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Abstract. This paper proposes a method for estimating eigenvalues and
eigenvectors based on a computable residual. We provide guaranteed
upper and lower bounds for eigenvalues and establish first-order and
second-order error estimates. Additionally, error bounds for eigenvectors
are provided, ensuring precise estimates for both eigenvalues and eigen-
vectors. Numerical experiments have validated the results. Furthermore,
the interval algorithm is used for the calculation of residual function,
and the resulting eigenvalue bounds are expected to be mathematically
accurate.
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1 Introduction

The solution of eigenvalue problems for operators arises in numerous applications
in numerical analysis and scientific computing. These problems are central to
diverse fields such as quantum mechanics, elasticity theory, and stability analysis.
Given a linear self-adjoint operator A, its eigenvalues and eigenvectors are often
of primary interest.

A standard approach for computing eigenvalues and eigenvectors of large
matrices is the Rayleigh-Ritz method, which approximates the eigenvalue prob-
lem within a subspace. For the Laplace operator, we typically employ finite
element discretization. Following this discretization, iterative methods—such as
the power method, inverse power method, and Lanczos method—are commonly
applied. The numerical solution process introduces several types of errors, in-
cluding discretization errors and floating-point arithmetic errors. When using
the conforming finite element method, the computed eigenvalue is usually larger
than the exact eigenvalue due to the min-max principle. Consequently, deter-
mining a precise interval for the analytical eigenvalue, or its rigorous upper and
lower bounds, remains a significant challenge.

In recent decades, guaranteed upper and lower bounds for eigenvalue prob-
lems have been a research focus. Methods for estimating these bounds generally
fall into two categories: a priori estimates and a posteriori estimates [1]. Based
on prior error estimates, Liu [5] provided a lower-order estimate for the Laplace
eigenvalue problem by accurately estimating the constants in the projection op-
erator. The theory in [4, 2] applies to arbitrarily coarse meshes and provides
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convincing numerical results in various test cases. Hu et al.[3], Luo et al. [6] and
Yang et al. [8] also derived (guaranteed) eigenvalue estimates for the noncon-
forming finite element method.

In this paper, we propose a method for estimating eigenvalues and eigenvec-
tors of linear operators. The approach is based on a computable residual func-
tion that quantifies the discrepancy between approximate and exact eigenvalues.
Using this residual, we derive explicit upper and lower bounds for the eigenval-
ues, which are independent of unknown constants. The residual function is fully
computable, and we further establish first- and second-order error estimates for
the eigenvalues. In addition to the approximation error arising from the finite-
dimensional discretization of the original infinite-dimensional problem, and the
iterative solution error arising from numerical computation, we also account for
rounding errors in floating-point arithmetic. The IEEE Standard enables the
estimation of rounding errors through the use of interval arithmetic [7].

The structure of this paper is as follows: In the Section 2 we introduce the
eigenvalue problem. The Section 3 provides the upper and lower bound estimates,
while the Section 4 presents numerical validation of the theoretical results.

2 Eigenvalue problem

Consider the eigenvalue problem for the Laplace operator ∆ on a domain Ω ⊂
Rn, defined as:

−∆u = λu in Ω,

where ∆ = ∇2 is the Laplace operator, λ is the eigenvalue, and u is the
corresponding eigenvector (eigenfunction). We also have boundary conditions
u|∂Ω = 0 (Dirichlet boundary conditions), though other boundary conditions
can be chosen depending on the specific problem.

Multiply both sides by a test function v ∈ H1
0 (Ω) and integrate, obtaining

the weak form:

Find (λ, u) such that (∇u,∇v) = λ(u, v) ∀v ∈ H1
0 (Ω),

where (·, ·) represents the standard inner product:

(u, v) =

∫
Ω

uv dx, (∇u,∇v) =
∫
Ω

∇u · ∇v dx.

The key idea in finite element methods is to approximate the solution by
choosing a suitable finite-dimensional space of test and trial functions. Let Vh ⊂
H1

0 (Ω) be a finite-dimensional subspace. We can obtain a discrete system of
linear equations:

Suh = λhMuh,

where:
Sij = (∇ϕi,∇ϕj), Mij = (ϕi, ϕj),

and uh = [uh1 , u
h
2 , . . . , u

h
N ]T is the vector of coefficients in the finite element basis.
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In this paper, we employ a global spectral method to solve the problem. Com-
pared with traditional finite element methods, spectral methods offer superior
accuracy and computational efficiency through the use of globally orthogonal
basis functions for solution representation.

