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Abstract. Multilayer networks are increasingly used to capture complex relation-

ships in financial systems. In this paper, we employ a multilayer and temporal 

network framework to analyze dynamic connections among cross-listed stocks. 

Each network layer corresponds to a distinct market, and a rolling window ap-

proach tracks the temporal evolution of connections, particularly during market 

shocks. To compare the roles of cross-listed firms in the two markets, we design 

a centrality imbalance indicator. Community detection is used to reveal hidden 

structures based on this indicator. The analysis shows that stocks from the same 

firms exert different levels of influence, and the key stocks in both A-shares and 

H-shares always shift. The connections can be significantly enhanced during pe-

riods of financial stress. Notably, community detection results indicate that dif-

ferences in cross-listed firms’ importance may be linked to how strongly the  cor-

responding stocks are connected. This study extends the application of multilayer 

and temporal network models to financial markets, offering a systematic ap-

proach to analyze evolving market relationships and their implications for finan-

cial risk. 

Keywords: Multilayer Network, Temporal Network, Community Detection, 

Cross-listed Stocks, Centrality Imbalance. 

1 Introduction 

As capital markets continue to globalize, cross-listing has become a prevalent strat-

egy for firms seeking to broaden their investor base and access capital.  A natural link-

age exists between the cross-listed shares, as they represent claims on the same under-

lying entity. However, this linkage is further shaped by institutional differences across 

markets and limited information transparency. The connections between cross-listed 

stocks exhibit highly complex characteristics [6,8]. Therefore, a deeper investigation 

into the connections of cross-listed stocks and their dynamic evolution can contribute 

to a better understanding of inter-market linkages, providing a new foundation for asset 

pricing and market efficiency theories.  

Prior research on cross-listed equities has focused on their pricing relationships, pri-

marily from the perspective of cointegration and causality [5,9,10,12]. However, these 

studies tend to deal with such linkages in isolation from the broader market context. 

Yet, financial markets are complex systems where most assets exhibit some degree of 
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interdependence [13]. The complexity of cross-listed stock linkages may extend beyond 

the scope captured in earlier literature. This raises important but underexplored ques-

tions: whether these stocks exhibit similar behaviors or influence in their respective 

markets? And how do their connections change facing with market shock? Addressing 

these questions requires a shift toward a more network-oriented and dynamic analytical 

approach. 

A multilayer network consists of multiple layers, each representing distinct types of 

nodes or relationships [7,17]. This structural richness enables a more comprehensive 

understanding of complex interactions than single-layer network models. Conse-

quently, this method can offer a more informative representation of financial system 

complexity by preserving the diversity of nodes, edges, and structural patterns [11,19]. 

For example, Bargigli observed that the layers of financial multilayer networks differ 

in structure, and that connections between nodes are not equally stable across layers 

[3]. In addition, temporal network analysis further contributes to understanding how 

these structures evolve over time, allowing researchers to capture changes in connec-

tion patterns during different market conditions.  

In this paper, we first construct a multilayer network based on the correlation of 

cross-listed stock returns, where each market is represented as a network within a layer. 

To extract meaningful and sparse connections, we apply the Planar Maximally Filtered 

Graph (PMFG) method. Next, we employ a rolling window approach to examine the 

structure of the temporal network, with particular attention to changes during market 

shock. This analysis reveals the evolving role of cross-listed stocks in spreading infor-

mation across markets. In the final stage of our analysis, we examine how stocks from 

the same firm behave across different layers of the network. To quantify their different 

levels of influence, a centrality imbalance indicator is constructed. Based on this indi-

cator, we apply the Louvain algorithm to detect communities. The results identify sev-

eral groups of cross-listed firms that display diverse behavioral patterns across markets. 

The rest of this paper is organized as follows: In section 2, we review the data source 

and the methodology for network construction and measure. In section 3, we present 

the connection dynamics of cross-listed stocks. In section 4, we describe the process 

and findings of community detection. Finally, in section 5, we summarize and conclude 

the paper. 

