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Abstract. We developed a fast method for spatially highly detailed
nonlinear viscoelastic crustal deformation analysis by a combination of a
data-driven method and a multi-grid solver. Here, highly accurate esti-
mations of the solution of the next time step are obtained using a data-
driven predictor based on the history of past solutions, which reduces
the number of iterative solver iterations and thus reduces the compu-
tation cost. Although this method has been shown to enable fast linear
viscoelastic analysis, its validity has not been confirmed for nonlinear
viscoelastic problems. Numerical experiments have shown that the data-
driven method reduces the number of iterations by 3.35-fold. To achieve
further acceleration, we introduced a multi-grid solver capable of effi-
ciently solving large systems of equations. The proposed combination
of the data-driven method and multi-grid solver is applied to nonlinear
viscoelastic crustal deformation analysis of the Nankai Trough region,
and it is shown that the proposed method achieved a 15.1-fold speedup,
which enabled many large-scale crustal deformation simulations within
reasonable computational costs. The fast nonlinear viscoelastic analysis
of spatially highly detailed crustal structure models enabled by this study
is expected to contribute to the advance of interplate state estimation.

Keywords: unstructured finite-element method · data-driven predictor
· GPU · OpenACC · power-law rheology.

1 Introduction

Accurate estimation of interplate conditions such as plate locking and sliding is
considered to play an important role in improving the understanding of large-
scale earthquakes. Such an estimation is expected to be realized through vis-
coelastic response analysis that can analyze the response of crust which is be-
lieved to behave viscoelastically, based on two types of recently well-accumalated
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data: (1) observation data directly above the seismogenic zone through the in-
stallation of seafloor observation networks and (2) the crustal structure data from
subsurface structural explorations. Such viscoelastic response analysis must ac-
curately reflect realistic rheological models and crustal structure data, and must
be conducted many times. As one of the realistic rheological models for a part
of the mantle, a nonlinear rheological model that assumes that the stress-strain
relationship follows a power law has been proposed [5] and has been shown to
successfully explain crustal deformation for past earthquakes (e.g., [3, 13]). Also,
to accurately calculate the response in a detailed 3D crustal structure model, a
region of 107−8m × 107−8m × 107−8m must be computed on a fine mesh with
element sizes as small as 103−4 m [7]. As a result, to achieve interplate state es-
timation, nonlinear viscoelastic analyses must be performed about 103−6 times
on a highly detailed model with 109 − 1010 degrees of freedom. This requires
huge computational cost and thus a reduction in computational cost is required.

The governing equation for nonlinear viscoelastic crustal deformation be-
comes an elliptic partial differential equation which requires solving a large sys-
tem of linear equations at each time step, requiring huge computational cost.
Iterative solvers are often used to solve such large system of linear equations. In
this case, the number of iterations required for the convergence of the solution
is expected to decrease if a highly accurate initial solution is given; thus, data-
driven prediction methods, which aim to further reduce the number of iterations
from conventional methods by more aggressively predicting the solution for the
next time step based on the history of past solutions, are being developed [10]. In
addition, multi-grid solvers have been developed as efficient methods for solving
large system of linear equations in crustal deformation problems such as linear
viscoelastic analysis on high-performance computers [9], and a combination with
the predictor method has been shown to enable fast linear viscoelastic analysis
[6, 15]. On the other hand, although its validity has not been confirmed for the
nonlinear viscoelastic problems targeted in this study, the deformation due to
nonlinear viscoelasticity is quasi-static, similar to linear viscoelastic variation,
and the above prediction based on changes in the spatial solution structure pro-
vides an initial solution accurate enough to speed up the solver. Also, the above
solution prediction is performed by dividing the analysis target into small re-
gions; however, the effect of this region division on the initial solution estimation
performance for this type of viscoelastic problem has not yet been confirmed.

Based on the above, this study aims to reduce the computational cost of
nonlinear viscoelastic analysis on highly detailed crustal structure models by de-
veloping a new numerical solution method with a data-driven method for highly
accurate estimation of the initial solution and a multi-grid solver for reduction of
solver iterations. The rest of this paper is organized as follows. Section 2 describes
the nonlinear viscoelastic analysis method and its validation, the data-driven
predictor method, and the multi-grid solver used in this study. In Section 3, the
effectiveness of the developed method is demonstrated by comparison with con-
ventional methods. Here, a detailed comparison that has not been done before,
such as considering the effects of domain decomposition, is conducted. Section 4
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describes an application example of a nonlinear viscoelastic crustal deformation
analysis in the Nankai Trough earthquake region. Section 5 provides a summary
of this study.

