
Improving project-level code generation using
combined relevant context

Dmitriy Fedrushkov[0009−0003−9088−4056],
Denis Tereshchenko[0009−0003−7497−676X],

Sergey Kovalchuk[0000−0001−8828−4615], and Artem Aliev[0000−0001−7984−4721]

Chebyshev Research Center, Saint Petersburg, Russia
fedrushkov.dmitriy1@huawei.com

Abstract. Within this study, we propose and evaluate an approach
to structure and improve context provided in RAG-based solutions for
code generation. The approach is based on combination of semantically
relevant API and code selection and filtering for better context repre-
sentation in following LLM prompt. The experimental evaluation per-
formed with CodeGen-350M-mono and several popular benchmarks such
as RepoCoder, CoderEval, CoIR show good overall performance (even
in comparison to bigger LLMs). Also, the experimental evaluation shows
improvement with narrower and more focused context representation
(project-scope API instead of popular public API).

Keywords: Artificial Intelligence · Natural Language Processing · Code
Generation · Retrieval Augmented Generation

1 Introduction

Retrieval Augmented Generation (RAG) has pushed the boundaries of Large
Language Models applications in versatile domains, including software develop-
ment [5]. Involving the relevant information from external sources to generative
models might strongly enhance the outputs in such tasks in software engineer-
ing as code generation, code search, question answering and many others. It is
also applicable to internal sources and could make language models be useful
when working with documents that must not be disclosure [7]. Despite the men-
tioned advantages, RAG has its own limitations. Inconsistent use of context to
be provided to generative AI could lead to reduction of performance which is
not resolved with larger size of information provided [2]. This emphasizes the
necessity of accurate use of information retrieval techniques when working with
LLMs. We believe that small but properly structured pieces of the most relevant
information might be more efficient than providing the whole information from
relevant documents. Thus, our work is focused on development and investigation
of the various approaches of improving RAG prompts by relevant context and
their combinations in software development (e.g, code generation task).

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

2 D. Fedrushkov et al.

2 Context structuring and optimization

The main idea of the study is to investigate possible performance improvement
in RAG-based solution with smaller yet more structured and more relevant in-
formation given as a context in LLM query. We consider text-to-code problem of
code generation, i.e. given a natural language query we want LLM to generate a
source code in the target language resolving the stated problem. Our approach
is based on combination of two main sources of information for query exten-
sion: relevant API search and code search. The extracted API and code can be
included into the prompt of an LLM (see Fig. 1).

Fig. 1. Prompt creation pipeline

Having the relevant information extracted by retrievers, we’ve selected the
prompt template for code generation with the following structure. Here, RETRIEVED
APIS and RELEVANT CODE FRAGMENTS FROM REPO stays for relevant API and
pieces of code extracted by search algorithms respectively. FUNCTION SIGNATURE
defines target function signature. DOCSTRING includes natural language query for
code generation task.

Here are some relevant code fragments from other files of the repo:
--
%RELEVANT CODE FRAGMENTS FROM REPO%
--
Using apis: %RETRIEVED APIS% continue the function:
def %FUNCTION SIGNATURE %:

%DOCSTRING%

Bidirectional decoder for code retrieval. Recent works [1] demonstrated
that replacing unidirectional attention masks in decoder-only language mod-
els (LLMs) with bidirectional variants enables competitive performance in re-
trieval tasks. Building upon this, we propose a fine-tuning framework for code
retrieval that integrates masked next-token prediction and hard negative con-

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

Improving project-level code generation using combined relevant context 3

trastive learning, achieving state-of-the-art results on Python code-search bench-
marks.

Our approach adapts pre-trained decoder models (e.g., CodeGen 350M-mono)
for retrieval tasks through the following key steps:

1. Structural Tokenization: Code tokens are augmented with explicit inden-
tation markers to capture syntactic hierarchies.

2. Bidirectional Training: Masked next-token prediction with bidirectional
attention enables full-sequence context utilization.

3. Hard Negative Mining: During training, code snippets are encoded into
vectors using the current model checkpoint. The top-k nearest neighbors to
each query, excluding the ground truth, are selected as hard negatives for
contrastive learning.

Within our experimental study, we fine-tune CodeGen 350M-mono using an
EOS token pooling strategy on the AdvTest and CodeSearchNet (CSN) datasets,
among others. The training procedure is based on a combination of following
methods: Masked Language Modeling (MLM) (30% of tokens are masked, and
the model reconstructs them using bidirectional attention); Hard Negative Con-
trastive Learning (a cross-entropy loss is applied to similarity scores between the
query and positive/negative code pairs).

