

1 Introduction

The classical way of solving PDEs numerically is based on the Finite Element
Method (FEM). In FEM, we approximate the solution of the PDE by using
a linear combination of the prescribed basis functions. The coe�cients of the
basis functions are obtained by solving a system of linear equations. The most
accurate version of the FEM employs higher-order and continuity B-spline basis
functions [9, 14, 2].
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The neural networks are the universal approximators [8]. They can success-
fully replace or support the FEM computations. Recently, there has been a
growing interest in the design and training of neural networks for solving PDEs
[4, 13, 3, 16]. The most popular method for training the DNN solutions of PDEs
is Physics Informed Neural Networks (PINN) [19]. Since its introduction in 2019,
there has been exponential growth in the number of papers and citations related
to them (Web of Science search for "Physics Informed Neural Network"). It
forms an attractive alternative for solving PDEs in comparison with traditional
solvers such as the Finite Element Method (FEM) or Isogeometric Analysis
(IGA). Physics Informed Neural Network proposed in 2019 by Prof. Karniadakis
revolutionized the way in which neural networks �nd solutions to initial-value
problems described by means of partial di�erential equations [19] Karniadakis
has also proposed Variational Physics Informed Neural Networks VPINN [10].
VPINNs use the loss function with a weak (variational) formulation. In VPINN,
we approximate the solution with a DNN (as in the PINN), but during the train-
ing process, instead of probing the loss function at points, we employ the test
functions from a variational formulation to average the loss function (to average
the PDE over a given domain). Karniadakis also showed that VPINNs could
be extended to hp-VPINNs (hp-Variational Physics Informed Neural Networks)
[11, 20], where by means of hp-adaptation (h-adaptation is breaking elements,
and p-adaptation is raising the degrees of base polynomials) it is possible to
solve problems with singularities. The incorporation of the domain decomposi-
tion methods into VPINNs is also included in the RAR-PINN method [18]. In
conclusion, a family of PINN solvers based on neural networks has been devel-
oped, ranging from PINNs, VPINNs, and hp-VPINNs to RAR-PINNs.

The parametric PDEs are of great interest to the research community. The
PDEs depend on several model parameters. One set of parameters instantiates
the PDEs and results in one solution. Ideally, we would like to compute a family
of solutions of the parametric PDEs, the functions of the PDE parameters. How-
ever, the FEM does not allow obtaining a family of solutions for the parametric
PDEs "at once". A �xed set of model parameters requires the construction and
solution of a single system of linear equations. Solving the parametric system
of linear equations using algebraic methods is impossible. We need to formulate
and solve a new system of linear equations for a new set of model parameters.

In this paper, we propose the Neural Network learning coe�cients of B-
splines from higher-order Finite Element Method (FEM) solver. We extend and
develop further the ideas initially proposed in a short paper [6]. First, we �x
the higher-order B-spline basis functions used to approximate the solutions of
the parametric PDEs. Then, the neural network provides the coe�cients of the
linear combinations of the basis functions. The neural network learns the de-
pendence between the parameters of the PDEs and the coe�cients of the linear
combinations. We employ the supervised training based on several snapshots of
the FEM solutions obtained for selected values of the model parameters. Our
method has several advantages with respect to higher-order FEM solvers. It al-
lows for obtaining the family of solutions to the parametric PDEs "at once".
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The PDE parameters are input to the neural network, and the output involves
the coe�cients of the basis functions. Since neural networks are universal ap-
proximators, we may �nd a dependence between the PDE parameters and the
coe�cients of the basis functions used to approximate the solution. We only train
the dependence of the coe�cients of the linear combinations on the PDEs pa-
rameters. Our �ndings are illustrated on one-dimensional heat transfer problem
and two-dimensional model L-shape domain problem.

2 One dimensional heat-transfer problem

Let us introduce the quadratic B-spline basis functions over [0,1] (see Figure 1)
B1(x) = (1− x)2; B2(x) = 2x(1− x); B3(x) = x2.

Fig. 1: Three B-splines over a single interval (element)

Let us introduce the parametric PDE with with boundary conditions (b.c.)