2 Method

2.1 Nonlinear Viscoelastic Problem

In this study, the crust is assumed to follow a power-law Maxwell rheology as
follows

σij,j + fi = 0 (1)

σ̇ij = λϵ̇kkδij + 2µϵ̇ij −
µ

η
|s|n−1sij (2)

ϵij =
1

2
(ui,j + uj,i) (3)

Here, u, f , σ, ϵ, λ, and µ indicate displacement, outer force, stress, strain, and
Lame’s constants, respectively. Einstein’s summation convention is used, and
δ, (˙), and | | indicate Kronecker delta, time differentiation, and the Frobenius
norm, respectively. s, n, and η indicate the deviatoric stress, stress exponent,
and coefficient for viscous relaxation, respectively. Particularly, when n = 1 the
material becomes linear Maxwell viscous with viscous coefficient η, and when
η = ∞ the material becomes linear elastic.

In this study, the finite element method with second-order tetrahedral el-
ements is used to model heterogeneous crustal structures with traction-free
boundary conditions. We use the same algorithm used in the Geophysical Finite
Element Simulation Tool [16], a finite element software package for geophysical
and other continuum domain applications, for analysis (see Algorithm 1). The
external forces equivalent to fault slip during an earthquake are provided as
input to the analysis using the split-node technique [14]. Gravity is taken into
account by applying force on the ground surface according to the displacement
in the gravity direction [4]. In this study, we adopt control parameter α = 0
in Algorithm 1, which results in solving a nonlinear viscoelastic problem using
an explicit method. In this case, the calculation of crustal deformation in each
time step is approximated as a linear elastic problem. The finite-element model
is generated by the method in [9] which automatically and robustly generates a
tetrahedral mesh of stratified ground models from Digital Elevation Map (DEM)
data.

Numerical validation of the developed nonlinear viscoelastic analysis program
is conducted as follows. We consider a horizontally stratified two-layer model
where spatially uniform shear stress τ(t) is applied to the layer interface. One
layer is a nonlinear viscoelastic layer and the other is an elastic layer, each with
a thickness of L, with Dirichlet boundary conditions on the top and bottom
surfaces and periodic conditions on the sides. In this setting, the displacement
at the layer boundary becomes equivalent to the Maxwellian standard linear
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Algorithm 1 Algorithm for solving nonlinear viscoelastic response of crust.
Here, superscript ( )i is the variable in the i-th time step. ∆t is the time in-
crement. B is the displacement-strain transformation matrix. D is the matrices
indicating elastic material property. β represents the Maxwell viscoplastic strain
rate, and β′ its Jacobian matrix. α is the controlling parameter. Ω is the vis-
coelastic body.
1: i ⇐ 0
2: Compute f0 by split-node technique
3: K ⇐

∑
k

∫
Ωk

e
BTDBdΩe

4: solve Ku0 = f0

5: σ0 ⇐ DBu0

6: while i < Nt do
7: Ki ⇐

∑
k

∫
Ωk

e
BT

(
D−1 + α∆tβ′)−1

BdΩe

8: f i ⇐
∑

e

∫
Ωe

BT
{(

D−1 + α∆tβ′)−1
∆tβi − σi

}
dΩe + f0 + gi

9: if i ≥ 20 then
10: guess δ̂u by data-driven predictor
11: else if i ≥ 3 then
12: guess δ̂u by 2nd order Adams-Bashforth method
13: end if
14: solve Kiδui = f i with initial solution δû
15: ui ⇐ ui−1 + δui

16: σi ⇐ σi−1 +
(
D−1 + α∆tβ′)−1

(Bδui −∆tβi)
17: i ⇐ i+ 1
18: end while

solid model with Young’s modulus of the spring µ and a dashpot following the
power-law. In particular, for n > 1 and given a shear stress τ(t) = τ0H(t), the
displacement u(t) at the layer boundary can be expressed as

u(t) =
L

µ
×

τ0 −{(
τ0

2

)−(n−1)

+
(n− 1)µt

2η

}− 1
n−1

 , (4)

where H(t) is the Heaviside step function. Since nonlinear viscoelasticity can be
regarded as linear viscoelasticity with a certain local viscosity at a local time
and place, we define this effective viscosity as

