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Abstract. With Human – Artificial Intelligence (AI) collaboration boom-
ing in all fields, the pace of task-based cooperation is ever-expanding.
Yet, in most applications, AI induction is sidelined to test beds and is
perceived skeptically as a competitor rather than a collaborator. The
healthcare domain is one field where AI support is viewed as theoretical
and far from practical. While most focus is directed towards developing
and training AI models, the human expert and their interactions with
the AI model are often overlooked. We present an experiment that in-
corporates, the personalization of human experts into the AI’s model
training, aiming to improve collaboration and overall outcome. Using
a simulation-based approach, we optimize the AI learning policy of a
domain expert’s behaviour when evaluating decision support data of a
patient’s risk of acquiring type 2 diabetes mellitus (T2DM). With Linear
and Maximum Entropy inverse reinforcement learning (IRL) algorithms,
we analyze various learning strategies by including context, rewards and
sampling rates to show personalized expert characteristics with optimal
policies and effective reward functions respectively. Our results provide
insights into experts’ personalized evaluation policy and the AI model’s
learning behaviour in various environmental scenarios and further the
implicit difference in the evaluation of domain experts.

Keywords: Inverse Reinforcement Learning · Decision Support Systems
· Behaviour Optimization · Policy Simulation · Diabetes Mellitus.

1 Introduction

Artificial intelligence - the world of recent times partially revolves around it.
From minor hints to complex solutions, the use of AI assistance in the general
domain workflow is ever-expanding. The healthcare domain is one of many fields
that has seen a rise of clinical decision support systems (CDSS) incorporated into
a quasi-practical state where recommendations provide valuable insight to the
decision maker therefore aiding in achieving a better outcome. While most deci-
sion support systems are based on offline training using historical observations,
few approaches account for the remaining aspects of decision support, i.e. in-
teraction with experts, environment variables, information context, perceptional
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states and the human expert [7]. Context is one aspect that is overlooked dur-
ing training, the inclusion of which can improve the outcome with perceptional
states [4]. However, in instances where we have only an expert’s demonstration
of performing a task, IRL can be an effective approach to recover the behaviour
and implicit decision-making policy of the human user [1]. Together with the
inclusion of context, background and perceptional states, we can improve rec-
ommendations from CDSS to be more aligned with the domain expert’s solution
and scenario. Further, the type of training for the AI model (i.e. offline or on-
line) has been given little attention when working with expert demonstrations.
Our work aims to simulate the AI model’s learning curve and investigate the
difference in policy behaviour of doctors from various specializations via IRL
in a clinical decision-making scenario. We present a simulation-based approach
to model the domain expert’s (medical professional) personalized policy when
evaluating recommendation data of a prediction model, to assess the patient’s
risk of acquiring type 2 diabetes mellitus (T2DM). Medical professional’s evalu-
ation is acquired through subjective metrics (understandability, agreement and
usability). We perform personalization, using Maximum entropy (MaxEnt) and
Linear Inverse Reinforcement Learning (IRL) to extract the underlying reward
functions and the real optimal policies. We simulate the personalization of poli-
cies on three groups of data, comprising individual doctors, by specialization and
a global dataset, to show the sensitivity of respective reward functions via an en-
tropy measure. Using context, strategy of evaluation and information levels, we
scrutinize our observations to reveal behavioural patterns of medical profession-
als on real-world data. Our results provide a collective insight into identifying
personalized policies based on expert behaviour. Further, the paper is structured
as follows: Section 2 introduces the methodology of modelling CDSS for person-
alized policies. Section 3 shows the interpretation of policies from IRL, Section
4 investigates results after simulation. Section 5 is the conclusion.

2 Modeling Personalization in Clinical Decision Making

This section introduces our approach to simulating and modelling expert person-
alization using IRL algorithms. We define notations that will be used throughout
the paper. A set of n (finite) expert trajectories ET = {τ1; τ2; ....τn} constitute
to a combination of states S = {s1, s2, ....sn} and actions A = {a1, a2, ....an}
that an agent can take in ET where TPA(.) is the state transition probabilities
of moving to state s′ from s upon taking action a (i.e. T (s, a, s′). A discount fac-
tor γ ∈ [0, 1) dictates the weightage for long-term-short-term reward strategy.
L1 ∈ [0, 1) is the regularization factor. π is the policy function that defines
the action to be taken in each state i.e. (π : S → A), π∗ is the optimal policy
that defines the optimal actions to take in each state such that the generated
reward is maximum. τ = {(s0, a1, s1); (s1, a2, s2); ....(sn−1, an, sn)} is a trajec-
tory describing one complete iteration of the agent in the MDP. R(sn, an) ∈ Rf :
is the reward received for reaching state sn by taking action an where Rf is
the collective reward function for all policies π in trajectories in ET . To identify
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personalization, we have used a combination of linear and maximum entropy
algorithms to generate individual reward functions, optimal policies and analyze
the impact across doctors and specializations extending our prior experiment
[3]. Our linear IRL [6] is based on the approach of using RL inside IRL to
iterate across all policies and identify the maximal reward using the assumed
optimal policy π∗ over trajectories ET . This procedure provides us with a com-
plete overview of all possible rewards in the state space. The maximum entropy
IRL is implemented as in [8] i.e. maximizing the reward function relative to
their weights θ∗ = argmax

