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Abstract. The aim of this research is to evaluate the effectiveness of
decision trees in detecting cyberattacks and to compare different learn-
ing conditions’ impact on classification performance. The paper presents
an analysis of the impact of various hyperparameters, including splitting
criteria (Gini vs. Entropy), feature selection, and tree depth, on the accu-
racy, precision, recall, and F-measure of models. A comparative analysis
is performed using machine learning classifiers, such as Gradient Boost-
ing, AdaBoost, Support Vector Machines (SVM), Lasso, and Random
Forest, to assess their relative performance in cyber-attack classification.
The findings demonstrate that decision trees are able to achieve high
effectiveness in detecting network intrusions, and feature selection can
enhance classification performance. Some of the classifiers among the
evaluated models, including Random Forest and Gradient Boosting, of-
fer better performance, showcasing their potential as alternatives to deci-
sion trees in cybersecurity applications. The results show the importance
of hyperparameter optimization and feature engineering, particularly in
improving threat detection model performance and/or accuracy.

Keywords: cyber-attacks · decision tree · classification · feature selec-
tion · machine learning.
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1 Introduction

With the rapid advancement of machine learning applications, optimizing al-
gorithms has become a key element to improve the effectiveness of mathemat-
ical modeling, also in cybersecurity applications. This research paper examines
the impact of learning conditions on the accuracy of a decision tree algorithm.
Specifically, it explores how various parameters – such as tree depth, partition-
ing criteria, minimum samples per leaf, and the number of selected features –
affect model performance. Various evaluation measures are considered to assess
the efficiency of decision tree models in attack detection.

Understanding how different learning conditions influence the performance of
the decision tree is essential to improve the accuracy of classification. By tracing
their influence on the model-building process it is possible to find their impact on
the quality of classification and prediction. In the context of accurately assessing
the performance of the model, this article will closely examine various measures
such as precision, precision, recall, and F-measure. In this context, different
implementations of these measures in case of specific learning conditions are
considered, identifying which ones may better reflect the effectiveness of the
decision tree algorithm depending on the specifics of the data analyzed.

The paper is structured as follows. Section 2 provides a literature study and
a review of solutions, together with motivation for the study. Section 3 describes
the database and the methods applied to build the decision tree. Section 4 de-
scribes the research methodology. In Section 5, we present the summary.

2 Review of Solutions Based on Recent Literature

There are many possible benefits to applying Machine Learning to cybersecu-
rity challenges. One of such challenges is the need for a quick synthesization of
intelligence gathered during an ongoing attack. Machine Learning is able to pro-
vide quick analysis and inference upon large amounts of historical and current
incoming data. Moreover, by applying ML to specific tasks, security teams can
be released of routine and repetitive tasks. Modern approaches to using AI have
shown great promise in reducing error rates and speeding up detection [31, 19].
The use of algorithms can be divided into two main areas: automated threat
detection and response, and autonomous threat detection and response. In both
categories, Machine Learning can automate manual work with particular atten-
tion to processes that require accuracy and real-time response.

Traditional cybersecurity systems, such as Security Information and Event
Management (SIEM) and Intrusion Prevention Systems (IPS), are widely used to
monitor and analyze network activity. SIEMs collect and process data from var-
ious IT resources to identify potential threats, but they typically lack AI-based
automation [28]. Similarly, IPSs support network security without leveraging
machine learning. While effective, these traditional solutions often fall short in
terms of accuracy and adaptability compared to AI-driven approaches [19].
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Decision Trees and Machine Learning for Cybersecurity (...) 3
Table 1. Summary of various Machine Learning models, used over the decade.

