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Abstract. Artificial Intelligence (AI) has emerged as a powerful and ef-
fective tool with several applications in health science. An inherent draw-
back of drug therapies is the potential for side effects, which are adverse
reactions that negatively impact human health. In recent years, AI has
been applied in pharmacology and pharmacovigilance, e.g., for studying
and analysing drug side effects. Likewise, network science has become
widely used as an effective and efficient tool for modelling interactions
between biological objects. In this paper, we presented a framework for
predicting candidate drug side effects by using Machine Learning (ML)
techniques applied to biological multilayer networks. Experimentation
supports the application of the ML-based models implemented in the
proposed framework for predicting novel (candidate) drug side effects
from biological multilayer networks.

Keywords: drug side effect · machine learning · artificial intelligence ·
bioinformatics · pharmacology.

1 Introduction

Drug side effects represent adverse reactions (i.e., unwanted undesirable effects)
having a negative impact on human health, that usually emerge in clinical trials
or clinical practice and need to be investigated thoroughly.

Artificial Intelligence (AI) has proven to be a valid and effective tool with
multiple applications in medicine, biology, pharmacology, and more generally
in health sciences [1, 5]. In recent years, the interest in this technology has
grown enormously and rapidly, especially due to the ever-increasing availabil-
ity of multi-modal data, e.g., from genomic, economic, demographic, clinical,
and phenotypic studies [18]. Additionally, it has been furthered both by in-
creased computing power, and the development of novel analysis methods that
increasingly support parallelization and cloud computing [12].
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In this context, bioinformatics played a crucial role, by supporting the ap-
plication of AI for several purposes in many areas of health sciences, including
pharmacology [3,17,19]. The vast majority of methods presented and discussed
in the scientific literature, which to date also represent the state of the art in the
use of AI in bioinformatics, can be associated with Machine Learning (ML) and
Deep Learning (DL). The meaning of the latter is often used interchangeably
by non-experts but is instead characterized by notable differences: ML is explic-
itly used as a means to extract knowledge from data by formulating predictions
based on patterns processed in its training data; DL algorithms are ML ones
which performs a deeper data processing based on Neural Networks (NN) [6],
instead of more traditional linear regression or a decision tree.

Currently, AI is applied in supporting drug development, prediction, and
knowledge mining, establishing itself as a parallel line of study which mainly
concerns the analysis and interpretation of data from heterogenous sources that
need to be collected, managed and analysed through methods and instruments
of computer science [26]. It is effectively applied in pharmacovigilance for in-
vestigating adverse drug reactions [32], as well as for surveillance and signal
detection, classifying individual case safety reports to adverse event profiles,
extracting Drug-Drug Interactions (DDI), identifying high-risk populations for
drug toxicity, predicting drug side effects, and simulating clinical trials [20,37].

To give a purely illustrative example, the early detection and possible pre-
vention of drug side effects can be supported by AI algorithms which allows
analysing large sets of data from electronic databases of spontaneous reports,
electronic medical records, databases, and digital devices aims to enhance the
effectiveness and safety of medicines [24]. This led to consideration of several
issues of pharmacology and pharmacovigilance as data-driven fields, which can
therefore benefit from AI [13, 21]. Galeano et al. [16] presented an ML frame-
work for predicting unknown side effects for drugs. It uses a set of side effects
identified in randomized controlled clinical trials for training. Specifically, this
framework learns a drug similarity matrix and a side effect similarity matrix for
generating the scores for each drug-side effect pair by linearly combining these
models. The frequencies of drug side effects has been computed in according
to their own previous work [15] and applied to obtain side effects from clinical
trials. Similarly, Liang et al. [23] proposed a method for predicting drug side ef-
fects based on the transductive matrix co-completion and leverage the low-rank
structure in the side effects and drug–target data. Authors handled the impact of
unobserved data by incorporating a positive-unlabelled learning into the model,
while the drug chemical information are modelled by using a graph model. Be-
yond the complexity of the data collection operation and the determination of
the hyperparameters, authors treated the prediction of side effects as a multi-
label learning problem with missing features and labels, where the drug–target
associations (i.e., feature matrix) and side effect labels are binary and linearly
dependent. Therefore, the scope of drug targets is limited to the known ones in
drug datasets, that is, if a drug causes a side effect by interacting with a protein
target that is not in the known target space, this association will probably not
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be identified; as also declared by authors. This issue had already been addressed
by Campillos et al. [4], which used phenotypic side effect similarities to infer
whether two drugs share a target. According to what authors stated, this ap-
proach had relevant limitation in reference set where several drugs had a low
probability of sharing targets, having though other targets that could override
the side effects that might be caused by the drug-target relations. Instead, Liu et
al. [25] tried to overcome the issue by first computing all possible interactions be-
tween drugs and proteins, from protein structures, and subsequently predicting
the side effects.