ηeff =
η

2|s|n−1
. (5)

The parameters used in the numerical validation are shown in Fig. 1a, and
Fig. 1b,c shows the time history of displacement at the layer boundary and
the effective viscosity in the nonlinear viscoelastic layer. The solution follows
the analytical solution expressed in Eq. (4) and thus we can see that a correct
solution is obtained.
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ValueVariable

30 GPa𝜂

3 × 1032 Pa3s𝜇

3𝑛

1.0 × 1015 Pa𝜏0

60,000m𝐿

86,400 s𝑑𝑡

1,000 m𝑑𝑠

a) problem setting

Fig. 1. Problem settings and time history response for the numerical verification prob-
lem. a) Problem settings, b) displacement response, c) effective viscosity.

2.2 Data-driven Predictor

In nonlinear viscoelastic analysis, it is necessary to efficiently solve a large sys-
tem of linear equations obtained using the finite element method (line 14 of
Algorithm 1). When using an iterative method for solving the system of linear
equations, the number of iterations required for the convergence of the solution
is expected to decrease if an initial solution close to the target solution can be
predicted.

One method for predicting the initial solution is the Adams-Bashforth method.
In the second-order Adams-Bashforth method, the solution is predicted point-
wise as

δûi
adam ⇐ ui−3 − 3ui−2 + 2ui−1. (6)

In general, pointwise prediction methods such as the Adams-Bashforth method
are limited to prediction within lower-order polynomial approximation, such as
in Eq. (6), because the prediction results become unstable when using higher-
order polynomial approximation.

On the other hand, the idea of dynamic mode decomposition (DMD) has
been introduced to utilize historical data of a larger number of modes to predict
the initial solution with higher accuracy [10]. Here, based on the idea of exact
DMD, we consider m pairs of input data and output data (xj ,yj) with data
length l, and define two l×m matrices (in the primitive approach, l corresponds
to the total degrees of freedom in space and m to the time step) as follows

X = (x1,x2, · · · ,xm), (7)
Y = (y1,y2, · · · ,ym). (8)

The goal in exact DMD is to extract the spatiotemporal behavior of the dataset of
interest, for example by computing the eigenvectors and eigenvalues of operator
C defined as

C = YX†. (9)
Based on the datasets X,Y and the input data x, the output data y used for
the prediction of the initial solution can be obtained as

y = Cx. (10)
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As a linear operator C is used to predict the output data y, there is no guarantee
that the prediction for nonlinear problems are effective. However, since deforma-
tion due to nonlinear viscoelasticity is a weakly nonlinear phenomenon in which
the effective viscosity changes slowly with time, it behaves within a quasi-static
range with a similar response to a linear viscoelastic problem (see Fig. 1,b).
Furthermore, by constructing local prediction operators for the solution of the
next step from recent historical data, and by using local prediction to capture
nonlinear patterns of spatial variation, we can expect to predict initial solutions
accurate enough to speed up the solver even when using linear operators.

In this study, when predicting the solution of the i-th time step, we define
∆ui = ui

adam − δui as the correction between the predicted and actual values
in the Adams-Bashforth method, and we use the input and output data pairs
(xj ,yj) = (∆ui−j−1, ∆ui−j) to predict the solution. In this case, the operator C
is a one-step-ahead prediction operator for the correction value, and by using the
value ∆ui−1 from the previous step as the input data, the prediction value ∆ûi

for the i-th correction value is obtained. By predicting the dominant deformation
mode using the Adams-Bashforth method and applying a data-driven prediction
method to the correction values, more deformation modes can be considered.
Furthermore, the relaxation of the ill-condition of X allows for a highly accurate
estimation of X† regardless of the computational method.

To improve tractability to spatially local modes, the entire domain is divided
into subregions, and a data-driven predictor is applied to each of these subregions
to predict the solution. On the other hand, if the size of the subregion is too small,
the global deformation may not be adequately captured. Therefore, it is possible
that the suitable subdomain size may vary according to the characteristics of
the target problem to achieve high estimation performance, and verification is
necessary.

In this study, the output data y is obtained by first computing a = X†x
and then computing y = Xa, without explicitly computing the operator C. For
some datasets, the ill-condition of X may make the computation of X†x unstable
and degrade the accuracy of the estimated value y. However, considering the
computational cost and the effectiveness in linear viscoelasticity problems, we
use QR decomposition to compute X†x to obtain y (here, the ill-condition is
also devised by changing the data to be learned as shown above, i.e., learning the
correction from the prediction from the Adam-Bashforth method). Specifically,
first, based on Gram-Schmidt’s orthogonalization method, we decompose X =
QR and then solve the system of linear equations Ra = QTx to obtain a.