Year Source Database Topic Learning Accuracy Precision Recall
model

2010 [9] Spambase Email spam RF 95.43% - -
2011 [6] Own base Email spam RF 95.00% 95.70% 95.70%
2012 [1] Spambase Email spam DT 92.34% 93.50% 93.50%
2013 [29] Own base Emails NB 85.96% - -
2014 [22] SMS base SMS spam SVM, DT SVM 98.61% SVM 98.60% SVM 98.60%

SVM, DT DT 96.60% DT 96.50% DT 96.50%
2015 [5] Twitter dataset Spam tweets SVM 95.20% - 93.60%
2016 [30] Twitter dataset Spam tweets ANN 91% - -
2018 [3] Spambase Email spam ANN 92.41% 92.40% 92.40%
2019 [7] Enron Email spam SVN - 98.10% 98.10%
2020 [25] Twitter dataset Spam tweets SVM 98.88% - 94.47%

2.1 Motivation

Cybersecurity faces increasingly complex threats, demanding ongoing improve-
ments in detection and response. Machine learning has become essential, enabling
automated anomaly detection and threat classification. This paper evaluates the
effectiveness of decision tree algorithms in identifying network security issues
and compares their performance with other machine learning classifiers, with a
focus on the impact of learning hyperparameters on accuracy.

The investigation of the deployment of machine learning for the identification
of cybersecurity issues in computer networks and the analysis of the impact of
mathematical learning conditions on the accuracy of the decision tree algorithm
offers a number of advantages:
– Improving the effectiveness of threat detection – By understanding

the impact of mathematical learning conditions on the accuracy of the de-
cision tree algorithm, detection processes can be optimised, contributing to
more effective protection of IT infrastructure against attacks.

– Resource optimisation – Finding the optimal conditions for mathematical
learning allows for more efficient use of computing and human resources in
the process of cybersecurity posture assessment, even in multistage attack
scenarios [18].

– Faster response to threats – With more effective threat identification
methods, organisations can respond quicker to any potential attacks and
to take appropriate countermeasures, minimising the risk of major security
threats and their consequences.

– Enhancing IT infrastructure resilience – By exploring the ML appli-
cation in the cyber domain, organizations can strengthen their resilience to
prepare for increasingly sophisticated cyber threats. Improving the accuracy
of decision-making algorithms, such as decision trees, can help to address
potential threats more effectively.

2.2 Representative Machine Learning Approaches

Beyes classifiers rely on the Bayesian statistical framework to identify, for
instance, spam messages based on keywords, senders, or domains [31, 24]. Neu-
ral Networks, including Recurrent Neural Networks (RNN) and Convolutional
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Neural Networks (CNN), demonstrate ability to detect more complex patterns
[15]. Decision-tree-based methods (e.g., Random Forest, Gradient Boosting)
typically split feature space into increasingly homogeneous regions, helping to
classify various threats in a straightforward, rule-based manner [12]. Dataset-
driven methods use publicly available labeled data, enabling supervised algo-
rithms to learn typical threat signatures and patterns [14].

2.3 Intruder Detection in a Computer Network

Commonly used machine learning approaches for intrusion detection include
artificial neural networks (ANN), fuzzy association, Support Vector Machines
(SVM), and decision trees [23, 11, 8, 16]. Recent work has shown that these meth-
ods can significantly improve detection rates for threats such as Probe or Remote-
to-Local (R2L) attacks, achieving high accuracy (e.g., up to 99.80% with Naive
Bayes or decision trees) [33, 27, 17, 26, 21, 2, 4]. Early detection and identification
of emerging attack vectors remain challenging, prompting researchers to try hy-
brid approaches that combine anomaly-based and misuse-based detection. As a
result, these techniques are being researched, causing improvement of learning
conditions and the availability and quality of large-scale threat datasets.

3 Database and Methods to Build the Decision Tree

The database collection has been subjected to a series of experiments and scien-
tific studies over the past decade. The entire collection has more than 126 thou-
sand records used for network learning. However, the collection is not perfect, as
it has significant amounts of redundant records which affects the performance of
the network and prevents the learning algorithms from working correctly, also
redundant records in the training set were eliminated. This treatment makes the
classifier unbiased and allows it to represent a more realistic environment. The
lack of repetitive data also affects the performance of the classifier which results
in better rates during scientific studies. The training and test set contains a rea-
sonable number of instances, which is affordable for experiments on the entire
set without having to randomly select parts of the set.

The classes and data labels presented in the database collection are divided
into four categories that represent the corresponding attack class:
– Denial of Service (DoS) attacks – an attack designed to block or restrict

a computer system, network resources or services.
– Probe – an attack involving the introduction of an intruder to scan and

search for information or vulnerabilities in a network or computer system.
– Remote to Local (R2L) – an attack involving the introduction of an in-

truder who remotely gains unattended access to a computer system via a
network by sending a data packet to the system.