In the field of interaction modeling, graph network models are widely used
in different fields, including the modelling of chemical and biological objects
(i.e., biological networks). Traditionally, these are used in their simplest form for
handling objects of the same type that interact on a single layer of interest,
however, these are able to support heterogeneous objects on multiple layers
[10, 11] (i.e., multilayer network), as well as structuring temporal evolutions [8]
(i.e., temporal networks). The biological networks on which we focused are based
on a multilayered model (i.e., multilayer network) which allows representing
multiple biological objects in independent layer that can be also interconnected.
In this context, AI is generally applied for addressing a link-prediction problem
[7,9].

In this paper, we propose a framework for predicting candidate drug side
effects by using ML on biological networks.

Our contribution concerned the design of a novel framework which integrates
a set of predictive methods for the inference of candidate drug side effects, by
treating the issue as a link-prediction problem applied to a multilayer network
which models drug-drug, drug-side effect and chemical drug-gene interactions.

2 Materials and Methods

2.1 Machine Learning Models in our Framework

The proposed framework integrates a set of well-known ML models, specifically:

– Random Forest Classifier (RFC)
– Support Vector Classifier (SVC)
– Decision Tree Classifier (DTC)
– k-Neighbors Classifier (kNC)
– Logistic Regression (LR)

For descriptive purpose only, we report a brief description for each one, by
including their own mathematical definition of the salient elements, as follows:

– RFC [22, 34, 35] is an ensemble method that constructs a multitude of
decision trees during training and outputs the class that is the mode of
the classes (classification) or mean prediction (regression) of the individual
trees. It builds multiple decision trees and merges them together to get a
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more accurate and stable prediction. Formally, for a set of T decision trees
h1, h2, . . . , hT , the predicted class ŷ for an input x is:

ŷ = mode{ht(x) : t = 1, 2, . . . , T}.

– SVC, also known as Support Vector Machine (SVM) [2, 27], is a supervised
learning algorithm. It works by finding the hyperplane that best separates
the classes in the feature space. SVC is effective in high-dimensional spaces
and is particularly useful when the classes are not linearly separable. Given
training data {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ {−1, 1}, the optimization
problem is:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

ξi,

subject to:
yi(w

⊤xi + b) ≥ 1− ξi, ξi ≥ 0, ∀i,

where C > 0 is a regularization parameter and ξi are slack variables.
– DTC [29,39] is a tree-like model where an internal node represents a feature

(or attribute), the branch represents a decision rule, and each leaf node
represents the outcome. It processes data, recursively, based on features that
maximize information gain. For a split at node t into child nodes tL and tR,
the information gain IG(t) is:

IG(t) = I(t)−
[
NtL

Nt
I(tL) +

NtR

Nt
I(tR)

]
,

where I(t) is the impurity measure (e.g., Gini index or entropy), Nt is the
number of samples at the node t, and NtL , NtR are the samples in the child
nodes.

– kNC [14, 33, 38] is a type of instance-based learning or lazy learning where
the function is only approximated locally, and all computation is deferred
until function evaluation. In k-NN classification, an object is classified by
the majority score of its k nearest neighbours. Formally, it predicts the class
of a sample x based on the majority class of its k nearest neighbours in the
training data. Let Nk(x) denote the set of k nearest neighbours of x. The
predicted class ŷ is:

ŷ = mode{yi : xi ∈ Nk(x)}.

– LR [30, 36] is a linear model used for binary classification problems. It uses
the logistic function to transform a linear combination of input features
into a normalized score (i.e., rescaling via min-max normalization), which is
interpreted as the probability that a link exists. For input x and parameters
w, the probability of class y = 1 is:

P (y = 1 | x) = 1

1 + exp(−w⊤x)
.
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The predicted class ŷ is determined by a specific threshold:

ŷ =

{
1, P (y = 1 | x) ≥ 0.5,

0, otherwise.

2.2 Inference of Drug Side Effects

The proposed framework allows inferring drug side effects by applying ML on a
set of heterogenous biological object and their own interactions modelled through
a multilayer network graph model (hereinafter referred to as multilayer network).

It extracts meaningful features from a multilayer network by sectioning it
layer by layer, including interlayers. These include metrics like the number of
connections each node has (degree), the shared neighbours between two nodes,
and clustering coefficients that measure how interconnected the neighbours of
a node are. It also calculates the shortest path length between the two nodes,
which helps capture the global structure of the network. These features serve as
the foundation for making predictions.

