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Abstract. This paper proposes a novel hybrid approach to routing in
Wireless Sensor Networks that combines Q-learning and Learning Au-
tomata models. It is designed to optimize the routing process by leveraging
the strengths of both techniques: Q-learning’s ability to adapt to dynamic
network conditions and Learning Automata’s fast adaptation and con-
vergence in stable scenarios. Preliminary analysis indicates feasibility of
the proposed approach, showing that it can improve the network lifetime
and packet delivery ratio when compared with similar routing protocols.
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1 Introduction

Wireless Sensor Network (WSN) is a distributed network comprising small,
battery-powered devices called sensors, capable of sensing and collecting data
from their surrounding environment. The sensors are typically low-power and
have limited computing capabilities, making energy efficiency a crucial aspect of
their design. These sensors communicate with one another wirelessly using radio
frequency waves and collaborate to perform specific tasks, such as monitoring
environmental parameters like temperature, humidity, or air quality. Data is then
collected and sent for further processing via a specialized sink node.

Our work will focus on efficient routing methods, allowing for the optimization
of the route taken by data from the source to the sink. To that end, we present
a hybrid routing model where Q-learning and Learning Automata (LA) are
integrated to leverage their respective strengths while minimizing their weaknesses.
This combination allows the algorithm to adapt dynamically to the varying
conditions of WSNs, ensuring better performance in terms of latency, packet
delivery, and routing stability.

The rest of this paper is organized as follows. Section 2 presents the works
related to reinforcement learning-based routing algorithms in WSNs. We introduce
the theoretical background of the problem in Section 3. Section 4 describes
our proposed hybrid Q-LA routing protocol. We present the findings of our
experiments in Section 5. The last section concludes the paper with future
research directions.
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2 Related work

There has been a growing interest in developing reinforcement learning and
automata models to tackle the challenges of energy efficiency in WSNs. For
example, Manju and Kumar [7] introduced a scheduling algorithm utilizing
learning automata to address the target coverage problem. This approach allows
sensor nodes to select their operational state autonomously. To validate the
efficacy of their scheduling method, comprehensive simulations were conducted,
comparing its performance against existing algorithms.

In another study, Lin et al. [5] presented a novel on-demand coverage-based
self-deployment algorithm tailored for significant data perception in mobile sensing
networks. The authors employed the cellular automata model to accommodate
the characteristics of mobile sensing nodes and spatial-temporal node evolution.
Subsequently, leveraging learning automata theory and historical node movement
data, they proposed a new mobile cellular learning automata model to intelligently
and adaptively determine optimal movement directions with minimal energy
consumption.

Gudla and Kuda [3] utilized a LA-based model as a routing mechanism for
enhanced energy efficiency and reliable data delivery. The approach aims to
calculate the selection probability of the next node in a routing path based on
various factors such as node score, link quality, and previous selection probability.
Furthermore, they proposed an energy-efficient and reliable routing mechanism
by combining learning automata with the A-star search algorithm.

Another contribution by Upreti et al. [12] introduced a scheduling technique
named Pursuit-LA. Each sensor node in the network was equipped with an LA
agent to autonomously determine its operational state to achieve comprehensive
target coverage at minimal energy cost. Lastly, Qarehkhani et al. [10] proposed
a continuous learning automata-based approach for optimizing sensor angles in
Distributed Sensor Networks (DSNs). The method involved continuously adapting
sensing angles using LA models. Comparative analysis against a conventional
automata-based approach demonstrated the efficacy of the proposed algorithm.

Q-learning, a model-free reinforcement learning algorithm, was also the subject
of recent studies in efficient data routing in WSNs. Maivizhi and Yogesh [6]
employed it to design a routing algorithm for in-network aggregation (RINA) to
build a routing tree based on minimal information such as residual energy, the
distance between nodes, and link strength.

Gao et al. [1] employed a Q-learning-based routing optimization algorithm for
underwater wireless sensor networks. The authors proposed two reward functions
based on the average residual energy of the network, transmission delay, and link
success rate to balance transmission quality and lifetime better. A similar solution
was proposed by Nandyala et al. [8]. The authors employed the QTAR, protocol
to determine the next-forwarder candidates along the routing path and adopt
Q-learning to aid in the optimal global decision-making of next-hop candidates. It
showed a lower energy consumption, shorter latency, and longer network lifetime
than other state-of-the-art solutions.
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Finally, Jain et al. [4] assessed Q-Learning-based routing based on energy
depletion rate, node duration, and packet delivery ratio. The authors proved
that reinforcement learning schemes can outperform traditional algorithms such
as LEACH and K-means by adopting better energy utilization, reduced node
mortality, and higher network throughput.