After discretizing the problem using global basis functions, we obtain a ma-
trix eigenvalue problem that could conventionally be solved using methods like
the power method or inverse power method. However, in this work, we employ
a gradient flow approach instead. This method offers unconditional energy sta-
bility, making it particularly advantageous for our purposes.

ũn+1
h − unh
∆t

=M−1Sun+1
h ,

un+1
h = ũn+1

h /(ũn+1
h , ũn+1

h ).

One key advantage of using the gradient flow method is that it is well-suited for
solving eigenvalue problems in the context of non-linear and large-scale systems,
where other methods might fail to converge or require extensive computational
resources.

3 Guaranteed Bounds

In this section, we provide upper and lower bound estimates for the eigenvalues.
Define {(λi, ui), i ∈ N} are the exact eigen-pairs of the operator A = −∆, where
λ1 ≤ λ2 ≤ λ2 ≤ · · ·λk−1 ≤ λk ≤ · · · . We assume the numerical scheme provides
an approximate uh intended to approximate the k-th exact eigenvector uk. The
corresponding eigenvalue λk is then computed using the following equation. We
note that even the numerical scheme gives us also λk, we do not use it, and we
update λk by

λh =
(Auh, uh)

(uh, uh)
.

And we define the residual vector as

rh =
Auh − λhuh
‖uh‖L2(Ω)

.

First, we present a guaranteed numerical bound for eigenvalues known as D.
Weinstein’s bound in the literature.

Lemma 1. We assume among all the exact eigenvalues of A, the eigenvalue λk
is the one closest to λh, that is |λk − λh| ≤ |λi − λh|,∀i ∈ N . Then we have

λh − δ ≤ λk ≤ λh + δ,

where δ = ‖rh‖L2(Ω).
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Proof. We first expand uh in terms of {ui, i ∈ N},

uh =

∞∑
i=1

αiui, αi = (uh, ui),

We then note that

rh = Auh − λhuh =

∞∑
i=1

αi(Aui − λhui) =
∞∑
i=1

αi(λi − λh)ui.

We can obtain,

‖rh‖2L2(Ω) =

∞∑
i=1

α2
i (λi − λh)2 ≥

∞∑
i=1

α2
i (λk − λh)2 = (λi − λh)2.

ut

Remark 1. In our calculation, the first step is to calculate the first eigenpair
(λ1, u1) using the regular floating numbers, the second step is to obtain a guar-
anteed interval estimate for δ = ‖rh‖L2(Ω) and then for λk by using the In-
terval Arithmetic (IA) technique: δ ∈ [δm, δM ] and λk ∈ [λk,m, λk,M ], where
[δm, δM ] = IA (‖rh‖2), λk,m = IAm (λh − δM ), and λk,m = IAM (λh + δM ).

The first step (numerical computation) introduces multiple potential error
sources: discretization error from approximating the infinite-dimensional space
with a finite-dimensional subspace; domain truncation error, particularly signif-
icant for quantum systems like the hydrogen atom requiring unbounded-domain
approximation; iterative convergence error inherent in numerical approximation
schemes; and floating-point round-off error due to finite-precision arithmetic lim-
itations. The second step yields a guaranteed interval estimate for the eigenvalue
λk. This overestimation arises from two primary sources: (i) the inherent non-
sharpness of our a posteriori error estimator (as seen in the bounding estimate
λh − δ ≤ λk ≤ λh + δ), and (ii) the application of interval arithmetic during
the post-processing step. Both factors contribute conservatively to the final error
bounds.

Theorem 1. We assume among all the exact eigenvalues of A, the eigenvalue
λ1 is the one closest to λh; that is, |λ1 − λh| ≤ |λi − λh|,∀i ∈ N. Let λ2,L is a
lower approximate of λ2. Then we have

sinα(uh, u1) ≤
δ

λ2,L − λh
, ‖uh − u1‖L2(Ω) ≤

(
δ

λ2,L − λh

)√
1 +

(
δ

λ2,L − λh

)2

,

where δ := ‖rh‖L2(Ω).