Specifically, for each pair of nodes (u, v) within a same layer, it extracts
the following set of features: (i) number of edges adjacent to the node u, (ii)
clustering coefficient for u, (iii) number of edges adjacent to the node v, (iv)
clustering coefficient for v, (v) common neighbours between u and v, and (vi)
the shortest path length between u and v.

Once the features are extracted, the data is split into training and testing
sets to prepare for ML. This ensures the models are trained on one portion of
the data and evaluated on another, helping to prevent overfitting.

The framework is versatile and supports several ML models, including RFC,
SVC, DTC, kNC, and LR, as describe in Section 2.1. By leveraging graph theory
and ML, this framework offers a systematic and insightful approach to under-
standing drug interactions and their potential side effects. It is a powerful tool
with applications in drug development, personalized medicine, and beyond.

2.3 Training Dataset

The reported ML models have been trained on an in-house real-world dataset
constructed from the Stanford Biomedical Network Dataset Collection (BioS-
NAP) [40]; specifically, we integrated the data in the following BioSNAP datasets:

– Chemical-Gene Interaction network (ChG-InterDecagon): it contains infor-
mation on interactions between chemical drugs and genes. Dataset statistics:
1, 774 chemical drugs nodes, 7, 795 gene nodes, and 131, 034 edges.

– Drug Side Effect Association Network (ChSe-Decagon): it contains informa-
tion on adverse drug reactions (i.e., side effects) caused by drugs that are
on the U.S. market. Dataset statistics: 640 drug nodes, 10, 185 Side effect
nodes, and 174, 978 edges.
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– Drug-Drug Interaction Network (ChCh-Miner): it contains interactions be-
tween drugs, which are approved by the U.S. Food and Drug Administration.
Dataset statistics: 1, 514 nodes, 48, 514 edges.

In order to standardize the identifiers adopted by the various datasets and
therefore be able to integrate them, the identifiers in ChCh-Miner have been
replaced; unfortunately, the porting led to discarding a portion of the nodes and
associations originally reported. The final statistics of our dataset resulting from
the integration of the above data are reported below:

– Layer 1 (Drugs): nodes: 1178, edges: 41, 820.
– Layer 2 (Side Effects): nodes: 10, 185, edges: #.
– Layer 3 (Genes): nodes: 7, 796, edges: #.
– Interlayer between layers 1 and 2: edges: 174, 977.
– Interlayer between layers 1 and 3: edges: 131, 034.

Note that the symbol # indicates that the interactions are not defined due
to lack of information. However, this information is not useful for training the
models in our framework, nor have they been taken (or should be taken) into
account as we foresee.

Summarizing, our dataset models drug-drug, drug-side effect and drug-gene
interactions/associations. For completeness, we specify that the resulting multi-
layer network in our dataset is incomplete due to the lack of side effect-side effect
and gene-gene interactions/associations, that would represent the intralayers of
the respective layers.

Finally, we randomly divided our dataset into train-dataset and test-dataset
consisting of 80% and 20% of the drug-side effect interactions, respectively; iso-
lated nodes were removed.

Train-dataset was used in training step, while test-dataset for experimenta-
tion (i.e., testing).

3 Results and Discussion

We performed a series of 5 tests on our test-dataset (see Section 2.3), one for
each model implemented in our framework, in order to test our framework and
the ML-based models envisaged by it, specifically.

After training, the models are evaluated by using a set of well-known Key
Performance Indicators (KPIs): Accuracy, F1 score, Matthews Correlation Coef-
ficient (MCC), Receiver Operating Characteristic Area Under the Curve (ROC-
AUC) and Precision-Recall AUC (PR-AUC) [28,31].

These metrics provide a clear picture of how well the models perform and
help identify which features contribute most to the predictions. The results offer
valuable insights into the relationships within the data, shedding light on the
likelihood of side effects and the underlying factors that drive these predictions.

The experimentation evaluated the discussed KPIs of interest to determine
the prediction performances in the case study referred to the deduction of novel
(candidate) side effects.
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The results are reported in Table 1, and the related KPIs are also shown in
Figure 1 as bar-plots. These reveal a set of notable observations and issues that
we discuss as follow.

RFC emerges as the most effective and reliable model across nearly all eval-
uation indicators. It achieved the highest accuracy (0.9548), F1-score (0.9543),
and MCC (0.9101), as well as the leading ROC-AUC (0.9549) and PR-AUC
(0.9420). These results collectively indicate a strong balance between precision
and recall, underscoring RFC’s ability to generalize well and maintain consistent
performance across varying classification challenges.

Closely following RFC, the DTC also demonstrated robust performance.
While slightly behind RFC in overall accuracy and F1-score, DTC achieved the
highest precision (0.9718), highlighting its strong confidence in positive predic-
tions. Moreover, DTC was the most efficient in terms of runtime, completing in
less than one second. This notable computational efficiency, paired with its solid
predictive capability, makes it particularly attractive for deployment in real-time
or low-resource environments.