Relevant API retrieval. We used a machine learning search algorithm to
search for semantically relevant APIs. Receiving natural language query as an
input, the search system returns the list of relevant APIs, which could be applica-
ble to solve the programming question. While conventional code search methods
return the list of code slices, which can help to tackle the task, our approach
suggests the functions’ qualified names from standard, publuc and local libraries.
For instance, this apparatus returns System.out.println java method when re-
ceiving "How to print something" question instead of searching for whole code
slice. Our experimental setup involves the following data processing: rather than
manually collecting documentation of popular APIs, like Pandas, Torch, etc. [9],
we downloaded 26728 open-source Python repositories through GitHub API and
parsed them to extract the information about public API calls in functions and
form a private API usage database [7]. To avoid the insufficient uses of APIs in
real code examples, we collected only the repositories with more than 100 stars.
Then we used the input queries (function docstring) to match them with the
API calls and develop our ML approach to search semantically relevant APIs.

API database. We used the test part of previously collected public Python
repositories as a database to apply searching for the public APIs that would help
in developing process according to user necessity. Instructing model to use these
APIs seems to improve the quality of generation. To extend the API database,
we used an information about project imports and locally installed packages
to provide the context about public and/or local APIs that was already used
in project. It allowed us to make the context be focused on project scope; this
might involve private context to development process and appears to enhance
the generated code security owing to use trusted libraries.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

4 D. Fedrushkov et al.

Benchmark. We’ve used two popular repository-level benchmarks for eval-
uation of our approach, namely RepoCoder [8] and CoderEval [6]. For most of
the experiments, we used the Python part of CoderEval benchmark to assess
the impact of various contexts in the valid code generation. CoderEval imple-
mented multiple levels of project scopes, which allows us to assess the usefulness
of different suggestions from multiple angles. This benchmark also provided the
Oracle context that could be used to complete the code, making us able to com-
pare the effectiveness of our retrieved information with the "golden" context. We
also used the repositories provided by CoderEval to retrieve the relevant piece
of code, which were added to prompts while generating the solutions.

Code generation model. We applied CodeGen-350M-mono [4] model to
complete the code generation tasks. Since this model was used in original CoderEval
approach, we compared the possibilities of each useful context to improve the
efficiency of code generation. The model was run in sampling mode with 256
max new tokens and other parameters equal to default values.

3 Results

Code retrieval. For preliminary evaluation of code retrieval with our training
procedure we used CoIR benchmark [3]. For CodeGen 350M-mono, we obtained
NDCG@10 metric 0.475 which shows relatively good performance outperforming
such models as UniXCoder (0.373), BGE-M3 (0.393), OpenAI-Ada-002 (0.456).
The better performance in the benchmark was recorded only by significantly
bigger models such as E5-Mistral and Voyage-Code-002.

Next, we evaluated our model on the RepoCoder and CoderEval benchmark
for code retrieval and completion tasks for Python code. We were focusing on en-
hancing bidirectional CodeGen performance but also have fine-tuned UnixCoder-
base on AdvTest and CodeSearchNet Python dataset. Exact Match (EM), Edit
Similarity (ES), and Edit Tree Distance (ED) were used as quality metrics, with
results averaged across repositories (Table 1). The results show that the choice
of encoder-decoder architecture significantly impacts performance. For the best
results are achieved when the bidirectional CodeGen 350M-mono is used. This
configuration outperforms all other combinations, achieving an EM score of 0.321
for API completion and 0.423 for line completion (RepoCoder tasks). The Edit
Tree Distance scores for these tasks are 0.690 and 0.769, respectively. In contrast,
standalone decoders (without a separate encoder) perform poorly, underscoring
the importance of context-aware encoding for code generation tasks.

For CoderEval benchmark we have also tested several decoders together
with bidirectional Codegen 350M as well as function completion without RAG
(Table 2). The bidirectional CodeGen demonstrated promising results on sev-
eral benchmarks and demonstrated significant improvement in passing tests for
CodeEval function generation benchmark.