2 Methodology 

In this section, we begin with a description of the data source, then proceed to the con-

struction of the multilayer network and the measurement of relevant topological indi-

cators. 

2.1 Data Source 

As China’s capital markets have gradually liberalized, more domestic firms have opted 

for dual listings in both the Shanghai/Shenzhen and Hong Kong stock exchanges. The 

expansion of cross-border connectivity has also enhanced trading efficiency and 
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liquidity of equities. In addition, the persistent premium observed in cross-listed A-

shares has long drawn attention, with numerous investors actively seeking arbitrage 

opportunities [2,14,20]. This enduring phenomenon highlights the significance of stud-

ying A+H stocks, as the insights derived from such analyses can offer valuable per-

spectives on cross-listing dynamics in both emerging and developed markets. 

To construct a clean and reliable dataset, we limit our sample to firms that had al-

ready achieved cross listings prior to 2013. Daily closing prices for these A+H shares 

were collected from the Wind database from the last trading day of 2012 to the end of 

October 2023. In processing the data, we first removed any stock pairs with non-over-

lapping trading calendars between the two markets. Next, we excluded pairs where 

trading was suspended for more than 100 consecutive days on either exchange. After 

these filters were applied, the final sample consists of 72 A+H stock pairs. Table 1 

presents the codes for all cross-listed A+H stocks included in the analysis. 

Table 1. List of cross-listed A+H stocks. 

Index A-stock code H-stock code Index A-stock code H-stock code 

1 000898 00347 37 600871 01033 

2 600332 00874 38 601107 00107 

3 601588 00588 39 600012 00995 

4 002594 01211 40 000338 02338 

5 000488 01812 41 601336 01336 

6 600874 01065 42 000756 00719 

7 601991 00991 43 600188 01171 

8 600875 01072 44 601038 00038 

9 002672 00895 45 601633 02333 

10 600196 02196 46 600036 03968 

11 601398 01398 47 002703 01057 

12 601238 02238 48 600115 00670 

13 601333 00525 49 601111 00753 

14 600585 00914 50 601800 01800 

15 600837 06837 51 601318 02318 

16 000921 00921 52 601628 02628 

17 600027 01071 53 601088 01088 

18 600011 00902 54 600028 00386 

19 601939 00939 55 601857 00857 

20 600362 00358 56 601601 02601 

21 601328 03328 57 601186 01186 

22 002202 02208 58 601988 03988 

23 601992 02009 59 601766 01766 

24 601880 02880 60 601390 00390 

25 603993 03993 61 601618 01618 

26 600808 00323 62 601808 02883 

27 600016 01988 63 000039 02039 
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28 600029 01055 64 000157 01157 

29 600775 00553 65 601898 01898 

30 600377 00177 66 601998 00998 

31 601288 01288 67 600030 06030 

32 600600 00168 68 000063 00763 

33 002490 00568 69 601866 02866 

34 600688 00338 70 601919 01919 

35 601607 02607 71 600026 01138 

36 600548 00548 72 601899 02899 

Notes: For clarity and consistency in later sections, we assign simplified identifiers to each stock 

based on its listing market and the index number shown in Table 1. For example, "A1" and "H1" 

refer to the A- and H-share of the first listed company in the sample, with stock codes "000898" 

and "00347", respectively. 

2.2 Network Construction 

The multilayer network framework consists of two intra-layer networks, corresponding 

to the A-share and H-share markets, respectively. Each layer captures the internal struc-

ture and interaction patterns within markets. This design allows us to preserve market-

specific topological features while enabling a parallel comparison of cross-listed stocks 

within their respective trading environments. 