Proof. We expand uh in terms of {ui, i ∈ N}, uh =
∑∞
i=1 αiui, αi := (uh, ui), we

have
sin2 α(uh, u1) = 1− cos2 α(uh, u1) = 1− α2

1
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As

rh = Auh − λhuh =

∞∑
i=0

αi(Aui − λhui) =
∞∑
i=0

αi(λi − λh)ui,

we have

‖rh‖2L2(Ω) =

∞∑
i=1

α2
i (λi − λh)2 ≥

∞∑
i=2

α2
i (λ2 − λh)2 = (1− α2

1)(λ2 − λh)2.

For (1− α1)
2 ≤ (1− α2

1)
2 = sin4 α(uh, u1), we obtain,

‖uh−u1‖22 = (1−α1)
2+
∑
i≥2

α2
i = (1−α1)

2+1−α2
1 ≤ sin4 α(uh, u1)+sin2 α(uh, u1),

implying

‖uh − u1‖L2(Ω) ≤ sinα(uh, u1)

√
1 + sin2 α(uh, u1)

≤
(

δ

λ2,L − λh

)√
1 +

(
δ

λ2,L − λh

)2

.

ut

Next, we give a second-order result.

Theorem 2. We assume among all the exact eigenvalues of A, the eigenvalue
λ1 is the one closest to λh; that is, |λ1 − λh| ≤ |λi − λh|,∀i ∈ N. We assume
λh = (Auh,uh)

(uh,uh)
precisely (without any errors including round-off errors). Then

we have

λh −
δ2

(1− sin2 α(uh, u1))(λ2 − λ1)
≤ λ1 ≤ λh,

where δ := ‖rh‖L2(Ω). As a result,

λh −
δ2

λ2 − λ1
≤ λ1 ≤ λh.

Proof. We expand uh in terms of {ui, i ∈ N}, uh =
∑∞
i=1 αiui, αi = (uh, ui).

First |λ1 − λh| ≤ |λi − λh|,∀i ∈ N implies λh ≤ λi,∀i ≥ 2. We then note that

rh = Auh − λhuh =

∞∑
i=1

αi(Aui − λhui) =
∞∑
i=1

αi(λi − λh)ui.

Due to the definition of λh = (Auh,uh)
(uh,uh)

, we see that rh is orthogonal to uh. Thus,

0 =

( ∞∑
i=1

αi(λi − λh)ui,
∞∑
i=1

αiui

)
= α2

1(λ1 − λh) +
∞∑
i=2

α2
i (λi − λh),
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which implies λh ≥ λ1 and

α2
1(λh − λ1) =

∞∑
i=2

α2
i (λi − λh) ≥ 0.

On the other hand,

‖rh‖2L2(Ω) =

∞∑
i=1

α2
i (λi − λh)2 ≥ α2

1(λh − λ1)2 +
∞∑
i=2

α2
i (λi − λh)(λ2 − λh)

= α2
1(λh − λ1)2 + α2

1(λh − λ1)(λ2 − λh) (1)

= α2
1(λh − λ1)(λ2 − λ1).

Noting that
sin2 α(uh, u1) = 1− cos2 α(uh, u1) = 1− α2

1,

we have the desired result. ut

We assume among all the exact eigenvalues of A, the eigenvalue λ1 is the one
closest to λh; that is |λ1 − λh| ≤ |λi − λh|,∀i ∈ N. Given uh to approximate u1,
we obtain λh = (Auh,uh)

(uh,uh)
using Interval Arithmetic to get IA(λh) = [λh,L, λh,U ].

Let IA(‖rh‖L2(Ω)) = [δL, δU ]. Then we have

IAL

(
λh,L −

δ2L
λ2,L − λ1,U

)
≤ λ1 ≤ λh,U ,

where λ2,L is a guaranteed lower bound for λ2, and λ1,U is a guaranteed upper
bound for λ1. Both λ2,L and λ1,U can be obtained from Lemma 1.