– User to Root (U2R) – an intruder gains access to a user with permissions
allowing standard use and then, already inside the system, attempts to gain
access to a user with administrative rights.
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3.1 A methodology for constructing trees using the Gini index

The methodology for building a decision tree using a Gini index, known as a
Gini tree, is a popular technique used in data analysis and machine learning.
The first step in building is the root of the tree – based on the Gini index,
a variable and its boundary value are selected to divide the training dataset.
The training dataset is then divided into subsets – variables that meet a given
condition will go into one subset and those that do not meet the condition will go
into another [10]. A Gini index is calculated for each subset, which is a measure
of how well the split separates the classes in the data. The lower the value of the
Gini index, the greater the homogeneity of the subset. The step of splitting the
dataset and calculating the index is repeated recursively until a stop condition
is reached. This may include a certain depth of the tree, a minimum number of
observations in the leaf or reaching maximum homogeneity [20].

Gini tree leaves are created when the stop condition is met. The leaves are
labelled with a target value, which is assigned to the majority of observations
in the leaf. Once the tree is built, a pruning process takes place. Its purpose
is to reduce overfitting and improve the overall generalisability of the model.
It involves removing nodes or subtrees that do not yield significant predictive
improvement. The tree is built in a way that minimises the Gini index at each
splitting step, resulting in a tree with minimal heterogeneity and well-matched
training data. They are often used because of their simplicity, easy interpretabil-
ity and effectiveness in data classification.

Gini Impurity is one of the measures used to build a decision tree to
determine how the features of a data set should divide the nodes to form a
tree. We denote Gini Impurity by a measure of how often a randomly selected
element from a set is labelled according to the distribution of labels in the subset.
Consider a set D containing k class samples. We denote the probability of the
samples belonging to class i at a given node as p. The Gini Impurity for D is
defined as:

Gini(D) = 1−
k∑

i=1

∗p2i (1)

A node with an even distribution of classes has the highest contamination.
The minimum is obtained when all records belong to the same class. If the
dataset D is divided into two subsets D1 and D2 of size n1 and n2 then Gini
Impurity should be defined as:

GiniA(D) =
n1

n
Gini (D1) +

n2

n
Gini (D2) (2)

To obtain the information gain for the attribute, the weighted branch impu-
rity is subtracted from the original impurity. The best split can also be selected
using Gini gain, which is calculated using the following formula:

∆Gini(A) = Gini(D)−GiniA(D) (3)

There are various metrics used to train decision trees. In addition to the
Gini Impurity described above, there is also the Entropy measure. This is an
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information theory metric that measures impurity and distortion in a group of
observations. It determines how the decision tree chooses to partition the data.
Consider a dataset with N classes. Calculate the entropy using the formula

E = −
N∑
i=1

pi log2 pi (4)

Where pi defines the probability of randomly selecting an example in class i.

3.2 Entropy-based tree building method

An alternative to Gini is the entropy-based decision tree-building method, known
as the Entropy tree. Like the Gini tree, it begins by selecting the root variable
and its boundary value to partition the training dataset. The best partitioning is
determined by information gain, which measures the reduction in entropy after
splitting. Entropy quantifies uncertainty in the data, and information gain repre-
sents its reduction after partitioning. The higher the information gain, the more
accurate and better the partitioning [13]. The algorithm recursively repeats the
steps of partitioning the dataset, calculating entropy, and computing informa-
tion gain until a stopping condition is met – either at a predefined tree depth,
at a minimum number of samples per leaf, or if the subset achieves homogenity.
The last subdivisions, before the stop condition is met, form the leaves of the
tree, which are labelled with a target value assigned to the most observations in
a leaf. As in Gini, pruning can be applied in the final step to reduce overfitting
and improve generalization.

The entropy-based tree building method relies on several formulas from infor-
mation theory. One of the key formulas used is C4.5 algorithm entropy formula,
which calculates the uncertainty or randomness of a system. The entropy for a
set S is calculated as the sum of the entropy for each class in the set, given their
proportions.

H(X) = −
n∑

i=1

pi ∗ log2 (pi) (5)

where S is Entropy, n – number of classes, pi – proportion of class occurrence
in the set.