3 Theoretical background

We consider a WSN comprising N sensors S = {s1, $2, ..., $5 } randomly deployed
over a two-dimensional rectangular area of x x y [m?]. The area contains M
targets T = {t1, 2, ..., tasr } (also called Points of Interest (POI)) that are uniformly
distributed with a step of g. All sensors are assumed to have the same sensing
range R: and battery capacity b;. A Boolean disk represents the coverage model
of a sensor node [13] and assumes omnidirectional sensing with no random
variations.

We use a bipartite graph G = (V, E) to model the Target Coverage Problem
(TCP), with V = SUT, where S represents a set of sensor nodes, 7' a set of
targets and E the set of edges as follows: {s,t} € F if and only if the sensor node
s; detects the target t;. We define the degree d(t;) of the target ¢ as the number
of sensor nodes that detect the target ¢;.

Further, we employ the first-order radio model for the sensors and assume
the energy spent for transmitting and receiving a data packet is constant. In
addition to this, the energy expenditure is proportional to the distance between
two nodes [6].

3.1 Q-learning

Q-learning is a model-free reinforcement learning algorithm used for sequential
decision-making, especially when the environment is uncertain or dynamic. It
learns optimal policies over time by adjusting its action-value function based on
rewards for selecting specific actions (in our case, selecting next-hop nodes). The
core components of the Q-learning algorithm can be defined as follows [8]:

1. Define the State Space (S = (E, L,C, D)) by assigning the variables that
affect routing in the WSN;, i.e.:
— Energy level (F): remaining energy of the node,
— Link quality (L): measured by the Packet Delivery Ratio (PDR),
— Congestion level (C): the number of packets currently in the node’s buffer
or the average delay,
— Distance to destination (D): distance to the sink or destination node.
2. Define the Action Space (A) corresponding to the set of potential decisions a
node can make, i.e., the next-hop nodes;
3. Initialize the Q-values for each state-action pair to an arbitrary value (e.g.,
Z€ero);
4. Routing Decision (Action Selection) are selected based on the e-greedy policy:
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— Exploration: with probability €, the node randomly selects an action from
the set of possible actions,

— Exploitation: with probability 1 — €, the node selects the action with the
highest Q-value (best-known action based on previous experiences).

5. Once the action is chosen (i.e., the next-hop node is selected), the node
forwards the packet and observes the reward based on the outcome of the
transmission:

— A reward is given if the packet is successfully transmitted to the next
hop,

— A penalty is assigned if the transmission fails (due to poor link quality,
congestion, or node energy depletion).

6. After observing the outcome, the Q-value for the state-action pair is updated
using the Bellman equation [1]:

Q" (st,a1) = Q(st,ar) + Ry + v X maza Q(s141,a") — Q(se,a0)], (1)

where:
« is the learning rate;
— v is the discount factor;
— R; is the reward observed after performing action ay;
— maxy Q(si11,a’) is the maximum Q-value of the next state sy11, which
represents the best possible future reward.
This update process gradually refines the Q-values, leading to better routing
decisions.

This solution provides several advantages, such as adaptability to dynamic
network conditions (e.g., node mobility, varying link quality, energy constraints)
by continually learning the optimal routing paths. Due to its decentralized nature,
each node can independently learn from its environment without requiring global
knowledge, making it scalable and suitable for larger networks [1, 4, 11].

Some challenges need to be acknowledged. One of the main problems is
balancing exploration and exploitation (controlled by the parameter €). Too
much exploration can lead to inefficient routing, while too much exploitation can
cause the network to get stuck in suboptimal paths. Additionally, Q-learning
requires maintaining and updating a Q-value table, which can be computationally
expensive, especially in large-scale networks. Thus, converging to the optimal
policy may take a long time, especially in highly dynamic environments.

3.2 Learning automata

A learning automaton is a self-operating mechanism that responds to a sequence
of instructions in a certain way to achieve a particular goal. The automaton
either responds to a predetermined set of rules or adapts to the environmental
dynamics in which it operates [9]. We define the environment influencing the
activities of the automaton as a triple E = (4, C, B), where:
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— A=aq,as,...,qa, is the set of actions;

— B = f1,52,...,Bm is the output set of the environment. When m =2, 5 =0
corresponds a reward and 3 = 1 represents a penalty;

— C =cy,c9,...,c 18 a set of punishment or penalty probabilities, where ¢; € C
corresponds to an input activity «;.

The learning process involving the LA and a random environment is presented
in Fig. 1. Whenever an automaton generates an action oy, the environment
sends a response f; either penalizing or rewarding the automaton with a specific
probability ¢;.

feedback (3;) action (ay)

state (q) ACK/Timeout next hop
1 B
L Qe Environment
I

Fig. 1: A feedback loop of learning automata.