Remark 2. When we get (λh, uh) ≈ (λ1, u1) eigen-pair, uh is not exactly u1 due
to round-off error (and other numerical errors like iteration error, truncation er-
ror etc). When employing the gradient flow method to compute the approximate
eigenfunction uh, the resulting solution predominantly captures the first eigen-
vector u1 rather than ui, i ≥ 2. By subtracting the projection of uh onto the first
eigenmode u1 from uh itself, we obtain the residual component orthogonal to u1:
uh,6=1 := uh−(uh, u1)u1. Intuitively, we see uh, 6=1 contains mainly u2 rather than
ui, i ≥ 3. Similarly, because the residual vector rh = Auh − λhuh is orthogonal
to uh, which is close to u1, it is also expected that rh mainly contains u2 rather
than ui, i 6= 2. Consequently, we can use rh to get (λ2,h, u2,h), an approximation
of (λ2, u2), by u2,h = rh

‖rh‖L2(Ω)
, λ2,h =

(Au2,h,u2,h)
(u2,h,u2,h)

. Then we use Lemma 1 to get
a guaranteed interval for λ2, then get λ2,L.

4 Numerical examples

In this section, we validate the results using two examples with rectangular
domains. We consider the spectral method for rectangular domains. The basis
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functions are Legendre polynomials, which are orthogonal polynomials defined
globally.

L0(x) = 1, L1(x) = x, L2(x) =
3

2
x2 − 1

2
, ...

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x).

The k-th basis function and the j-th basis function are orthogonal on the interval
[−1, 1], ∫ 1

−1
Lk(x)Lj(x)dx =

1

k + 1
2

δkj .

We will use this basis function to solve the Laplace eigenvalue problem on two
different rectangular domains [0, π]2 and [0, 1]2. The smallest exact eigenvalue for
the [0, π]2 domain is 2, and the smallest exact eigenvalue for the [0, 1]2 domain
is 2π2. We present the upper and lower bounds of the smallest eigenvalue, as
shown in Tables 1 and 2.

Table 1. Results of [0, 1]2.

Poly Degree λh |λ− λh| Upper Bound Lower Bound Upper - Lower
4 2.02642367284675 2.64e-02 2.66724 1.38561 1.28e-00
6 2.00002942777066 2.94e-05 2.04342 1.95664 8.68e-02
8 2.00000000686899 6.87e-09 2.00107 1.99893 2.14e-03
9 2.00000000000054 5.40e-13 2.000013417 1.999986583 2.68e-05
11 2.00000000000001 1.02e-13 2.000000138 1.999999862 2.76e-06
12 1.99999999999992 7.99e-14 2.000000138 1.999999862 2.71e-06
13 1.99999999999998 2.00e-14 2.000000091 1.999999909 1.82e-07

Table 2. Results of [0, π]2.

Poly Degree λh |λ− λh| Upper Bound Lower Bound Upper - Lower
4 20 2.61e-01 26.3246 13.6754 1.26e01
6 19.7394992426336 2.90e-04 20.1678 19.3112 8.56e-01
8 19.7392088699728 6.78e-08 19.74975953 19.72865821 2.11e-02
10 19.7392088021836 4.90e-12 19.73934122 19.73907639 2.65e-04
11 19.7392088021788 9.90e-14 19.73921007 19.73920753 2.54E-06
12 19.7392088021789 1.99e-14 19.73920952 19.73920808 1.44E-06
13 19.7392088021791 3.40e-14 19.73920960 19.73920800 1.40E-06

From our numerical experiments, we can see that the residual can effec-
tively provide upper and lower bounds for the true eigenvalues using interval
arithmetic. Specifically, interval arithmetic maintains error bounds at computa-
tional step, avoiding the numerical uncertainties that may arise in traditional
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floating-point calculations, thus providing stronger mathematical guarantees for
the computation of eigenvalues.

By accurately computing the residuals, we are able not only to obtain ap-
proximate eigenvalues but also to provide their exact upper and lower bounds,
offering an effective guarantee for the reliability of the eigenvalues.

5 Conclusions

This paper presents an approach for estimating eigenvalues using a computable
residual function. The method provides guaranteed upper and lower bounds for
eigenvalues, along with first-order and second-order error estimates that enhance
the precision of eigenvalue and eigenvector approximations.
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