As the computational cost and memory footprint of QR decomposition in-
creases with the data length l, we reduce the dimensionality of the matrix. Specif-
ically, using a l′ × l matrix A, we transform the dataset X and input data x
as X′ ⇐ AX and x′ ⇐ Ax. While we can use A = XT for the transforma-
tion matrix, the computational accuracy deteriorates as the condition number
of XTX becomes the square of that of X. Therefore, we use an l′× l matrix with
random values (here, l′ ≪ l) for the transformation matrix A. In the application
example, a matrix X of 8000 × 16 is transformed into a smaller matrix X′ of
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96× 16 for each of the 5× 105 subregions. Since the history of the input data x′

corresponds to X′, only the transformation of x′⇐Ax is required at each time
step. Furthermore, this can be computed efficiently as a matrix-matrix product
by computing multiple subregions together (i.e., for the data xk in each subre-
gion k, data can be transformed as [x′

1, · · · ,x′
b]⇐A[x1, · · · ,xb] using the same

transformation matrix A). This results in low cost and relatively low memory
footprint in the data-driven predictor when compared to that of the solver.

2.3 Multi-grid solver

An iterative solver is used to effectively utilize the highly accurate initial solution
predicted by the data-driven predictor in the previous section. In an iterative
solver, the use of highly accurate initial solutions is expected to reduce the
number of iterations required for the convergence of the solution. Although this
study is concerned with nonlinear viscoelastic crustal deformation, we solve a
linear set of equations with the stiffness matrix identical to that of the linear
viscoelastic problem. Since the multi-grid solver has been shown effective for
linear viscoelastic crustal deformation problems, it is expected to be effective
for nonlinear viscoelastic problems as well. The multi-grid solver has also been
shown to perform well on massively parallel CPU computer systems and multi-
GPU computers systems due to its high parallelism and scalability.

The multi-grid solver (Algorithm 2) is an adaptive conjugate gradient method
that comprises a multi-grid model as a preconditioner. Here we use a two-level
geometric multi-grid method where a second-order tetrahedral element model
is used as a fine grid and a first-order tetrahedral element model is used as
the coarse grid (here, the first-order tetrahedral element model is generated
by extracting the vertex nodes of the second-order tetrahedral element model).
We refer to the original conjugate gradient iteration as the outer loop and the
conjugate gradient iteration for the preconditioner as the inner loop. In each
iteration of the outer loop, the solution is first estimated using the 3 × 3 block
Jacobi method. This block Jacobi solution is used as an initial solution to the
inner loop with the first-order tetrahedral element model (Algorithm 2 a line 9;
inner coarse loop). After refinement by the inner coarse loop, the solution is used
as an initial solution to the inner loop with the second-order tetrahedral element
model (Algorithm 2 a line 11; inner fine loop). In these inner loops, the conjugate
gradient method with a block Jacobi preconditioner is used (Algorithm 2 b). By
introducing a coarse model, the computational cost per iteration is reduced and
the solver convergence rate is improved, resulting in the efficient computation of
the preconditioner.

In the outer loop, FP64 computation is used to guarantee numerical accuracy,
while FP32 computation is used in the inner loops. This reduces computational
costs through reduction in memory access and MPI communication, utilization
of fast FP32 arithmetic hardware, and improved cache utilization. The Element-
by-Element (EBE) method [17] is used in the matrix-vector product. In the
EBE method, the matrix-vector product is computed element-wise; i.e., the local
matrix vector product is computed element wise and the local results are added
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Algorithm 2 The multi-grid solver to solve Kx = b. The input variables are
x,K,b,M,P, ϵinc , ϵin, Nmax, Nmax

c . Here, K and P represent global stiffness ma-
trix and the mapping matrices between grids. M is 3× 3 block Jacobi matrix of
K. The other variables are temporal. Here, (̄ ) represents FP32 variables, while
the others are FP64 variables.
(a) outer loop
1: r ⇐ Kx (computed using EBE)
2: r ⇐ b− r
3: β ⇐ 0
4: i ⇐ 1
5: while |r|/|b| > ϵ do
6: x̄ ⇐ M̄−1r̄
7: r̄c ⇐ P̄T r̄
8: x̄c ⇐ P̄T x̄
9: solve K̄cx̄c = r̄c using (b) with ϵinc

and Nmax
c (*inner coarse loop*)