Information gain IG (S, A) when splitting a dataset S on attribute A is
calculated as:

IG(S,A) = H(S)−
∑

v∈V alues(A)

|Sv|
|S|

H (SV ) (6)

where H(S) is the entropy of the dataset S before the split, |S| is the total
numbers of instances in the dataset S, V alues(A) is the set of possible values of
attribute A, |Sv| is the number of instances in dataset S that have the value v
for the attribute A, H(Sv) is the entropy of the dataset Sv for a specific value
of attribute A.
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In entropy-based tree building, the goal is to recursively minimize entropy
at each node split by selecting the attribute that maximizes information gain.
This process continues until a predefined stopping criterion is met, such as a
maximum tree depth or subset homogenity, resulting in the final tree structure.

3.3 Comparison of tree building methods

When constructing a decision tree using the Gini index and using Entropy, there
are differences in the algorithmic approach. Table 2 shows the comparison made
in the construction of the decision tree:

Table 2. Comparison of Gini and Entropy tree construction.

Comparative Gini Entropy
aspect
Measure of
heterogeneity

The Gini tree uses the Gini in-
dex as a measure of heterogene-
ity. This index measures how well
the division separates different
classes of data.

Entropy tree uses entropy as a
measure of heterogeneity. The in-
dex measures disorder and uncer-
tainty in the data.

Data break-
down

Division of data based on the
value of the selected variable and
the cut-off value, where the se-
lection of the division variable
varies.

Partitioning of data on the basis
of a variable and a cut-off value
that maximises information gain
(reducing entropy).

Effectiveness of
division

The Gini tree minimises the Gini
index to reduce heterogeneity in
the data.

Entropy tree maximises informa-
tion gain.

Interpretability Both are intuitive methods, easily interpretable,
can be presented in a hierarchical form.

The choice of methodology for constructing a decision tree depends on the
specifics of the problem and the user’s preferences. In practice, both methods
produce similar expected results, which may differ in some cases. In the process
of selecting a methodology, other factors such as efficiency, computation time and
interpretability should also be taken into account when choosing an appropriate
tree construction method.

4 Research Methodology

To evaluate the effectiveness of decision trees in cyber-attack detection, experi-
ments were conducted using machine learning techniques. Since scikit-learn op-
erates on structured numerical data, the dataset was reformatted into a two-
dimensional matrix, where rows represented samples and columns corresponded
to feature variables. To ensure reliable models’ performance it was important to
clean the datasets of any duplicate elements (unless the dataset used for testing
had already been cleaned). If the dataset contained numeric and non-numeric
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values, additional preprocessing was required to standardize the data format. A
one-of-K and one-hot encoding method was therefore used. This technique con-
sists of converting each categorical feature with m possible inputs into n binary
features of which only one is active at a time.

The datasets used in the experiment did not have explicit duplicates but re-
quired format standardization. To improve model efficiency, feature selection was
applied to remove redundant or irrelevant features that could lead to overfitting.
Unnecessary features may decrease model accuracy, while increasing computa-
tion time without significant benefits.

The experiments used the SelectPercentile method from the sklearn.feature_
selection module to select features based on their highest scores. Then, once
the best subset of features was determined, recursive feature elimination was
applied, which affects model building.

For the experiment, a decision tree model was built, which partitions the
data using information gain. Each node was split based on a single feature,
and if all resulting instances belonged to the same class, then such node was
considered complete and clean. The recursive feature splitting continued until
the entropy reached zero or a stopping criterion was met. The tree consisted of
internal decision nodes and terminal leaves, with test function implemented in
each node, determining the branches of final tree. The learning algorithm starts
from the root and continues until a leaf node is reached. Each leaf node has a
result label, which is a class objective in the case of classification and a numerical
value when using regression. The model was evaluated using accuracy, precision,
recall, F-measure, and confusion matrices.

4.1 Experiments

A decision tree learning algorithm was used for this experiment, acknowledging
its general tendency to overfit. Therefore, exhaustive parameter tuning was per-
formed to assess optimal model parameters. A tree was constructed, but using
only one feature at a time to split the node and partition the data. This led to
a single-variant use of features. Recursive feature elimination was used, with a
number passed as a parameter to identify features. Two measures were imple-
mented to determine (form) the decision trees – Gini Impurity and Entropy.