θ

∑
ET

log P (ET |θ,ET ). Further, using the maximum

entropy algorithm we recover the real optimal policy π∗ therefore describing true
expert behaviour. Figure 1 showcases our approach. We use the setup of the IRL
algorithm by [2] and customized Python scripts to perform simulations.

Fig. 1. Linear and MaxEnt IRL in our experiment. An MDP is setup using ET . A
tuple of trajectories is fed to IRL, generating reward function RF . Linear IRL iterates
through all policies π, while MaxEnt maximizes reward weights θ∗ relative to TPA and
ET

CDSS Data: The dataset used in our experiment is from an experimental
survey [5] conducted at a medical research center where the authors analyze
the effect of having decision makers (doctors) supported by information from
a prediction model, a FINDRISK measure and case-explanation to assess the
perceptional state through subjective metrics of patients suffering from T2DM.
Physicians were provided with the patients’ basic information (age, BMI etc), one
of three prediction information and asked to assess the data via three subjective
perception measures on a Likert scale from 1 (strongly disagree) to 5 (strongly
agree). The measure being Understandability denoting interpretation, Agreement
of model’s prediction and Usability of prediction data in diagnosis. A total of 541
cases of patient assessment data were found to be usable for our experiment. We
include internal context (as doctors’ experience, specialization), external context
(as patient risk) to generate inferences.

MDP Setup and Policy Iteration: In [3], we used CDSS data to model
the internal perceptional state of the medical experts using IRL. We extend the
MDP of S : 5 states = {End, Understandability, Agreement, Usability, Com-
pletion}, A : 2 actions = {Continue, Terminate} with TP : Transition prob-
abilities of moving from state s to s′ extracted from ET using TP (s, a, s

′) =
# of times (s →s′ ) occurs in TE

Total # of occurences in TE
. Where the agent is initialized at understandabil-

ity state and takes actions based on the scored evaluation from the physician. A
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deterministic function compares the doctor’s assessment to a metric threshold
MT (i.e. reflecting lenient, strict evaluation) and is used to decide the action of
the agent. We thresholds of MT = [2, 3, 4] relating to intensity of assessment.

3 Analysis of Reward Functions and Maximum Entropy
Policies

To derive doctor’s personalized evaluation policy, we first assume that all doctors
have universal behaviour and run IRL on all 541 cases of CDSS data (i.e. global
demonstrations). We select a metric threshold MT = 2 to ensure the inclusion
of a broad range of evaluations and create a subset of CDSS data trajectories.
We feed the linear IRL a Linear IRL algorithm with a tuple (S, A, TP , [π],
Rmax, γ, L1), where [π] is a set of all policies extracted from the trajectories, L1
and γ were set to (0.9, 0.9) aimed at long term rewards. We obtain the reward
function as shown in table 1 representing reward/penalties for reaching each
state respective to the policy, here the assumed optimal policy π∗ is [0,1,1,1,0]
as per reward-penalty distribution. Here we encounter optimal ambiguity where
the same rewards are obtained for multiple policies. Therefore, we introduce
entropy to reflect the collective behaviour of individual policies. It is defined as
the probability of reward-penalty received during the resolution of trajectories
H(Rf ) =

∑
R(sn,an)∈Rf

P (R(sn, an)) log(P (R(sn, an))). Next, we use maximum
entropy IRL to recover the real optimal policy using the same trajectory subsets.

Table 1. The reward function of global demonstrations generated over policies π and
with reward terms and respective entropy H(RF ). For all other π the reward and
entropy were 0