10: x̄ ⇐ P̄x̄c

11: solve K̄x̄ = r̄ using (b) with ϵin and
Nmax (*inner fine loop*)

12: z ⇐ x̄
13: if i>1 then
14: γ ⇐ (z,q)
15: β ⇐ γ/ρ
16: end if
17: p ⇐ z+ βp
18: q ⇐ Kp (computed using EBE)
19: ρ ⇐ (z, r)
20: γ ⇐ (p,q)
21: α ⇐ ρ/γ
22: r ⇐ r− αq
23: x ⇐ x+ αp
24: end while

(b) inner loop
1: r̄ ⇐ K̄x̄ (computed using EBE)
2: r̄ ⇐ b̄− r̄
3: β̄ ⇐ 0
4: i ⇐ 1
5: while |r̄|/|b̄| > ϵin & i ≤ Nmax do
6: z̄ ⇐ M̄−1r̄
7: ρ̄a ⇐ (z̄, r̄)
8: if i > 1 then
9: γ̄ ⇐ ρ̄a/ρ̄b

10: β̄ ⇐ γ̄/ρ̄
11: end if
12: p̄ ⇐ z̄+ β̄p̄
13: q̄ ⇐ K̄p̄ (computed using EBE)
14: γ̄ ⇐ (p̄, q̄)
15: ᾱ ⇐ ρ̄a/γ̄
16: ρ̄b ⇐ ρ̄a
17: r̄ ⇐ r̄− ᾱq̄
18: x̄ ⇐ x̄+ ᾱp̄
19: end while

to obtain the global product. By using EBE, the memory footprint and memory
transfers can be reduced when compared with methods storing the global stiffness
matrix on memory and reading it during matrix-vector product computations.

3 Numerical experiment

While the data-driven predictor and multi-grid solver described in Section 2 has
been demonstrated effective for linear viscoelastic crustal deformation problems,
it has not been applied to nonlinear viscoelastic crustal deformation problems.
Since their performance depends on the characteristics of the problem, we ver-
ify their effectiveness for nonlinear viscoelastic problems through a numerical
experiment on a model following an actual crustal deformation problem.
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10km
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480 km 320 km

a) overview b) close-up view

Fig. 2. Finite element model used for the numerical experiment problem.

3.1 Problem settings

We generated a finite-element model with element size ds = 1000 m for a region
of 480 km×480 km×320 km for the numerical experiment (see Fig. 2). The de-
grees of freedom and number of tetrahedral elements are 1.95×108 and 4.83×107,
respectively. The parameters for the nonlinear viscoelastic layer are set to n = 3,
η = 3×1032 Pa3 s. The sides and bottom of the finite element model are fixed to
zero by Dirichlet boundary conditions. Nt = 50 time steps were computed with
time step increment width of dt = 86, 400 s. We evaluate the effectiveness of
the data-driven predictor by comparing the required number of solver iterations
with those obtained by using the second-order Adams-Bashforth method as the
initial solution predictor. Two types of iterative solvers were employed: the stan-
dard 3 × 3 block Jacobi preconditioned conjugate gradient solver (PCGE) and
the multi-grid solver. The PCGE solver corresponds to skipping lines 6 to 11 in
Algorithm 2. All equations are solved up to relative error ϵ = 10−8. The inner
loop threshold and maximum number of iterations in the multi-grid solver are
set to (ϵinc , ϵin) = (0.05, 0.1) and (Nmax

c , Nmax) = (300, 20), respectively. The
entire domain is divided into 24,576 subdomains (approximately 7930 degrees-
of-freedom per subdomain), and data of the past m = 16 time steps were used to
predict the solution in each subdomain. Here, we used METIS [1] for partition-
ing the finite-element model into subregions. We evaluate the average number
of solver iterations between time steps 21–50 for evaluation of the predictor
performance.