The results from CoderEval reveal that bidirectional CodeGen 350M-mono
achieves the highest pass@1 score of 0.250, outperforming even the larger 6B

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

Improving project-level code generation using combined relevant context 5

Table 1. Code generation evaluation with RepoCoder

Encoder Decoder Compl. EM ES ED
type

- CodeGen 350M-mono API 0.204 0.496 0.610
UnixCoder-base CodeGen 350M-mono API 0.233 0.482 0.600

UnixCoder (fine-tuned) CodeGen 350M-mono API 0.310 0.585 0.679
CodeGen 350M-mono CodeGen 350M-mono API 0.321 0.597 0.690

- CodeGen 350M-mono Line 0.263 0.520 0.690
UnixCoder-base CodeGen 350M-mono Line 0.340 0.540 0.712

UnixCoder (fine-tuned) CodeGen 350M-mono Line 0.398 0.625 0.762
CodeGen 350M-mono CodeGen 350M-mono Line 0.423 0.638 0.769

Table 2. Code generation evaluation with CoderEval

Encoder Decoder EM ES ED pass@1

- CodeGen 350M-mono 0.200 0.512 0.574 12.3%
UnixCoder-base CodeGen 350M-mono 0.200 0.534 0.59 19.3%
UnixCoder-(fine-tuned) CodeGen 350M-mono 0.215 0.559 0.618 21.0%
CodeGen 350M-mono CodeGen 350M-mono 0.222 0.547 0.606 24.8%
- CodeGen 6B-mono 0.210 0.532 0.592 17.1%

model, which achieves a pass@1 score of 0.171. This demonstrates that smaller
models with RAG can outperform larger models.

RAG context results. Next, we’ve evaluated the influence of context given
with RAG onto performance of code generation with CoderEval benchmark using
pass@1 metric. Table 3 represents the evaluation results with the use of different
prompting strategies. Having versatile prompts and scopes of project, we assessed
the influence of each relevant information.

Table 3. Code generation results with different contexts (pass@1)

Scope Query Oracle Pub API Project Project Project ChatGPT 3.5
API Code API+Code

plib runnable 4.76% 19.05% 19.05% 19.05% 28.57% 38.10% 21.43%
project runnable 3.91% 8.70% 8.70% 8.70% 4.35% 34.78% 9.57%
class runnable 5.82% 10.91% 16.36% 20.00% 39.62% 26.42% 8.73%
self contained 22.57% 42.86% 42.86% 28.57% 40.00% 40.00% 52.29%
file runnable 7.79% 17.65% 19.12% 19.12% 14.71% 19.12% 21.03%
slib runnable 12.50% 35.71% 25.00% 39.29% 17.86% 28.57% 15.36%

overall 9.48% 21.30% 21.74% 22.17% 24.78% 28.26% 21.04%

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

6 D. Fedrushkov et al.

Providing relevant context that would not overwhelm the model resulted in
undeniable upgrades of project-level code generation. We observed significant
improvement of small model contribution that overcame ChatGPT generation
results. As expected, different prompting strategies influenced various aspects of
project-level code completion. Interestingly, combined context improved project
runnable by approximately 4 times in comparison with Oracle context, while use
of only one of context suggestions did not improve this at all. All these might
signalize that the quality of context in project scope is more essential than the
quantity of model parameters.

Code generation example. We’ve inspected several randomly chosen tests
in the CoderEval experimental evaluation and see that our RAG approach pro-
vides reasonable improvement in the code generation process. For example, for
the following task (CoderEval 62ece4982e6aefcf4aabbd65) we have the following
natural language query:

Given an argparse.ArgumentParser instance , return its argument flags in a
space -separated string.

Args: script: argparse.ArgumentParser instance
Returns: argument flags in a space -separated string

Ground-truth solution given by the benchmark was as follows:

def parser_flags(parser):
"""
Given an argparse.ArgumentParser instance , return its argument flags in a
space -separated string.

Args:
script: argparse.ArgumentParser instance

Returns:
argument flags in a space -separated string
"""
return ’ ’.join(option for action in parser._actions for option in action
.option_strings)

The model without RAG extension gives the following solution:

def parser_flags(parser):
"""
Given an argparse.ArgumentParser instance , return its argument flags in a
space -separated string.

Args:
script: argparse.ArgumentParser instance

Returns:
argument flags in a space -separated string
"""
flags = ""
for arg in parser.arg_strings:

flags += " " + arg
return flags

Our approach constructed following RAG-based prompt for code generation:

Here are some relevant code fragments from other files of the repo:
--

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

Improving project-level code generation using combined relevant context 7

the below code fragment can be found in:
borgmatic -commands -completion -parser_flags5.py
borgmatic -commands -completion -parser_flags0.py
--
import argparse
#
def parser_flags(parser: argparse.ArgumentParser) -> str:
return ’ ’.join(parser.prefix_chars + flag for action in parser.