Policy End Understand Agree Use Complete Entropy

[0,0,1,1,0] 0.0 0 0 0 10.00 0.217

[0,1,1,1,0] 0.0 0 0 10.00 10.00 0.293

[0,1,1,0,0] 0.0 0 0 10.00 0 0.218

[0,1,0,1,0] 0.0 0 0 0 10.00 0.218

Assessment by Specializations: On running linear IRL and MaxEnt for
the specialization subset of CDSS data, we identify collective reward functions
and optimal policies shown in 2. We analyse the variance of policy-reward space
and compare it with MaxEnt policies. To ensure an unbiased analysis, we se-
lected specializations where more than 3 individual doctors’ evaluations were
available i.e. endocrinologists, cardiologists and general medicine [E, C, GM]
while sparsely involving other doctors since they had less than 2 samples or
their behaviour was erroneous. Table 3 shows the reward function for the three
specializations [E, C, GM] at MT = [2, 3]. On analysing the MaxEnt policies
and respective RF , we observe the π∗ for [E, C, GM] doctors to be relatively
the same across MT with the entropy of endocrinologists being consistent com-
pared to all specializations. The average score of evaluation metrics for [E, C,
GM] were (4.30, 3.72, 3.75), (4.9, 4.2, 4.7) and (4.27, 4.30, 4.0) respectively. This
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shows the volatility in the optimal policy followed and given the high metric
scores, the IRL assumes that the amount of information does not impact the
evaluation thus moderately saturating the reward function. The infectionsists
and behaviour follow closely with endocrinologists. Gynaecologists have a pecu-
liar deviation of policy at MT = 2 due to a higher number of evaluations at low
MT . For neurologists and rheumatologists, the RF remained the same through-
out all MT since they had only trajectory. Overall, at a higher MT , the optimal
policy for all specializations follows similar behaviour, and at MT = 2,3, the pol-
icy reveals individual assessment tendencies (i.e. strict/lenient) which is reflected
in the average evaluation scores. At MT = 4 the behaviour converges as in table
1 with rewards awarded for reaching usability states across specializations.

Table 2. The maximum entropy optimal policies π∗ for all doctors per specialization
representing their personalized decision policy at various levels of assessment MT

Specialization No of Docs MT = 2 MT = 3 MT = 4

Endocrinologist 5 [0, 0, 0, 0, 0] [0, 0, 0, 1, 0] [0, 0, 1, 1, 0]

Cardiologist 3 [0, 0, 0, 0, 0] [0, 0, 1, 1, 0]

General Medicine 4 [0, 0, 0, 0, 0] [0, 0, 0, 1, 0] [0, 0, 1, 1, 0]

Gynaecologist 2 [0, 1, 1, 0, 0] [0, 0, 0, 1, 0] [0, 0, 1, 1, 0]

Ophthalmologist 1 [0, 0, 0, 0, 0] [0, 0, 0, 1, 0] [0, 1, 1, 1, 0]

Infection Specialist 2 [0, 1, 0, 0, 0] [0, 1, 1, 0, 0] [0, 1, 1, 1, 0]

Rheumatologist 1 [0, 1, 1, 1, 0]

Neurologist 1 [0, 1, 1, 1, 0]

4 Simulating Personalized Learning via Policy Iteration

The simulation setup for personalized learning behaviour uses the same MDP
and IRL as in section 3. To simulate behaviour, we extend the IRL cycle to ran-
domly resample the trajectories from the subsets of specialization and individual
doctors to train the model over multiple steps. To investigate optimal policies we
select subsets of three specializations as per CDSS data, i.e. 5 endocrinologists,
4 general medicine specialists and 3 cardiologists since their sample trajectories
are large enough for simulating individual and groupwise behaviour. For unifor-
mity in experiments, we selected our IRL parameters to be focused on having a
long-term reward strategy of (L1 : 0.9, γ : 0.9) and MT = 2 to cover all possible
scenarios. Figure 2 gives an overview of our simulation in three cases.

Case 1: Simulation using Individual Demonstrations The linear IRL
algorithm is initialized with a doctor’s full trajectory set and trained. On con-
cluding one iteration of training, we randomly select a single sample from the
original set of doctors’ trajectories and append it to the training set. The pro-
cess is continued for N Sample additions and the entropy scores for all sample
addition steps up to are averaged over M cycles. To make the computing process
more efficient, we selected two combinations of sample addition and randomiza-
tion (M,N) i.e. (25, 600) and (100, 100) since at smaller intervals, the behaviour
was incomplete and larger intervals tended to have constant variance while also
taking immense computing power and time. We evaluate the training by assess-
ing the reward entropy H(Rf ) across N and M randomization cycles.
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Table 3. The reward functions and entropy of Endocrinologists (E), Cardiologists (C )
and General medicine therapists (GM ) at MT = [2, 3] when running IRL on subsets of
specialization. The rewards are constant for states of End, Understandability (Und)
and Agreement (Ag) while varying for Usability (Use) and Complete

Policy End Und Agree Use Complete Entropy

Specializations [E, C, GM] [E] [C, GM] [E] [C, GM] [E] [C, GM]