−u′′
n(x) = fn(x) x ∈ (0, 1), n ∈ (0, 1), un(0) = 0, u′

n(1) = gn(x). (1)

gn(x) = nπcos(nπx) and fn(x) = n2π2sin(nπx). The family of solution is
un(x) = sin(nπx).

2.1 Traditional �nite element method solver

The FEM can solve the parametric PDE for one selected value of n. For this
purpose, we transform this problem into the weak form, multiplying by a test
function v (being a distribution of the averaging of the problem) and integrating
(averaging with distribution v) over the domain

−
∫ 1

0

u′′
n(x)v(x)dx =

∫ 1

0

fn(x)v(x)dx ∀v, v(0) = 0 (2)

We select the test functions v, so they are v(0) = 0 to be in agreement with the
b.c. un(0) = 0. We integrate by parts∫ 1

0

u′
n(x)v

′(x)dx− v(1)u′
n(1) + v(0)u′

n(0)︸ ︷︷ ︸
−

∫ 1
0
u′′
n(x)v(x)dx

=

∫ 1

0

fn(x)v(x)dx ∀v, v(0) = 0(3)
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and we apply v(0) = 0 and u′
n(1) = gn(1)∫ 1

0

u′
n(x)v

′(x)dx =

∫ 1

0

fn(x)v(x)dx+ v(1)gn(1) ∀v, v(0) = 0 (4)

In traditional FEM, we select n, and we seek the solution as a linear combina-
tion of the basis functions un(x) =

∑
i=1,2,3 uiBi(x), we also select three test

functions v ∈ {B1(x), B2(x), B3(x)} to obtain∫ B′
1(x)B

′
1(x)dx

∫
B′

1(x)B
′
2(x)dx

∫
B′

1(x)B
′
3(x)dx∫

B′
2(x)B

′
1(x)dx

∫
B′

2(x)B
′
2(x)dx

∫
B′

2(x)B
′
3(x)dx∫

B′
3(x)B

′
1(x)dx

∫
B′

3(x)B
′
2(x)dx

∫
B′

3(x)B
′
3(x)dx


u1(n)
u2(n)
u3(n)

 =

 ∫
B1(x)fn(x)dx∫
B2(x)fn(x)dx∫

B3(x)fn(x)dx+ nπcos(nπ1)

 (5)

(where for the sake of saving space we skept the integral limits
∫ 1

0
). We compute

the integrals
∫ 1

0
Bi(x)Bj(x)dx and

∫ 1

0
Bi(x)sin(nπx)dx and solve the system.

The solution from traditional FEM for �xed n is un(x) = u1(n)(1 − x)2 +
u2(n)2x(1−x)+u3(n)x

2. To obtain the values of u1(n), u2(n), u3(n) for a given
n, we need to generate the new right-hand-side and solve the system (5) again
for new n. The cost the solver for 1D problems is O(Np), for 2D problems it
is O(N1.5p2) and for 3D problems it is O(N2p3) [5] where N is the number of
basis functions, and p is their polynomial order.

2.2 Neural network learning solution of parametric PDE directly

from FEM solver

Let us introduce the arti�cial neural networkANN(n, x) = cσ

([
a1a2

] [n
x

]
+ b

)
+

d and the activation function σ(x) = 1
1+e−x . We prepare a set of samples: input

(n, x), output y(n, x) = u1B1 + u2B2 + u3B3 (obtained by calling a traditional
FEM solver many times). We randomly select n ∈ (0, 1) and x ∈ (0, 1). We solve
the problem (5) to obtain (u1, u2, u3). We de�ne the loss function

LOSSfem(n, x) =
1

2
(ANN(n, x)− y(n, x))

2
=

1

2
(cσ (a1n+ a2x+ b) + d− y(n, x))

2
=

1

2

((
c

1 + exp(−a1n− a2x− b)
+ d

)
− y(n, x)

)2

(6)

We loop through data set {(n, x), y} for n ∈ (0, 1), x ∈ (0, 1), and we train ANN