Connection Measures. The return of stock i on day t  is calculated as the natural log-

arithmic difference of its closing prices on two consecutive trading days, defined as: 

 ( ) ln( ( )) ln( ( 1))i i iR t P t P t= − −  (1) 

Based on the time series of log returns, we use the Pearson coefficient to measure 

the connections between cross-listed stocks. which reflects the linear association be-

tween their return fluctuations. The corresponding formula is given by: 

 

( )( ) ( )( )2 22 2

.
i j i j

ij

i i j j

R R R R
c

R R R R

−
=

− −

 (2) 

Here,  denotes the temporal average across all trading days. Thus, we can obtain the 

connection matrix of A- and H-share markets separately. 

Multilayer Network Framework. Using the connection matrices above, we can es-

tablish a multilayer network. Specifically,  each market is modeled as an independent 

network layer, indexed by 1,2 = , corresponding to the A- and H-share markets. The 

multilayer network is defined as a graph ( , )G V E  = , where 
1{ ,..., }NV v v  = de-

notes the set of nodes, with each node representing an individual stock traded in that 

market. The edge set E V V     captures the connections among stocks within the 

same market layer, as inferred from their pairwise correlation strengths. 
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Multilayer Network Filtering. The initial multilayer network derived from the pair-

wise connection matrices is dense with edges linking every pair of nodes. To reduce 

network complexity, we apply the Planar Maximally Filtered Graph (PMFG) algo-

rithm. This technique preserves the most significant relationships under the constraint 

of planarity, allowing us to uncover the underlying topological structure while elimi-

nating redundant links [15,18]. 

2.3 Network Measures. 

This study utilizes multiple metrics to analyze both the global and local structures 

within the multilayer network. All metrics are classified into two types: market-level 

and stock-level. 

Market-level Measures. To quantify the overall degree of connectivity within differ-

ent markets, we calculate the Average Connection Strength (ACS). This metric reflects 

the mean edge weight across all node pairs in layer  , and is expressed as: 

 
1 1,

1
.

2

N N

ij

i j j i

ACS c
N

 

= = 

=     (3) 

To evaluate the structural similarity between two network layers, we adopt a simi-

larity measure that captures the proportion of shared connections. Specifically, we fol-

low the approach of Aldasoro and Alves [1], employing the Jaccard index to quantify 

the overlap of edges, i.e., the degree of substitutability between layers. The definition 

is given as follows: 

 ( ), .
G G

J G G
G G

 

 

 
=  (4) 

Stock-level Measures. Within each network layer, the degree of a node quantifies the 

total number of direct connections it maintains with other nodes. For node i  in layer 

 , the degree is computed as:: 

 ,

1,

.
N

i i j

j

k A 

=

=  (5) 

Here, 
,i jA  is the adjacency matrix in network layer  . 

Closeness centrality captures how quickly a node can interact with others, based on 

the average length of the shortest paths connecting it to all other nodes in the same 

layer. For a given node i , the closeness centrality is computed as: 

 c

1,

1
( ) .

( , )
N

j j i

N
C i

d i j





= 

−
=


 (6) 

Here, ( , )d i j   represents the shortest path distance between two nodes. A higher value 

implies stronger accessibility and potential influence within the network. 
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Betweenness centrality evaluates how frequently a node functions as an intermediary 

in the shortest connection paths among all other node pairs. For a given node i , its 

betweenness centrality is defined by: 

 
,

( )
( ) .

fd

f i d f d fd

g i
b i

g






  

=    (7) 

Here, 
fdg  represents how many times it lies on the shortest paths between all possible 

node pairs. ( )fdg i  is the number of those paths that go through node i . 

Eigenvector centrality is used to measure how important a node is by not only count-

ing its connections, but also considering how important its neighbors are. A node gets 

a higher score if it is connected to other well-connected nodes. For a given node i , its 

eigenvector centrality is defined by: 

 

,

1

( )

( ) .

N

i j e

j

e

A C j

C i

 





=
=


 (8) 

Here,   stands for the eigenvalue and e  refers to its associated eigenvector of 
,i jA . 