_actions for flag in action.option_strings)
#
#
def test_parser_flags ():
--
the below code fragment can be found in:
borgmatic -commands -completion -parser_flags1.py
--
import argparse
#
def parser_flags(parser: argparse.ArgumentParser) -> str:
return ’ ’.join(parser.prefix_chars + option_strings for action in

parser._actions for option_strings in action.option_strings)
#
#
def test_parser_flags ():
--
Using apis: [’borgmatic -commands -completion -parser_flags1.parser_flags ’, ’

borgmatic -commands -completion -parser_flags2.parser_flags ’, ’borgmatic -
commands -completion -parser_flags3.parser_flags ’, ’borgmatic -commands -
completion -parser_flags4.parser_flags ’, ’getattr ’] continue the function:

def parser_flags(parser):
"""
Given an argparse.ArgumentParser instance , return its argument flags in a
space -separated string.

Args:
script: argparse.ArgumentParser instance

Returns:
argument flags in a space -separated string
"""

Finally, the following code was obtained with much better matching to the
original (ground-truth) solution:

def parser_flags(parser):
"""
Given an argparse.ArgumentParser instance , return its argument flags in a
space -separated string.

Args:
script: argparse.ArgumentParser instance

Returns:
argument flags in a space -separated string
"""
return ’’.join(flag for action in parser._actions for flag in action.
option_strings)

4 Conclusion

Within the presented study we propose an approach for structuring RAG prompt
in code generation with relevant code samples and API retrieved with seman-
tic search in public and project-related scope. Having CodeGen 350M-mono

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

8 D. Fedrushkov et al.

as the main experimental model, our experimental evaluation shows that the
proposed approach enables achieving high performance with relatively smaller
model. Moreover, the approach gives insight that proper (project-related) se-
lection of RAG context show better performance comparing to direct usage of
all public information (e.g., with comparing of public API vs. project-related
API). We see this approach as promising starting point for further development
of RAG-based code generation and other software development tasks which can
give more consistent, comprehensive, and aligned application of RAG solutions.
The promising research directions we consider as further step in this approach
development are semantic and knowledge-graph involvement into RAG imple-
mentation, application of more advanced metrics in code generation evaluation,
extending the study to larger number of modern benchmarks, etc. Future work
would also include the comparison with other RAG approaches to see the effec-
tiveness of versatile retrieving methods and contexts for generative models that
are used when solving software engineering tasks.

References

1. BehnamGhader, P., Adlakha, V., Mosbach, M., Bahdanau, D., Chapados, N., Reddy,
S.: Llm2vec: Large language models are secretly powerful text encoders (2024),
https://arxiv.org/abs/2404.05961

2. Leng, Q., Portes, J., Havens, S., Zaharia, M., Carbin, M.: Long context rag perfor-
mance of large language models (2024), https://arxiv.org/abs/2411.03538

3. Li, X., Dong, K., Lee, Y.Q., Xia, W., Yin, Y., Zhang, H., Liu, Y., Wang, Y., Tang,
R.: Coir: A comprehensive benchmark for code information retrieval models (2024),
https://arxiv.org/abs/2407.02883

4. Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., Xiong,
C.: Codegen: An open large language model for code with multi-turn program syn-
thesis (2023), https://arxiv.org/abs/2203.13474

5. Yang, Z., Chen, S., Gao, C., Li, Z., Hu, X., Liu, K., Xia, X.: An empirical study
of retrieval-augmented code generation: Challenges and opportunities. ACM Trans.
Softw. Eng. Methodol. (2025). https://doi.org/10.1145/3717061

6. Yu, H., Shen, B., Ran, D., Zhang, J., Zhang, Q., Ma, Y., Liang, G., Li, Y., Wang, Q.,
Xie, T.: Codereval: A benchmark of pragmatic code generation with generative pre-
trained models. In: Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. ICSE ’24, Association for Computing Machinery, New York,
NY, USA (2024). https://doi.org/10.1145/3597503.3623316

7. Zan, D., Chen, B., Gong, Y., Cao, J., Zhang, F., Wu, B., Guan, B., Yin, Y., Wang,
Y.: Private-library-oriented code generation with large language models (2023),
https://arxiv.org/abs/2307.15370

8. Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu, J., Zan, D., Mao, Y., Lou, J.G.,
Chen, W.: Repocoder: Repository-level code completion through iterative retrieval
and generation (2023), https://arxiv.org/abs/2303.12570

9. Zhang, K., Zhang, H., Li, G., Li, J., Li, Z., Jin, Z.: Toolcoder: Teach code generation
models to use api search tools (2023), https://arxiv.org/abs/2305.04032

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-97635-3_52

https://dx.doi.org/10.1007/978-3-031-97635-3_52
https://dx.doi.org/10.1007/978-3-031-97635-3_52