Generally, LA can be categorized as a fixed structure LA or a variable
structure LA. This paper considers variable structure LA, where the action
probability vector is not fixed, and the action probabilities are updated after each
iteration. Thus, through interactions with the environment, LAs may adjust their
action-selection probabilities by a positive reinforcement (i.e., Reward, Eq. (2)):

pi(t+1) = pi(t) +a(l — pi(t)) j=i (2)
pi(t+1) = (1 —a)p;(t) Vj,j #i

or a negative reinforcement (i.e., Penalty, Eq. (3)):
pi(t+1) = (1= b)pi(t) j=i 3)
pilt+ 1) = L (1= bpy(0) Vi i

Values p;(t) and p;(t) are the probabilities of actions «; and «; at time ¢, r is
the number of actions, while a and b are the reward and the penalty parameters,
respectively. We employ a learning algorithm called Linear Reward-Penalty
(Lgr—p) with a = b in our work [9].

4 A Hybrid Q-LA routing protocol

In order to mitigate the inherent challenges present within the Q-Learning
algorithm, we propose the hybrid approach, which dynamically combines Q-
Learning and Learning Automata to make routing decisions based on network
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conditions such as energy levels, link quality, and congestion. The idea is to use Q-
Learning for adaptive, long-term decision-making (in high-congestion situations)
and Learning Automata for short-term adjustments when the network is stable.

The hybrid model leverages Q-Learning when the network is highly dynamic
or when energy depletion is significant (for better adaptation). On the other
hand, Learning Automata is favored when the network is stable, as it allows
quicker convergence with fewer computational overheads [2].

At each decision-making step, nodes switch between Q-Learning and Learning
Automata based on network conditions. If the node runs low energy, it will use
Q-learning to optimize routing decisions and conserve power. Similarly, if the
queue length is high (overloaded network), Q-learning can help find alternative,
less congested routes. On the other hand, LA is more efficient when the network
does not experience frequent link failures or congestion. It adjusts probabilities
of choosing the next hop based on local conditions without needing extensive
state exploration.

Every sensor node s; maintains a Q-table where each entry represents each
neighbor’s expected reward (path quality). The algorithm then adjusts the Q-
values to improve the routing decisions over time. The action with the highest
Q-value will be selected (i.e., next-hop with the highest potential for success)
with probability 1 — e. Additionally, nodes maintain a probability distribution
when selecting each neighboring node (Egs. (2) and (3)). These probabilities
are dynamically updated based on reward signals from the environment, where
successful packet delivery increases the probability of selecting a particular
neighbor, and packet loss or failed delivery decreases the probability.

When conditions are stable, the node uses Learning Automata for quicker
decision-making and convergence. When unstable conditions occur (e.g., low
energy or congestion), it switches to Q-learning for optimal path discovery.

5 Experimental Study

In this section, we aim to evaluate the effectiveness of the proposed hybrid Q-LA
routing protocol through multiple computer simulations. To accomplish this, we
will employ a custom WSN simulator written in Matlab. We use a fixed network,
where sensor nodes are randomly positioned within a 1000 : m x 1000 : m area
alongside a static deployment of T' = 400 targets. The sensing range of sensors
was set at a value of R = 175. The number of nodes will vary in the range
S = {100, 150, 200, 250, 300} sensors.

We will compare its performance with multiple routing protocols, including
LEACH (Low Energy Adaptive Clustering Hierarchy), AODV (Ad hoc Oun-
demand Distance Vector), and RPL (Routing Protocol for Low Power and Lossy
Networks). The performance of the basic Q-Learning routing scheme (without LA
improvements) will serve as a benchmark against the proposed solution. We will
be evaluating the routing efficiency based on performance metrics listed below:

— Packet Delivery Ratio (PDR): the ratio of packets delivered successfully to
the destination node (sink) over the total packets sent;
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— Latency: the average time a packet takes from the source node to the desti-
nation node (sink).

— Energy Consumption: the total energy consumed by the network, considering
both the transmission and reception of packets;

— Network Lifetime: the duration for which the network remains operational
before the first node runs out of energy.

The experiment results are presented in Table 1. There were averaged over
30 runs to ensure robustness. Through this evaluation, we seek insights into the
algorithms performance across various network conditions.

Table 1: Averaged results of comparative performance metrics
for tested routing protocols.

Protocol PDR [%)] Latency [ms| Energy [%] Lifetime [t]
Q-Learning 86.23 74.51 21.64 63
Hybrid Q-LA 89.42 65.59 23.66 68
AODV 79.23 75.34 24.75 59
RPL 83.58 88.71 29.46 61
LEACH 75.43 91.47 32.77 54

As stated before, the hybrid model dynamically selects the most appropriate
routing technique based on the network’s current state. Q-Learning provides long-
term adaptability to changing network conditions (i.e., failures, congestion), while
Learning Automata ensures faster, local adjustments during stable conditions.

By dynamically switching between these two approaches, the algorithm pro-
vides a higher delivery success rate, lower latency, and longer network lifetime
at the cost of a slight increase in overall energy consumption. Regardless of the
variant, the reinforcement learning-based protocols offer better overall efficiency
than the standard routing solutions.