3 Result and Discussion 

 

Fig. 1. Static multilayer network of cross-listed A+H stocks. 

To better understand the structure of the multilayer network, we created a static network 

of cross-listed stocks using Python, as shown in Fig. 1. In the figure, node size reflects 

its degree, while thicker edges imply stronger connections between nodes. Color indi-

cates the firm’s industry category, classified according to the standards of the China 

Securities Index Company. Overall, we observe a noticeable pattern of industry con-

centration within both layers. This tendency may arise from the fact that firms operating 

in the same sector often maintain close business relationships and are subject to similar 

regulatory or policy environments. Such common exposures can lead to stronger 
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connections among industry peers. Furthermore, the filtered A-share and H-share net-

works display distinct internal link structures, highlighting differences in how firms 

interact within each market. 

To capture the dynamic features of cross-listed stock connections, we adopt a rolling 

window approach to construct temporal network. Specifically, the time window spans 

200 trading days and moves forward in increments of 20 trading days. This setup allows 

us to track gradual changes in network structure over time. 

3.1 Market-level Analysis. 

Fig. 2(a) illustrates the changes in Average Connectedness Strength (ACS) over time 

within the network layers corresponding to A-shares and H-shares. It can be observed 

that, in most periods, the ACS in the A-share network remains consistently higher than 

that of the H-share network, suggesting that A-share stocks exhibit stronger connec-

tions. This pattern may reflect underlying differences between the two markets, such as 

investor composition, liquidity, and regulatory frameworks. 

 

Fig. 2. Time-varying Average Connection Strength and Jaccard Similarity. 

As shown in Fig. 2(a), the ACS in both layers exhibits a similar trend across the 

entire period. This situation implies that despite structural differences, the two markets 

often respond to external shocks in a similar manner. Several notable surges in the ACS 

curves appear to coincide with key global and domestic events. In mid-2015, the sharp 

rise and subsequent crash of the Chinese stock market is reflected in a pronounced peak 

in both layers. Another visible rise occurs around 2018, corresponding to the trade con-

flicts between China and the United States. The onset of the COVID-19 pandemic in 

early 2020 and the outbreak of the Russia-Ukraine conflict in 2022 also align with sig-

nificant increases ACS. These patterns suggest that during periods of market shocks—

whether due to economic disruptions, political conflicts, or health emergencies—the 

cross-listed stocks tend to exhibit stronger interdependence within each market. As 

such, the ACS may serve as a signal of systemic stress, offering valuable insights for 

both market participants and policymakers monitoring financial stability. 

Fig. 2(b) displays the evolution of the Jaccard similarity between the A-share and H-

share layers over time. A gradual upward trend is evident, indicating that the structural 
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overlap between the two layers has increased throughout the sample period. This rising 

similarity may reflect the development of cross-border trading frameworks between 

Mainland China and Hong Kong. Notably, the introduction of the Shanghai-Hong Kong 

Stock Connect in 2014, followed by the launch of its Shenzhen counterpart in 2017, 

marked important milestones in market integration. These initiatives expanded the trad-

able stock universe and promoted interaction between the two markets, contributing to 

the modest increase in network similarity. Since 2020, the Jaccard similarity values 

have fluctuated within a higher range (approximately 0.2 to 0.4), suggesting that con-

nections within A-share and H-share markets have become more aligned. This may 

result from both institutional improvements and the growing linkage between domestic 

and global capital markets. Similar conclusions were drawn by Cai et al. [4], who ar-

gued that policy reforms can enhance pricing efficiency in A+H stocks, thereby pro-

moting structural convergence across markets. 