Feature selection was used for elimination of redundant and irrelevant at-
tributes, selecting a minimal subset representing the problem with minimal per-
formance degradation. Working with fewer features may improve the result, while
attributes of similar value usually offer little predictive value.

The classifier is trained in the initial phase using all attributes and the weights
assigned to each attribute. In the second stage, it was decided to reduce the
smallest attributes to a smaller set. An analysis of the accuracy of the estimator
was then carried out once the appropriate set of features had been selected.
The analysis was performed for the two measures of decision tree construction.
Table 3 provides details of the estimator accuracy analysis by models used for
all attributes.
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Table 3. Accuracy analysis details for all attributes.

Model Class Accuracy Precision Recall F-meas.
Gini DoS 99.64% 99.51% 99.67% 99.59%

Probe 99.51% 99.39% 99.27% 99.32%
R2L 97.92% 97.15% 96.60% 97.05%
U2R 99.65% 86.29% 90.96% 88.21%

Entropy DoS 98.76% 98.50% 99.65% 99.61%
Probe 99.47% 99.19% 98.95% 98.17%
R2L 97.88% 97.03% 96.93% 97.98%
U2R 99.62% 86.44% 87.87% 86.58%

The number of features was then reduced to the optimal quantities and the
accuracy of the estimators was again analysed by the decision tree models used.
The results are presented in Table 4.

Table 4. Details of accuracy analysis after feature reduction.

Model Class Accuracy Precision Recall F-meas.
Gini DoS 99.74% 99.69% 99.68% 99.70%

Probe 99.08% 98.97% 99.30% 99.38%
R2L 97.45% 97.70% 97.11% 98.02%
U2R 99.65% 88.54% 91.04% 90.82%

Entropy DoS 99.74% 99.71% 99.71% 99.71%
Probe 99.07% 98.67% 99.09% 98.43%
R2L 97.34% 97.40% 97.07% 98.22%
U2R 99.67% 88.00% 90.26% 88.59%

The first confusion matrix presented in Table 5 juxtaposes Normal and
Denial-of-Service (DoS) attacks, delineating the model’s predictive efficacy. The
matrix reveals a commendable discriminatory prowess, as evidenced by the high
True Positive count for Normal instances and the marginal False Negative count
for DoS instances. These findings are underscored by the notably high Positive
Predictive Value (PPV) of 99.70%, indicative of the model’s ability to accurately
classify Normal instances. Furthermore, the Negative Predictive Value (NPV)
of 99.68% underscores the model’s proficiency in correctly identifying DoS in-
stances, thereby highlighting its robustness in mitigating false classifications.

In the context of distinguishing between Normal and Probe attacks, the con-
fusion matrix presented in table 6 illuminates the model’s discriminative acu-
men. A meticulous examination reveals a substantial number of True Positives
for both Normal and Probe instances, indicative of the model’s adeptness in
accurately categorizing these attack types. The high Positive Predictive Value
of 99.38% corroborates the model’s precision in identifying Normal instances,
while the NPV of 99.30% accentuates its efficacy in discerning Probe attacks,
thus bolstering confidence in its predictive capabilities.

Transitioning to the comparison of Normal and Remote-to-Local (R2L) at-
tacks, the confusion matrix presented in Table 7 unveils nuanced patterns in the
model’s classification performance. Despite a substantive True Positive count
for Normal instances, a discernible number of False Negatives for R2L attacks
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Table 5. Confusion matrix for DoS attacks.

Confusion Predicted Label

Matrix Normal DoS

T
ru

e
va

lu
es Normal 9682 29 Positive predictive 99.70%

DoS 23 7437 Negative predictive 99.68%

Table 6. Confusion matrix for Probe attacks.

Confusion Predicted Label
Matrix Normal Probe

T
ru

e
va

lu
es Normal 9651 60 Positive predictive 99.39%

Probe 17 2404 Negative predictive 99.30%

underscore potential areas for model refinement. The Positive Predictive Value
of 98,02% underscores the model’s reliability in identifying Normal instances,
albeit the NPV of 97.11% hints at a moderate propensity for misclassifying R2L
attacks as Normal. Thus, while the model demonstrates commendable preci-
sion in categorizing Normal instances, further optimization may be warranted
to enhance its discrimination of R2L attacks.