1. Select n ∈ (0, 1), x ∈ (0, 1)

2. Compute ANN(n, x) = cσ

([
a1a2

] [n
x

]
+ b

)
+ d
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3. Compute LOSSfem(n, x)

4. Compute
∂LOSSfem(n,x)

∂k , k ∈ {a1, a2, b, c, d}
5. Correct using η ∈ (0, 1)

a1 = a1 − η
∂LOSSfem(n, x)

∂a1
, a2 = a2 − η

∂LOSSfem(n, x)

∂a2
(7)

b = b− η
∂LOSSfem(n, x)

∂b
, c = c− η

∂LOSSfem(n, x)

∂c
(8)

d = d− η
∂LOSSfem(n, x)

∂d
(9)

Fig. 2: Convergence of error for training of ANN. Veri�cation of the neu-
ral network approximation of solution for n = 0.333 with ANN(n, x) =

c
1+exp(−a1n−a2x−b) + d

In Figure 2 we present the convergence of the training. We select n =
0.333 and we compute ANN(n, x) = c

1+exp(−a1n−a2x−b) + d and compare with

sin(0.333πx) in Figure 2.

2.3 Arti�cial neural network learning coe�cients of FEM basis

functions from FEM solver solutions

We introduce the arti�cial neural network ANNi(n) = ui, where n is the
PDE parameter, i = 1, 2, 3 represents the three coe�cients of basis functions
ANNi(n) = ciσ (ain+ bi) + di.. We prepare a set of samples Input data (n),
output data (u1, u2, u3) (obtained by calling the FEM solver many times). We
randomly select n ∈ (0, 1). We solve the FEM problem (5) to obtain y(x) =
u1B1(x) + u2B2(x) + u3B3(x) (and we store u1, u2, u3). Input data (n), output
data (u1, u2, u3). We de�ne the loss function

LOSSi(n) =
1

2
(ANNi(n)− ui(n))

2
=

1

2
(ciσ (ain+ bi) + di − ui(n))

2
=

1

2

((
ci

1 + exp(− (ain+ bi)
+ di

)
− ui(n)

)2

(10)
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We loop through the data set {n, (u1(n), u2(n), u3(n))} where n ∈ (0, 1), and we
train ANN1, ANN2, and ANN3

1. Select n ∈ (0, 1)
2. Compute ui = ANNi(n) = ciσ (ain+ bi) + di
3. Compute LOSSi(n)

4. Compute ∂LOSSi(n)
∂ai

, ∂LOSSi(n)
∂bi

, ∂LOSSi(n)
∂ci

, ∂LOSSi(n)
∂di

5. Correct using η ∈ (0, 1)

ai = ai − η ∗ ∂LOSSi(n)

∂ai
, bi = bi − η ∗ ∂LOSSi(n)

∂bi
(11)

ci = ci − η ∗ ∂LOSSi(n)

∂ci
, di = di − η ∗ ∂LOSSi(n)

∂di
(12)

Fig. 3: Convergence of errors for training of ANN1, ANN2, ANN3. Comparison
of the approximation by the neural network and exact f n = 0.333

In Figure 3 we present the convergence of the training. We select n = 0.333
and we compute

z(x) = ANN1(n)B1(x) +ANN2(n)B2(x) +ANN3(n)B3(x)

=

(
c1

1 + exp(−a1n− b1)
+ d1

)
(1− x)2 +(

c2
1 + exp(−a2x− b2)

+ d2

)
2x(1− x)2 +

(
c3

1 + exp(−a3x− b3)
+ d3

)
x2(13)

we compare with sin(0.333πx) in Figure 3.

3 Two-dimensional L-shape domain model problem

We will compare the NN trained using solution obtained from higher-order FEM
solver, and the solution obtained with NN learning the pointwise coe�cients
of B-splines from higher-order FEM solver. We focus on the so-called L-shape
domain model problem. This is a historical problem introduced by prof. Ivo
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Babus̆ka [1] to test the convergence of di�erent numerical methods [7, 17]. We
solve the Laplace problem

∆u = 0 in Ω, u = 0 on ΓD,
∂u

∂n
= g on ΓN . (14)

on the computational domain presented in Figure 4. The domain consists of
Ω = (−1, 1)2\[−1, 0]2. On the internal part of the domain ΓD = {(x, y) : x ∈
(−1, 0), y = 0}∪{(x, y) : x = 0, y ∈ (−1, 0)} we introduce the Dirichlet boundary
condition, where u = 0. On the external part of the domain ΓN = ∂Ω\ΓD we
introduce the Neumann boundary condition, where we prescribe the directional
derivative of the solution ∂u

∂n = ∇ · u = g.