3.2 Stock-level Analysis. 

To further investigate the behavior of cross-listed stocks , Fig. 3 visualizes the temporal 

dynamics of node degree for each stock. Warmer colors (closer to red) represent higher 

node degrees, indicating a more central position in the network. The heatmaps clearly 

show that the degree of most nodes fluctuates significantly over time, reflecting that the 

role or influence of cross-listed stocks in the network is not fixed. In other words, a 

stock's importance within a market evolves along with changes in external conditions 

such as market sentiment or macroeconomic shocks. Moreover, the node degree pat-

terns of many paired stocks differ noticeably between two layers, even during the same 

time period. This highlights the different levels of influence despite the fact that both 

stocks originate from the same firm. Such variance suggest that investors should mon-

itor the role of each listing separately and adjust their strategies dynamically . 

 

Fig. 3. Time-varying node degree in A-share and H-share layers. 

Figs. 4-6 illustrate the temporal evolution of stock-level centrality measures, includ-

ing closeness, betweenness, and eigenvector centrality. Consistent with the findings in 

Fig. 3, we observe different performances in the same centrality metrics of cross-listed 

paired stocks. However, for some individual cross-listed stocks, their three centrality 

metrics exhibit consistent importance during the same period, such as A40 (i.e., 
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000338) and H15 (i.e., 06837). This indicates that these cross-listed stocks often hold 

central positions in their respective markets. They tend to act as key channels for infor-

mation flow, reacting quickly to external shocks and linking otherwise separate parts 

of the network.  

 

Fig. 4. Time-varying closeness centrality in A-share and H-share layers. 

 

Fig. 5. Time-varying betweenness centrality in A-share and H-share layers. 

 

Fig. 6. Time-varying eigenvector centrality in A-share and H-share layers. 

Furthermore, notable shifts in the closeness centrality of cross-listed stocks are ob-

served around two distinct periods—mid-2015 and late 2018—corresponding to the 

Chinese equity market turbulence and the China–U.S. trade tensions, respectively. 

These episodes are reflected as vertical bands of warmer colors in the heatmaps, 
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indicating a rise in centrality values across a broad set of nodes. The emergence of such 

patterns suggests that major market shocks can reshape the structure of network, lead-

ing certain stocks to temporarily assume more influential positions. During these epi-

sodes, firms with high closeness centrality may facilitate the spread of information or 

shocks. Accordingly, tracking these nodes could offer early warnings of systemic stress. 

4 Community Detection  

The temporal multilayer network analysis reveals that most cross-listed stock pairs ex-

hibit notable differences in their influence across different layers at the same time point, 

even though they represent the same underlying firm. Therefore, the following section 

applies community detection techniques to uncover how such influence difference man-

ifest within the network. Community detection is a technique employed to identify 

structural groupings within a network, revealing closely connected subgroups. In this 

paper, community detection not only facilitates the analysis of the influence difference 

of cross-listed firms, but also provides insights into the potential driving factors behind 

this phenomenon. 

4.1 Integrated Centrality 

To capture the overall importance of cross-listed firms in both markets, this study con-

structs an integrated centrality measure by leveraging Principal Component Analysis 

(PCA). Specifically, the analysis draws on four commonly used centrality metrics—

degree, closeness, betweenness, and eigenvector centrality—calculated from each 

layer. Given the potential correlation and redundancy among these indicators, PCA is 

employed to transform them into a reduced set of uncorrelated components while pre-

serving the dominant patterns in the data. The first two principal components, which 

jointly account for approximately 92% of the total variance, are retained for further 

analysis. An integrated centrality indicator is then computed by weighting the compo-

nent scores using both the eigenvalue contributions and the loadings from the PCA 

results. This procedure enables us to effectively merge information from multiple di-

mensions into a single metric that reflects the relative influence of each cross-listed 

stock within its respective market. 

4.2 Centrality Imbalance 

To quantify how differently a cross-listed firm influences the A-share and H-share mar-

kets, we develop a  centrality imbalance indicator, calculated as the logarithmic ratio 

between the integrated centrality scores of its two listings across the respective markets. 