Table 7. Confusion matrix for R2L attacks.

Confusion Predicted Label
Matrix Normal R2L

T
ru

e
va

lu
es Normal 9519 192 Positive predictive 98.02%

R2L 92 3099 Negative predictive 97.11%

Lastly, the comparison of Normal and User-to-Root (U2R) attacks unveils
nuanced intricacies in the model’s classification dynamics. Despite a discernible
True Positive count for Normal instances, the presence of False Negatives for U2R
attacks suggests potential areas for model refinement. The Positive Predictive
Value of 90.82% underscores the model’s efficacy in identifying Normal instances,
albeit the NPV of 91.04% hints at a moderate propensity for misclassifying U2R
attacks as Normal (see Table 8). Hence, while the model exhibits commendable
precision in discerning Normal instances, opportunities for optimization may
exist to augment its discrimination of U2R attacks.

Table 8. Confusion matrix for U2R attacks.

Confusion Predicted Label
Matrix Normal U2R

T
ru

e
va

lu
es Normal 8820 891 Positive predictive 90.82%

U2R 6 61 Negative predictive 91.04%
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4.2 Comparison of the Decision Tree algorithm with other classifiers

The Decision Tree-based classification model was compared with other selected
machine learning model classifiers. Parameter tuning of all proposed ML models
was performed using the search grid optimization method [32].

As part of this process, different combinations of hyperparameters were sys-
tematically tested to find the configuration that maximizes the accuracy of the
predictions. The detailed values of the selected hyperparameters for each model
are shown in Tables 9-13. The optimal parameters of the classification models
were determined using 5-fold cross-validation. This technique gives high confi-
dence in the determination of optimal parameter values and thus high accuracy
with the classification task. The search grid method used set learning data.

The parameterisation in the Gradient Boosting method involved selecting
the values of three parameters: learning rate, maximum depth and number of
estimators. The grids of the parameters were searched and the most optimal
parameters selected are shown in Table 9.

A search grid optimization method was used to search for the optimal val-
ues of the hyperparameters of the AdaBoost classifier model, in which only two
parameters were optimized: learning rate, maximum depth and number of esti-
mators. The searched hyperparameter values and the finally selected parameters
are shown in Table 10.

Table 9. Hyperparameters tuning for the Gradient Boosting model.

Parameters Set of values Optimal value
Learning rate 0.01; 0.1; 0.2 0.1
Maximum depth 3; 5; 7 5
Number of estimators 50; 100; 200 200

Table 10. Hyperparameters tuning for the AdaBoost model.

Parameters Set of values Optimal value
Learning rate 0.01; 0.1; 0.2 0.01
Number of estimators 50; 100; 200 50

As with the other models, the best parameters for the SVM method were
selected based on grid search tests as shown in Table 11. During the tests, a linear
kernel was used, adjusting the parameters cost and number of iterations.

For the Random Forest method, the search values and selected search param-
eters are shown in Table 12. Optimal values of three parameters were sought:
number of estimators, maximum tree depth, minimum number of samples to split.

The Lasso classifier method, as well as the Ridge Classifier, searched for
optimal values of the alpha parameter only. The range of search values and the
optimal values are shown in Table 13.

For the best additional classification models (with optimal parameters), the
average accuracy was calculated for the test data. Table 14 shows the classifica-
tion accuracy values of the best additional models for the four classes of attacks
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Table 11. Hyperparameters tuning for the SVMt model.

Parameters Set of values Optimal value
Cost 0.01; 0.1; 1; 10 0.01
Number of iterations 1000; 5000; 10000 5000

Table 12. Hyperparameters tuning for the Random Forest model.

Parameters Set of values Optimal value
Number of estimators 50; 100; 200 200
Maximum tree depth None; 10; 20; 30 None
Minimum number of 2; 5; 10 2samples to split

and with the logs that were not attacks, also the average classification accuracy
values of the Decision Tree determined in Section 4. The reported results were
calculated for data without feature selection.