Fig. 4: The L-shape model problem. Plot of
(

∂u(x,y)
∂x

)2

+
(

∂u(x,y)
∂y

)2

.

Usually, in the model problems designed to test the quality of the numerical
methods, the Neumann boundary condition is de�ned in the following way. We
assume the exact solution, for example, in our problem, we want to solve a family
of problems parameterized by n, thus, our exact solution is

uexact(x, y;n) = sin(2πn · x) · sin(2πn · y), n ∈ (0, 1). (15)

In order to obtain this solution, we compute its normal derivatives on the bound-
ary g(x, y) = ∂uexact

∂n . In other words, they force the exact solution by setting
proper Neumann boundary conditions

g(x, y) =



∂uexact

∂x
=2π cos(2πnx) sin(2πny) x = 1, y ∈ (−1, 1),

∂uexact

∂x
=− 2π cos(2πnx) sin(2πny) x = −1, y ∈ (0, 1),

∂uexact

∂y
=2π sin(2πnx) cos(2πny) x ∈ (−1, 1), y = 1,

∂uexact

∂y
=− 2π sin(2πnx) cos(2πny) x ∈ (0, 1), y = −1.

(16)

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97554-7_8

https://dx.doi.org/10.1007/978-3-031-97554-7_8
https://dx.doi.org/10.1007/978-3-031-97554-7_8


8 M. Sikora et al.

Why this problem is employed for testing of the quality of numerical solu-
tions? If we plot the gradient of the solution, as illustrated in Figure 4, we can
see that this gradient has a singularity at point (0, 0). In other words, the value
of the norm of the gradient goes to in�nity at this point. The NN with higher-
order FEM solver, since it employs gradients during the training process, they
are indeed sensitive to gradient and this model problem is a good benchmark.

Layer Number of neurons Activation function

input 100 - 1000 ReLU

hidden layer 1 100 - 1000 ReLU

output 2 equal to the number none
output 2 of coe�cients

Table 1: Network architecture of the NN used to approximate the coe�cients
of the B-spline basis functions for approximation of the model L-shape domain
problem. The number of neurons in the hidden layer varies with the number of
B-splines coe�cients. For 13×13 = 169 output B-splines coe�cients, the hidden
layer has 100 neurons. For 45 × 45 = 2025 output B-splines coe�cients, there
are 1000 neurons in the hidden layer. ReLU stands for Recti�ed Linear Unit.

3.1 Solution of the L-shape problem with �nite element method

In our method we use NN to approximate family of solution obtained from
higher-order Finite Element Method (ho-FEM). It assumes that each solution is
approximated with the linear combination of the basis functions. In our case, we
select the B-spline basis functions, thus u(x, y;n) ≈

∑
i,j NN(θ;n)i,jBi,p(x)Bj,p(y)

where the B-splines are de�ned by

Bi,0(ξ) = 1 for ξi ≤ ξ ≤ ξi+1, 0 otherwise,

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ) (17)

The NN(θ;n) is the NN with parameters θ (weights of its layers), that takes
model parameter n as argument, and return values of B-spline coe�cients. The
meaning of this formula is illustrated in Figure 5. The higher-order B-splines are
created by multiplication of two lower-order B-splines by "triangles" (red lines
in Figure 5).