Then, to capture the temporal characteristics, we compute the centrality imbalance val-

ues for each firm across all time-varying multilayer networks and estimate their empir-

ical distributions. Finally, we calculate pairwise Jensen–Shannon divergence between 

their distributions. This yields a distance matrix that reflects the structural proximity of 

influence difference among all cross-listed firms. 
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4.3 Community Detection Results and Analysis 

 

Fig. 7. Community structure of cross-listed firms. Each node is colored according to its assigned 

community: Community 1 (dark blue), Community 2 (brown), and Community 3 (light blue). 

Building on the centrality imbalance relationships and the distance matrix, we applied 

the Louvain algorithm to uncover the community structures within the network of 

cross-listed firms. This method identifies subgroups in the network by maximizing 

modularity, thereby revealing underlying community structures [21]. As shown in Fig. 

7, the network is divided into three distinct communities, consisting of 22, 29, and 21 

firms, respectively. To further examine how cross-listed stock pairs behave within each 

community, we compare their average centrality imbalance and connection strength. 

 

Fig. 8. Community-level differences among communities. 

Firstly, Fig. 8(a) highlights that the centrality imbalance of cross-listed paired stocks 

are significantly different among the three communities. Specifically, in community 1, 

the median of the centrality imbalance is close to 0, with relatively low volatility, indi-

cating that the influence difference of these cross-listed firms in the A-share and H-

share markets are small. In contrast, in community 2, the centrality imbalance of the 
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cross-listed paired stocks are all greater than 0, indicating that these firms have signif-

icantly higher influence in the A-share market compared to the H-share market. Con-

versely, in community 3, the centrality imbalance of the cross-listed firms are all less 

than 0, with the median around -0.4, suggesting that they are significantly more influ-

ential in the H-share market than in the A-share market. 

Secondly, as seen in Fig. 8(b), there are notable differences in the connection 

strength of cross-listed paired stocks, particularly between community 2 and commu-

nity 3. In community 2, the median connection of paired stocks is below 0.55, whereas 

in community 3, the connection is tighter, with a median above 0.6. This difference 

may be related to the maturity of the Hong Kong and Mainland China markets as well 

as the focus of investors. In the more mature H-share market, there is a higher propor-

tion of international and institutional investors, who are more inclined to focus on large-

capitalization and blue-chip firms with stable fundamentals. As a result, they do not pay 

much attention to cross-listed firms that occupy a relatively important position in the 

A-share market, thus weakening the connection between paired stocks. On the other 

hand, investors tend to focus on the price fluctuations of cross-listed stocks in more 

developed markets [8]. Therefore, for cross-listed firms with greater influence in the H-

share market, mainland investors are likely to pay attention to their H-share perfor-

mance and react accordingly, which strengthens the connection between the paired 

stocks. 

5 Conclusion 

In this study, we use a multilayer and time-varying network to explore how stocks 

cross-listed in Hong Kong and Mainland China are connected. By building separate 

network layers for the A-share and H-share markets and applying a rolling-window 

method, we find that the links between cross-listed stocks change over time, and be-

come much stronger during major financial events. At the firm level, we create a cen-

trality imbalance index to measure how the influence of paired stocks differs between 

the two markets. The results show that these differences are common and vary across 

time. We also use this index to group firms based on community detection, and find 

that the level of influence difference is closely related to how strongly the two shares 

of a firm are connected. Overall, this research provides a new way to understand how 

cross-listed stocks interact across markets and offers useful insights for tracking market 

risk and improving investment decisions. 

In the future, we aim to extend this framework in several directions. First, incorpo-

rating additional indicators—such as volatility or tail risk—would allow for the con-

struction of multilayer networks that capture a broader range of connection features. 

Second, the current model can be further developed into an interconnected multilayer 

network, enabling the exploration of cross-market information transmission and inter-

layer dependencies across multiple financial systems. Such extensions could deepen 

our understanding of systemic risk propagation and enhance the early warning capabil-

ities of network-based financial monitoring systems. 
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