Additional classifiers developed using machine learning algorithms perform
differently in classifying cyber-attacks. The best classification accuracy is demon-
strated by the Gradient Boosting and Random Forest algorithms. These two
algorithms classify cyber-attacks with an accuracy of more than 99%. A high
classification accuracy of more than 94% is demonstrated by the SVM algorithm.
The Lasso classifier and Ridge classifier algorithms classify cyber-attacks with
the lowest accuracy, around 80%. This can be explained that they are basically
regression algorithms but with a classification option. In the task of classifying
cyber-attacks, they did not perform well.

Of the additional algorithms, only two i.e., Gradient Boosting and Random
Forest achieved marginally higher classification accuracy than the Decision Tree
algorithm. Thus, these two algorithms should be considered as alternatives in
future studies. An in-depth study of cyber-attack classification using these two
best additional algorithms should be performed.

5 Summary

To summarize the results of the accuracy analysis, both splitting approaches
(Gini and Entropy) demonstrated very high performance across most classes and
models. The accuracy and precision values for both were very close, maintained
at the expected level. Differences between values are minimal and measured
values are high. The classification effectiveness confirms that the majority of
positively classified cases were indeed correct.

For DoS classification, both splitting methods (Gini and Entropy) achieve
very high accuracy, precision, recall and F-size, showing their potential in de-
tecting Denial of Service attacks. Similarly, the models performed well in Probe

Table 13. Hyperparameters tuning for the Lasso Classifier and Ridge Classifier models.

Model Parameters Set of values Optimal value
Lasso Classifier Alpha 0.01; 0.1; 1; 10 0.01
Ridge Classifier Alpha 0.01; 0.1; 1; 10 10
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Table 14. Average classification accuracy for all models.

Models Accuracy
Gradient Boosting 99.67%
AdaBoost 84.03%
SVM 94.22%
Lasso 78.69%
Ridge 80.14%
Random Forest 99.56%
Decision Tree – Gini 98.18%
Decision Tree – Entropy 98.93%

attack classification, although with slightly lower precision and recall than for
DoS. R2L attack classification turned out to be more difficult, with acceptable
but less impressive results, suggesting that there is some room for further opti-
mization. The most challenging class in classification was U2R, where precision
and accuracy were the lowest. Classification of U2R attacks still remains a chal-
lenge, especially in terms of precision. Increasing efficiency of U2R classification
is important to minimise the risk of privilege escalation for unauthorised users.

Overall, the Gini and Entropy DT-building approaches prove to be useful in
cyberattack classification. There is a potential for further optimisation, especially
in the area of attacks with more advanced characteristics, such as U2R. The
introduction of new training data or parameter refinement could also contribute
to the improvement of their ability to detect more advanced forms of attacks.

Comparative analysis of alternative machine learning classifiers showed con-
siderable performance differences. Gradient Boosting and Random Forest achieved
the highest precision (99. 67% and 99. 56%, respectively). Decision tree-based
models performed also very well: Decision Tree based on Entropy, with an ac-
curacy of 98.93%, and the Decision Tree based on Gini, with an accuracy of
98.18%. SVM performed well with 94.22% accuracy, making it a valid choice
for small or medium-sized data sets. The Lasso and Ridge regression algorithms
showed rather poor effectiveness (78.69% and 80.14%, respectively) compared to
the aforementioned ones.

These findings indicate that, while decision tree-based approaches are highly
effective, Gradient Boosting and Random Forest algorithms could be positioned
as strong alternatives, considering their high accuracy and relatively low compu-
tational requirements. This conclusion gives a good basis for further exploration
and optimization.

However, some limitations remain, particularly in detecting low-frequency or
stealthy attacks such as U2R, where the models struggled with precision and
recall. Future research could focus on improving detection capabilities through
techniques such as anomaly-based learning, data augmentation, or hybrid en-
semble models. Including practical case studies or deployment scenarios would
help demonstrate the real-world applicability of the proposed models, while the
use of clearer graphs and visualizations could further support interpretability
and accessibility for a broader audience.

The authors might consider further exploring the practical implications and
potential applications of their findings in real-world cybersecurity systems, such
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as intrusion detection platforms or automated threat response mechanisms. In-
tegrating these models into operational environments could provide valuable
information on their robustness and adaptability under realistic conditions.
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