[0,0,0,0,0] 0 0 -10 0 -10 0 -10 0.217 0.292

[0,0,0,1,0] 0 0 -10 0 -10 0 10 0.217 0.458

[0,0,1,1,0] 0 0 -10 0 10 10 10 0.412 0.458

[0,1,1,1,0] 0 0 10 10 10 10 10 0.292 0.292

[0,1,1,0,0] 0 0 10 10 10 0 0 0.292 0.292

[0,1,0,0,0] 0 0 10 0 0 0 0 0.217 0.217

[0,0,1,0,0] 0 0 -10 0 10 0 0 0.217 0.412

[0,1,0,1,0] 0 0 10 0 0 10 10 0.292 0.218

Fig. 2. Our simulation setup to learn personalized policies of doctors in various training
scenarios. Given a single doctors demonstrations at N = 1 we run IRL on the current set
of trajectories to obtain RF and its entropy. The initial set of trajectories is appended
with one sample from; Case 1: doctor undergoing personalization; Case 2: doctor’s
specialization; Case 3: global demonstrations; This cycle is continued for M steps.

Across all specializations, we observe spikes in the entropy with the addition
of new trajectories reflecting new unlearned behaviour. After cycles of random
addition, the entropy gradually saturates. Figure 3A shows the learning be-
haviour of cardiologists (A,B,C) trained with 600 iterations and 25 randomiza-
tion cycles. On comparing with respective MaxEnt policies and RF , we observe
that the physicians have a strict policy of evaluation at lower MT with penalties.
Whereas for general medicine therapists trained with 100 iterations of sampling
and 100 randomization cycles, (Figure 3B), the reward entropy does not stabi-
lize for specialists (A,C) until 100 samples. We attribute this behaviour to higher
metric scores. Specialist (D) has a constant entropy due to erroneous evaluation
scores. We observe that an increase in sample additions (N) elongates the learn-
ing behaviour with sharp deviations in RF , while an increase in randomization
(M) results in smooth learning behaviour with fewer steps to adopt a policy.

Case 2: Resampling using Specialization Trajectories: Here, we ini-
tialize the MDP and IRL algorithm as in the previous case, however, our re-
sampling data is sourced from the data of specializations (i.e. grouped data of
doctors from the same specialization except the doctor being assessed). We con-
sider the case of endocrinologists, where we feed specialization data to all doctors
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Fig. 3. The personalized learning curve of reward entropy at Maximum Entropy policy
[0, 0, 1, 1, 0] for; (A): cardiologists after training with (25,600) randomized -sampling
iterations; (B): Personalized learning curve for general medicine specialists after train-
ing with (100, 100) randomized-sampling iterations

individually. Figure 4A shows the results of the endocrinologists. Unlike in case
1, the reward entropy takes comparatively longer to converge and stabilize while
there are sections of constant trajectory in between. This behaviour is the impact
of deviating policies given the breadth of added samples (i.e. trajectories of four
endocrinologists were added during training) therefore requiring more cycles of
randomization to stabilize.

Fig. 4. Learning curve of endocrinologist’s reward entropy of MaxEnt policy [0,0,1,1,0]
when simulated at (25,600) cycles of randomization; (A): Sampling data from endocri-
nologists specialization; (B): Sampling data from global doctors

Case 3: Resampling using Global Trajectories: The final case is aimed
at providing a broad perspective of the learning behaviour as the trajectories
are added from global demonstrations. The setup of MDP and IRL follows case
1. We experiment with endocrinologists again as they provide a wider base for
analysis. At 25 randomization and 600 iterations, we observe the behaviour as
in Figure 4B. Compared to case 1 and case 2, we notice the magnitude of reward
entropy is much lower than the latter, when analyzed, the reward functions are
observed to vary frequently with changes in penalty and reward terms across
all policies. The variance in behaviour does not subside despite 600 additions
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and 25 randomization cycles, we believe this is attributed to the nature of the
dataset since it consists of 541 samples consisting of doctor trajectories of all
specializations, the ideal number of iterations required to stabilize the reward
function for collective policies should be much larger. Hence, the number of
trajectories required to reach a constant policy is much larger.

5 Conclusion and Future work

Overall, the results of our experiment provide insights into modelling and sim-
ulating clinical decision-making data using inverse reinforcement learning to
identify personalized policies of doctors when evaluating prediction data of pa-
tients’ risk of type 2 diabetes mellitus. We perform simulations to evaluate the
personalized learning of doctors’ individual policies in three cases of trajectory
sampling. From our investigation, we observed an increase in evaluated entropy
when trained by experts of different specializations whereas when trained us-
ing one’s own data, the identification of policy is faster (i.e. less than 600 steps
of sampling). We see these results as a crucial step towards the development
of personalization in DSSs, the inclusion of which can improve the AI model’s
alignment with domain experts enabling a more efficient collaboration. In future
works, we plan to extend AI model simulation with online and offline training
constructed around theory of mind and feedback learning to improve human-AI
collaboration in universal domains.
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