The proposed method is designed to work on both CPU and GPU. For mea-
surement, we use a computer system comprising 48 NVIDIA A100 40 GB PCIe
GPUs. For GPU computation, we use a programming model called OpenACC
[2], which has high portability but can achieve similar performance as an im-
plementation with a low-level programming model such as CUDA. Almost all
of the computation in Algorithms 1 and 2, except for pre-post processing, MPI
communication, and conditional branch, is accelerated by GPU computation,
which also minimizes CPU-GPU data transfer. As the computational perfor-
mance is similar to that of linear viscoelastic problems, we refer to [15] for the
computational performance of the developed method.
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Table 1. Number of solver iterations per time step for the numerical experiment
problem.

number of iterations
case solver predictor outer inner fine inner coarse
a PCGE solver Adams-Bashforth 3340 - -
b PCGE solver data-driven predictor 659 - -
c Multi-grid solver Adams-Bashforth 6.4 106 1763
d Multi-grid solver data-driven predictor 3.6 41 495

3.2 Performance results

We verify the effectiveness of the proposed method by confirming that the num-
ber of solver iterations has reduced. When using the data-driven predictor in-
stead of the Adams-Bashforth method for the initial solution for PCGE solver,
the number of iterations has decreased significantly from 3340 to 659 iterations
(see cases a and b in Table 1). This is due to the reduction of the residual of
the initial solution from 1.11× 10−3 to 3.39× 10−5, together with the improve-
ment in convergence rate at the beginning of the iterative refinement process
(see Fig. 3.a).

When using the multi-grid solver, most of the iterations are replaced by inner
coarse loops, which are computationally less expensive. As a model with fewer
degrees of freedom improves convergence, the total number of iterations was
reduced from 3340 to 1880 by changing from the PCGE solver to the multi-grid
solver. Furthermore, when the data-driven predictor is applied to the multi-grid
solver, the residuals of the initial solution range from 1.11×10−3 to 1.91×10−5,
which is similar to the case using the PCGE solver. However, unlike the PCGE
solver, the convergence rate of the outer loop does not improve (Fig. 3.b). The
amount of improvement in relative error in the outer loop is driven by the error
threshold ϵin when computing the approximate solution in the inner loop. In the
multi-grid solver, the inner coarse loop accounts for most of the computational
cost, so it is important to reduce the number of iterations in the inner coarse
loop. Convergence was improved in the inner coarse loop, and the number of
iterations was significantly reduced from 1763 to 495 (Table 1.c,d).

Next, we evaluated the performance of the data-driven predictor when the
number of subregions is varied. As shown in Table 2, the number of iterations
was almost constant regardless of the number of subregions, indicating that the
data-driven predictor can robustly reduce the computation time independent of
the subregion size within a range finer than a certain degree.

Finally, we compare the effectiveness of the data-driven predictor with a
linear viscoelastic problem. Table 3 shows the number of iterations required for
solving a linear viscoelastic problem on the same mesh. We can see that the
reduction in the number of iterations by the data-driven predictor was similar
for the nonlinear and linear cases, confirming that data-driven predictor can
predict initial solutions of nonlinear viscoelastic problems with high accuracy.
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Fig. 3. Convergence history of a) PCGE solver and b) Multi-grid solver for the numer-
ical experiment problem. Convergence history for every 2 time steps among 21-30 time
steps are plotted.

Table 2. Number of multi-grid solver iterations per time step with varying subdomain
sizes of the data-driven predictor in the numerical experiment problem.

number of iterations
case # of subdomains DOF per subdomain outer inner fine inner coarse
a 98304 2000 3.73 41.3 460
b 24576 8000 3.60 41 495
c 6144 16000 3.63 40.8 513
d 1536 64000 3.40 35.7 485
e 384 256000 3.40 34.8 496

4 Application example

As an application example, post-seismic crustal deformation was analyzed for a
hypothetical Nankai Trough earthquake [8]. Here we show the effect of nonlinear
viscoelasticity in crustal deformation, and verify the effectiveness of the devel-
oped solver on an actual problem setting. Here we used the crustal structure
data of Japan integrated velocity structure model version 1 [12, 11] to model a
2496 km×2496 km×1100 km area around the Nankai Trough earthquake region
with element size of ds = 1000 m (see Fig. 4). The degrees of freedom and num-
ber of tetrahedral elements are 4.50×109 and 1.11×109, respectively. We assume
that the thickness of the subducting plate is 30 km and that the upper 10 km
of the ocean mantle beneath it is nonlinear viscoelastic. Assuming the effective
viscosity pattern would be similar to that of the 2011 Tohoku-oki earthquake
[3], which have comparable Magnitude levels of the Nankai Trough earthquake,
we set the parameters for the nonlinear viscosity layer as Fig. 4.f). The sides
and bottom of the finite element model are fixed to zero by Dirichlet bound-
ary conditions. We computed the response after the earthquake for a period of
3 years using a simulation of Nt = 147 time steps with time step increment
of dt = 86400 s. To compare the differences between the results of nonlinear
viscoelastic analysis and those of linear viscoelastic analysis, we computed four
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Table 3. Number of solver iterations per time step for linear viscoelastic model in the
numerical experiment problem.