The B-splines basis functions are de�ned using (17) and the knot vector
ξ = [ξi]i, e.g., ξ =[0, 0, 0, 0.5, 0.5, 1, 1, 1], with the assumption that the existence
of the repeated knots in the denominator implies zero value of the corresponding
term, e.g. x−0

0−0 = 0 in (17). The tensor products of 1D B-splines create a 2D
basis that approximates the solution. Exemplary 2D basis {Bi,2(x)Bj,2(y)}i,j
obtained by tensor products of two sets of one-dimensional B-splines de�ned by
knot vector [0, 0, 0, 0.5, 0.5, 1, 1, 1] are presented in Figure 5. Now, we want
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Introducing B-spline basis functions in neural network approximations 9

Fig. 5: Recursive de�nition of B-spline basis functions. 2D basis of the B-spline
functions obtain from tensor product of two 1D basis of B-splines de�ned by the
knot vector [ 0, 0, 0, 0.5, 0.5, 1, 1, 1]×[0, 0, 0, 0.5, 0.5, 1, 1, 1].

to know how to "stretch" the B-splines and how to make a linear combination
with B-splines so they approximate a solution of PDE. We'd like the NN to
learn a family of solutions of the form (15). With this approach, the number of
coe�cients is equal to the number of the network's output neurons; one neuron is
responsible for one coe�cient of one B-spline. There are two approaches possible
for training NN the coe�cients of B-splines; the �rst one is based on supervised
learning, where we employ the knowledge about the values of the B-spline basis
function coe�cients obtained by solving the system of linear equations following
the FEM formulations. The second one is based on unsupervised learning, and
it will be a subject of our future work. The network architecture illustrated in

n

ReLU

I1

ReLU

I2

ReLU

I3

...

ReLU

INinput

ReLU

ϕ1

ReLU

ϕ2

ReLU

ϕ3

...

ReLU

ϕNhidden

Hidden
layer 1

o1

Coefficient 1

o2

Coefficient 2

o3

Coefficient 3

...

oNoutput

Coefficient Noutput

Input
layer

Output
layer

Fig. 6: Left panel: Visualization of the heat equation solution. There are two
surfaces in this plot. The analytically calculated solution is in a green-blue color
and the solution predicted by the neural network is in orange-red. Those sur-
faces practically overlap, so only one is visible. Right panel: Architecture of
the neural network learning the coe�cients of the B-spline basis functions ap-
proximating the solution of the L-shape model problem using the NN trained
with the coe�cients of B-splines. The number of neurons per layer i depends on
the number of B-splines and their coe�cients j.
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Figure 6 and Table 1 varies with the number of B-splines - the output layer has
to have the same number of neurons as coe�cients. This is the main drawback
of this approach, as the network has to be recon�gured and retrained when
we change number of B-spline basis functions. In our method we apply the
supervised learning, where the loss function is given by the MSE between the sets
of B-spline parameters obtained by several calls to parameterised FEM solvers.

Namely, LOSS1(θ) =
(∑

i,j (NN(θ;n)i,j − ui,j)
)2

, where ui,j are coe�cients of

B-splines approximating the ho-FEM solution for given n obtained by solving
a system of equations resulting from ho-FEM discretization [15] using the weak
formulation equivalent to (14). Here θ stands for the NN parameters learned
during the training. For the FEM, the weak formulation must be derived to
solve the system of equations and �nd values of ui,j coe�cients. We multiply
the equation (14) by test functions, and we integrate by parts to obtain the weak
form: Find u such that

(∇u,∇v)Ω = (g, v)ΓN
∀v (18)

where (u, v)Ω =
∫
Ω
u(x)v(x)dx and (u, v)ΓN

=
∫
ΓN

u(x)v(x)dS. The coe�cients
ui,j are obtained by solving a system of linear equations

 (∇B1,1,∇B1,1)Ω · · · (∇B1,1,∇B1,N )Ω
· · · · · · · · ·

(∇BN,N ,∇B1,1)Ω · · · (∇BN,N ,∇BN,N )Ω

 u1,1

·
uN,N

 =

 (g,B1,1)ΓN

·
(g,BN,N )ΓN

 (19)

where for ho-FEM we selected linear or quadratic or cubic B-spline (p = 1, 2, 3
for di�erent experiments) namely v ∈ {Bi,j(x, y) = Bi,p(x)Bj,p(y)}i,j , for ap-
proximation and testing of (18). To train the neural network, we call the FEM
solver 19 times, for n = nk ∈ (0, 1), nk = 1

18 (k − 1), k = 1, ..., 19 and we provide
19 sets of coe�cients {uk

i,j}. The samples are illustrated in Figures 8 by red
dots. We select AdamW optimizer [12], with learning rate η = 0.01, and with
ReduceLROnPlateau scheduler, that reduces the learning rate when a metric
has stopped improving.