6 Conclusion

This paper presents a novel Q-Learning and Learning Automata (Q-LA) routing
protocol for Wireless Sensor Networks. Our early research findings demonstrate
that this hybrid Q-LA approach provides a robust and adaptive solution to wireless
sensor networks’ dynamic and unpredictable nature. Learning optimal routing
policies based on the local conditions of each node improves packet delivery,
latency, and network lifetime. Though there are challenges related to convergence
and computational overhead, proper parameter tuning could significantly enhance
the performance of routing protocols in WSNs. Our future work will include
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further testing in real-world WSNs, especially in interference-prone environments,
by introducing link failures and node mobility.

Bibliography

(1]

2]

3]

[11]

[12]

[13]

J. Gao, J. Wang, et al. “Q-Learning-Based Routing Optimization Algorithm for
Underwater Sensor Networks”. In: IEEE Internet of Things Journal 11.22 (2024),
pp- 36350-36357. DOI: 10.1109/JI0T.2024.3398797.

J. Gasior. “Learning Automata Strategies for Prolonging Lifetime of Wireless
Sensor Networks”. In: Advances in Practical Applications of Agents, Multi-Agent
Systems, and Digital Twins: The PAAMS Collection. Ed. by P. Mathieu and
F. De la Prieta. Springer Nature Switzerland, 2025, pp. 109—120. 1SBN: 978-3-031-
70415-4.

S. Gudla and N. R. Kuda. “Learning automata based energy efficient and reliable
data delivery routing mechanism in wireless sensor networks”. In: Journal of
King Saud University - Computer and Information Sciences 34.8, Part B (2022),
pp. 5759-5765. 1SsN: 1319-1578. DOI: https://doi.org/10.1016/j . jksuci.
2021.04.006.

A. Jain, S. Jain, and G. Mathur. “Optimizing wireless sensor network routing with
Q-learning: enhancing energy efficiency and network longevity”. In: Engineering
Research Express 6 (Nov. 2024). DOT: 10.1088/2631-8695/ad9138.

Y. Lin, X. Wang, et al. “An on-demand coverage based self-deployment algorithm
for big data perception in mobile sensing networks”. In: Future Generation
Computer Systems 82 (2018), pp. 220-234. 1SsN: 0167-739X. DOIL: https://doi.
org/10.1016/7 . future.2018.01.007.

R. Maivizhi and P. Yogesh. “Q-learning based routing for in-network aggregation
in wireless sensor networks”. In: Wirel. Netw. 27.3 (Apr. 2021), pp. 2231-2250.
ISSN: 1022-0038. DOI: 10.1007/s11276-021-02564-8.

S. Manju and B. Kumar. “Target coverage heuristic based on learning automata
in wireless sensor networks”. In: IET Wireless Sensor Systems 8.3 (2018), pp. 109—
115. DOI: https://doi.org/10.1049/iet-wss.2017.0090.

C. S. Nandyala, H.-W. Kim, and H.-S. Cho. “QTAR: A Q-learning-based topology-
aware routing protocol for underwater wireless sensor networks”. In: Computer
Networks 222 (2023), p. 109562. 1SsN: 1389-1286. DOI: https://doi.org/10.
1016/j.comnet.2023.109562.

K. S. Narendra and M. A. L. Thathachar. Learning automata: an introduction.
USA: Prentice-Hall, Inc., 1989. 1SBN: 0134855582.

A. Qarehkhani, M. Golsorkhtabaramiri, et al. “Solving the target coverage problem
in multilevel wireless networks capable of adjusting the sensing angle using
continuous learning automata”. In: IET Communications 16.2 (2022), pp. 151—
163. DOT: https://doi.org/10.1049/cmu2.12323.

V. K. Sharma, S. S. P. Shukla, and V. Singh. “A tailored Q- Learning for routing
in wireless sensor networks”. In: 2012 2nd IEEE International Conference on
Parallel, Distributed and Grid Computing. 2012, pp. 663—-668. DOI: 10.1109/PDGC.
2012.6449899.

R. Upreti, A. Rauniyar, et al. “Adaptive pursuit learning for energy-efficient
target coverage in wireless sensor networks”. In: Concurrency and Computation:
Practice and Experience 34.7 (2022). DOL: https://doi.org/10.1002/cpe.5975.
B. Wang. “Coverage Problems in Sensor Networks: A Survey”. In: ACM Comput.
Surv. 43.4 (Oct. 2011). 15SN: 0360-0300. DOI: 10.1145/1978802.1978811.

ICCS Camera Ready Version 2025
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-97635-3_51 |



https://dx.doi.org/10.1007/978-3-031-97635-3_51
https://dx.doi.org/10.1007/978-3-031-97635-3_51