The SVC, on the other hand, exhibited a markedly different performance
profile. Although it achieved a reasonably high recall (0.7703), indicating its
sensitivity to identifying true positives, it lagged behind in precision, accuracy,
and MCC. Most critically, the model suffered from a prohibitively long run-
time of over 26 minutes (26:46.293), rendering it unsuitable for time-sensitive
applications unless optimized or parallelized significantly.

The kNC offered a balanced performance, especially in terms of recall (0.9352)
and F1-score (0.9433), and maintained a respectable runtime. It performed
slightly lower than RFC and DTC in precision and accuracy but still deliv-
ered competitive results overall. This consistency, along with its straightforward
interpretability, makes kNC a viable option where moderate computational re-
sources are available, and ease of implementation is desired.

LR, while computationally reasonable, delivered the least favourable results.
Despite achieving the highest recall among all models (0.8505), it had the low-
est precision (0.5706) and ROC-AUC and PR-AUC scores, which significantly
diminishes its reliability. The high recall-low precision trade-off suggests that
LR identified a high number of true positives but also produced a substantial
number of false positives, limiting its practical application in scenarios where
precision is critical.

Several notable observations emerge from this comparison. Firstly, ensemble
methods such as RFC clearly outperform single estimators, indicating the benefit
of model aggregation in enhancing generalization. Secondly, a model’s predictive
power must be balanced against its runtime, as exemplified by SVC otherwise ac-
ceptable performance being offset by its impractical computational cost. Thirdly,
precision-recall trade-offs are evident across several models, particularly in LR,
highlighting the importance of selecting models not solely based on accuracy
but also on the specific requirements of the application—be it minimizing false
positives or maximizing detection sensitivity.
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Summarizing, RFC has proven to be the most suitable model when both per-
formance and reliability are prioritized. Nevertheless, the DTC offers an efficient
and nearly as effective alternative, especially when speed is essential. Models
like kNC provide a balanced middle ground, while SVC and LR may require
further tuning or contextual justification for their use. These findings emphasize
the need for a comprehensive evaluation framework when selecting models, one
that considers not only predictive metrics but also computational demands and
domain-specific constraints.

Overall, RFC stands out for performance was the best model able to predict
candidate drug side effects from biological networks in the application scope
and more specifically for the dataset used. One cannot help but notice the lack
of efficiency in terms of running time shown by SVC; otherwise, other models
perform the processing in the order of seconds.

Ultimately, we dispense with producing a deep comparison between the ap-
plied methodologies since our framework includes an assisted phase of suggestion
of the best model for the case in question, consequently the interpretation of the
results for the use case in which he will want to employ the solution is left to
the user; a future work could certainly focus on deepening this aspect as well.

Table 1: The table reports the results related to our experimentation. Briefly,
we evaluated the performances related to each method, in terms of Accuracy, F1
score, ROC-AUC, and PR-AUC. Running times (runtimes) are also reported in
minutes, seconds and milliseconds (mm:ss.ms format).

Method Runtime Accuracy F1 Score MCC AUC ROC AUC PR

RFC 00:14.440 0.9548 0.9543 0.9101 0.9549 0.9420

SVC 26:46.293 0.6858 0.7116 0.3762 0.6853 0.6248

DTC 00:00.732 0.9525 0.9519 0.9059 0.9527 0.9403

kNC 00:02.386 0.9435 0.9433 0.8871 0.9435 0.9226

LR 00:01.366 0.6028 0.6830 0.2337 0.6012 0.5605

4 Conclusions

In this paper, we proposed a framework for predicting candidate drug side effects
by using ML on biological networks. Our contribution concerned the design of a
novel framework which integrates a set of predictive models for the inference of
candidate drug side effects.
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Fig. 1: The plots were built based on the results from Table 1. briefly, we evalu-
ated the performances related to each method, in terms of Accuracy, F1 score,
ROC-AUC, and PR-AUC.
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By leveraging graph theory and ML, the proposed framework offers a sys-
tematic and insightful approach to understanding drug interactions and their
potential side effects. It may be applied as a powerful tool with applications in
drug development, personalized medicine, and beyond.

Experimentation supports the models implemented in our framework, by
demonstrating their own effectiveness, in accordance with the KPIs used in the
examination of the results.

The main limitation of our study is that it was limited to implement existing
ML-based models, adapting them for use on multilayer networks, and evaluating
the results by exploiting a set of KPIs for descriptive purposes only for each of
the supported models.

Future works could be focused on improving experimentation, as well as
on proving the validity of candidate side effect in real-world experimentation.
Additionally, novel techniques concerning DL can also be supported.
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