The NN trained with the coe�cients of B-splines could learn a family of
heat functions and accurately predict the coe�cients for the base functions, see
Figure 6. The di�erence between the exact solution and the solution obtained
from the NN trained with the coe�cients of quadratic B-splines using 20 × 20
mesh is shown in the Figure 7. The convergence of the training is visible in the
Figure 7. Table 2 summarizes the results for several di�erent numbers of orders
of B-splines used. Coe�cient approximation are satisfactory, see Figure 8.

3.2 Supervised training of point-wise solution of L-shape problem

Now, we employ the supervised training, but this time we train the point-wise
solution values {u(x, y)}x,y. The architecture of the NN for the supervised train-
ing of the point-wise solution is presented in Figure 9 and Table 3. The NN takes
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Mesh Number Spline MSE Training
size of coe�cients degree value time [s]

10 x 10 121 linear 1.98e-07 9

10 x 10 169 quadratic 5.29e-07 10

10 x 10 225 cubic 2.18e-07 11

20 x 20 441 linear 6.99e-07 14

20 x 20 529 quadratic 6.96e-07 18

20 x 20 625 cubic 9.14e-08 19

40 x 40 1681 linear 1.46e-06 15

40 x 40 1849 quadratic 1.37e-06 16

40 x 40 2025 cubic 7.58e-06 18

Table 2: Summary of obtained training results for the NN trained with the
coe�cients of B-splines.

Fig. 7: Left panel: Di�erence between the NN trained with the coe�cients of
quadratic B-splines using 20 × 20 mesh and the exact solution. Right panel:
Mean squared error loss function averaged over an epoch for the �rst 800 out
of 2 000 epochs. Each epoch contained 19 steps (in each epoch we used 19 sets
of the values of the coe�cients {uk

i,j}i,j , k = 1, ..., 19 obtained from 19 calls to

FEM solver for nk = 1
18 (k − 1), k = 1, ..., 19).

Fig. 8: Left panel:B1,2(x)B4,2(y) coe�cient from the NN trained the coe�cients
of B-splines. Middle panel: B5,2(x)B4,2(y) coe�cient from the NN trained the
coe�cients of B-splines. Right panel: B7,2(x)B7,2(y) coe�cient from the NN
trained the coe�cients of B-splines.
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Layer Number of neurons Activation function

input 100 ReLU

hidden layer 1 100 ReLU

hidden layer 2 100 ReLU

output 1 none

Table 3: The architecture of point-wise solution NN.

3 arguments - the value of n, and x and y coordinates of the desired point of
the solution. The output is the solution value at point (x, y) for a given n. The
model was a fully-connected feed-forward neural network with 2 hidden layers,
100 neurons each:

n

x

y

ReLU

I1

ReLU

I2

ReLU

I3

...

ReLU

I100

ReLU

ϕ1,1

ReLU

ϕ1,2

ReLU

ϕ1,3

...

ReLU

ϕ1,100

Hidden
layer 1

ReLU

ϕ2,1

ReLU

ϕ2,2

ReLU

ϕ2,3

...

ReLU

ϕ2,100

Hidden
layer 2

Solution value

Input
layer

Output
layer

Fig. 9: Left panel: Architecture of the NN approximating the point-wise so-
lution. Right panel: MSE loss function over 15 training epochs. Each epoch
had 40 steps (in each epoch we used 40 sets of the values of the solution
{u(xi, yj ;nk) =

∑
a,b ua,bBa,p(x)Bb,p(y)}i,j , k = 1, ..., 40 obtained from 40 calls

to FEM solver).