number of iterations
case solver predictor outer inner fine inner coarse
a PCGE solver Adams-Bashforth 3430 - -
b PCGE solver data-driven predictor 664 - -
c Multi-grid solver Adams-Bashforth 6.00 110 1800
d Multi-grid solver data-driven predictor 3.77 43.5 537

cases of linear viscoelastic models with viscosity close to the effective viscosity in
the nonlinear viscoelastic analysis (see Fig. 4.f-g). We used the same computer
system as used in Section 3. Figure 5 shows the elapsed time and the number of
solver iterations for the nonlinear viscoelastic case. We can see that the number
of iterations was significantly reduced and the elapsed time was accelerated by
2.56-fold by applying the data-driven predictor. Since solving the system of lin-
ear equations accounts for 98% The data-driven predictor can be computed very
fast (0.03 s). Thus, the combination of the multi-grid solver and the data-driven
predictor resulted in a 15.1-fold speedup compared to the standard iterative
solver (PCGE solver combined with Adams-Bashforth predictor). The overall
computation time for the entire analysis was also improved by a factor of 12.5,
from 45600 s to 3650 s, demonstrating the effectiveness of the data-driven pre-
dictor and the multi-grid solver in nonlinear viscoelastic analysis. Introducing
multi-grid model with more levels by algebraic multigrid methods may reduce
computation time and is expected to benefit from data-driven predictors as well
([6, 15] employed a three-level multigrid solver for linear viscoelastic problems
and obtained similar results).

Figure 4.f shows the difference in surface displacement response for nonlinear
viscoelastic and linear viscoelastic models, where the response varies significantly
due to the difference in viscosity. Compared to the linear viscoelastic model, a
rapid fluctuation immediately after the earthquake followed by a rapid decay was
observed for the nonlinear viscoelastic model. This is because the nonlinear vis-
coelastic layer exhibits low effective viscosity immediately after the earthquake
and undergoes rapid viscous relaxation, while the effective viscosity increases
after a few years and transitions to gradual viscous relaxation, as shown in
Fig. 4. The difference between linear and nonlinear viscoelastic response was
significantly larger than the observation error, indicating the need for nonlinear
viscoelastic analysis. In this application example, only the coseismic slip was
used as an input; however, in actual crustal deformation analysis, crustal de-
formation due to continuous afterslip should also be considered. Whether the
data-driven predictor is effective in problem settings where external force terms
act continuously has not been tested in this study, and is a subject for future
work.
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Fig. 4. Finite-element model and analysis results for application examples.

5 Conclusion

Aiming to reduce the analysis cost of nonlinear viscoelastic analysis of spatially
highly detailed crustal structure models, we developed a new analysis method
combining a data-driven method for highly accurate estimation of the initial
solution and a multi-grid solver to reduce the number of solver iterations. First,
the developed nonlinear viscoelastic analysis method was verified via a numerical
verification problem. Next, we confirmed that the introduction of the data-driven
predictor enabled predicting the solution of the next time step with higher ac-
curacy than the conventional method, which led to a reduction in the number of
solver iterations by about 3.35-fold. Furthermore, the combination with a multi-
grid solver enabled a 15.1-fold speedup of the analysis. It was also confirmed that
the data-driven predictor can predict the initial solution with high accuracy, in-
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Fig. 5. Number of solver iterations and computation time per time step for the appli-
cation problem with nonlinear viscoelastic case.

dependent of the number of subregions used for the data-driven predictor. As
an application example, the nonlinear viscoelastic response to a hypothetical
Nankai Trough earthquake was computed using a highly detailed crustal struc-
ture model with 4.5 × 109 degrees of freedom. The fast nonlinear viscoelastic
analysis of spatially highly detailed crustal structure models enabled by this
study is expected to contribute to the advance of interplate state estimation.

Since the data-driven method developed in this study is very fast compared
to the solver with a relatively simple configuration, there is still room for devel-
opment using more advanced techniques. We can expect further improvement
of the method for application to a wider range of problems, improvement in
robustness, and further acceleration.
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