In this approach, the loss function is the MSE between the trained point-wise
solution values, and the solutions obtained from FEM solver using the combina-

tion of B-splines LOSS2(θ;n) =
∑

x.y

(
NN(θ;x, y, n)−

∑
i,j ui,jBi,p(x)Bj,p(y)

)2

.

The coe�cient values {ui,j}i,j are obtained by solving a system of linear equa-
tions (19) resulting from ho-FEM approximation, for 40 di�erent values of n =
nk ∈ (0, 1), nk = 1

39 (k−1), k = 1, ..., 40. We select AdamW optimizer [12], learn-
ing rate η = 0.01, and ReduceLROnPlateau scheduler. The supervised training
of point-wise solution is presented in Figure 9. The trained solution and the
exact solution is presented in Figure 10. The exact solution is in the blue-green
palette. The trained solution is overlaid in the red-yellow colors. A di�erence
between the exact solution and the solution obtained from the NN is shown in
Figure 10. Point-wise approximation of the solution also yielded satisfactory re-
sults. The neural network could learn a family of heat functions and accurately
predict the solutions, as shown in Figure 10. Table 4 summarizes the learning
times for several di�erent meshes and di�erent B-splines and compares them
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to the learning times of the NN trained with the coe�cients of B-splines and
point-wise solution approximating NN.

Fig. 10: Left panel: Visualization of the trained point-wise solution and the
exact solutions. The exact solution in the blue-green palette, the trained point-
wise solution is overlaid in red-yellow colors. Right panel: Visualization of the
di�erence between the exact solution and the trained point-wise solution.

4 Conclusions

Our method allows us to �nd a family of solutions to parametric PDEs. It �nds
a dependence between the PDE parameters and the coe�cients of the B-splines
basis functions employed by higher-order FEM solver. In our method we stretch
the B-spline basis to approximate the PDE solutions, and the NN tells us how to
stretch the basis function when we change the PDE parameters. Our method has
an advantage on traditional FEM, since it allows for solution of the parametrized
PDEs at once. In our supervised training approach, we employ several calls to
FEM solver to generate sets of coe�cient of B-splines, and we employ them to
train the general dependence between the model parameters and the solution.
The future work will include the experiments with the unsupervised learning.
Following the PINN idea [19] we can de�ned the loss function, where we train
the values of the coe�cients directly from the strong residual of the strong
form of the PDE (14). The boundary conditions can be incorporated into the
single loss by using the shift, and the resulting zero boundary conditions of
the shifted formulation are enforced strongly on the NN. For this purpose, we
shift the non-zero Dirichlet boundary conditions from the formulation u(x, y) =
u0(x, y) + ug(x, y) where u0(x, y) = 0 on ΓN and ug(x, y) = g(x, y) on ΓN .
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Mesh size B-spline degree training time [s] point-wise solution
coe�cients of B-splines training time [s]

10 x 10 linear 9 115

10 x 10 quadratic 10 114

10 x 10 cubic 11 48

20 x 20 linear 14 43

20 x 20 quadratic 18 47

20 x 20 cubic 19 42

40 x 40 linear 15 44

40 x 40 quadratic 16 42

40 x 40 cubic 18 48

Table 4: Comparison of training times of the NN trained with the coe�cients of
B-splines and the point-wise solution approximating neural network. The MSE
of achieved outputs had the same order of magnitude.

Thus, ∆u0(x, y) = −∆ug(x, y) = f(x, y). Now, we seek u0 that is equal 0 on the
boundary. We enforce the 0 Dirichlet boundary condition strongly. Our loss is

LOSS3(θ) =
∑
x,y

∑
i,j

NN(θ;n)i,j∆Bi,j(x, y)− f(x, y)

2

=

∑
x,y

∑
i,j

NN(θ;n)i,j

(
∂2Bi,p(x)

∂x2
Bj,p(y) +Bi,p(x)

∂2Bj,p(y)

∂y2

)
− f(x, y)

)2

(20)

The applicability of this method is similar to the ho-FEM, since we employ B-
spline basis functions to approximate the solution and we use NN to approximate
the family of solutions obtained for di�erent parameters.
Acknowledgement Research project partly supported by program "Excellence
initiative � research university" for the AGH University of Krakow.
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